Stuti commited on
Commit
f0e178a
1 Parent(s): dd59d94

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +131 -0
app.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import gradio as gr
3
+ import matplotlib.pyplot as plt
4
+ import requests, validators
5
+ import torch
6
+ import pathlib
7
+ from PIL import Image
8
+ from transformers import AutoFeatureExtractor, DetrForObjectDetection
9
+ import os
10
+
11
+ # colors for visualization
12
+ COLORS = [
13
+ [0.000, 0.447, 0.741],
14
+ [0.850, 0.325, 0.098],
15
+ [0.929, 0.694, 0.125],
16
+ [0.494, 0.184, 0.556],
17
+ [0.466, 0.674, 0.188],
18
+ [0.301, 0.745, 0.933]
19
+ ]
20
+
21
+ def make_prediction(img, feature_extractor, model):
22
+ inputs = feature_extractor(img, return_tensors="pt")
23
+ outputs = model(**inputs)
24
+ img_size = torch.tensor([tuple(reversed(img.size))])
25
+ processed_outputs = feature_extractor.post_process(outputs, img_size)
26
+ return processed_outputs[0]
27
+
28
+ def fig2img(fig):
29
+ buf = io.BytesIO()
30
+ fig.savefig(buf)
31
+ buf.seek(0)
32
+ img = Image.open(buf)
33
+ return img
34
+
35
+
36
+ def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
37
+ keep = output_dict["scores"] > threshold
38
+ boxes = output_dict["boxes"][keep].tolist()
39
+ scores = output_dict["scores"][keep].tolist()
40
+ labels = output_dict["labels"][keep].tolist()
41
+ if id2label is not None:
42
+ labels = [id2label[x] for x in labels]
43
+
44
+ plt.figure(figsize=(16, 10))
45
+ plt.imshow(pil_img)
46
+ ax = plt.gca()
47
+ colors = COLORS * 100
48
+ for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
49
+ ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
50
+ ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
51
+ plt.axis("off")
52
+ return fig2img(plt.gcf())
53
+
54
+ def detect_objects(model_name,url_input,image_input,threshold):
55
+
56
+ #Extract model and feature extractor
57
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
58
+
59
+ if 'detr' in model_name:
60
+
61
+ model = DetrForObjectDetection.from_pretrained(model_name)
62
+
63
+
64
+ if validators.url(url_input):
65
+ image = Image.open(requests.get(url_input, stream=True).raw)
66
+
67
+ elif image_input:
68
+ image = image_input
69
+
70
+ #Make prediction
71
+ processed_outputs = make_prediction(image, feature_extractor, model)
72
+
73
+ #Visualize prediction
74
+ viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
75
+
76
+ return viz_img
77
+
78
+ def set_example_image(example: list) -> dict:
79
+ return gr.Image.update(value=example[0])
80
+
81
+
82
+
83
+ title = """<h1 id="title">Detection for Drone</h1>"""
84
+
85
+ description = """
86
+ Links to HuggingFace Models:
87
+ - [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
88
+ - [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
89
+ """
90
+
91
+ models = ["facebook/detr-resnet-50","facebook/detr-resnet-101"]
92
+ urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
93
+
94
+
95
+ css = '''
96
+ h1#title {
97
+ text-align: center;
98
+ }
99
+ '''
100
+ demo = gr.Blocks(css=css)
101
+
102
+ with demo:
103
+ gr.Markdown(title)
104
+ gr.Markdown(description)
105
+ gr.Markdown(twitter_link)
106
+ options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
107
+ slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
108
+
109
+ with gr.Tabs()
110
+ with gr.TabItem('Image Upload'):
111
+ with gr.Row():
112
+ img_input = gr.Image(type='pil')
113
+ img_output_from_upload= gr.Image(shape=(650,650))
114
+
115
+ with gr.Row():
116
+ example_images = gr.Dataset(components=[img_input],
117
+ samples=[[path.as_posix()]
118
+ for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
119
+
120
+ img_but = gr.Button('Detect')
121
+
122
+
123
+ url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
124
+ img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
125
+ example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
126
+
127
+
128
+ #gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")
129
+
130
+
131
+ demo.launch(enable_queue=True)