from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration import torch import gradio as gr # PersistDataset ----- import os import csv import gradio as gr from gradio import inputs, outputs import huggingface_hub from huggingface_hub import Repository, hf_hub_download, upload_file from datetime import datetime DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv" DATASET_REPO_ID = "awacke1/Carddata.csv" DATA_FILENAME = "Carddata.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) HF_TOKEN = os.environ.get("HF_TOKEN") SCRIPT = """ """ try: hf_hub_download( repo_id=DATASET_REPO_ID, filename=DATA_FILENAME, cache_dir=DATA_DIRNAME, force_filename=DATA_FILENAME ) except: print("file not found") repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN ) def generate_html() -> str: with open(DATA_FILE) as csvfile: reader = csv.DictReader(csvfile) rows = [] for row in reader: rows.append(row) rows.reverse() if len(rows) == 0: return "no messages yet" else: html = "
" for row in rows: html += "
" html += f"{row['inputs']}" html += f"{row['outputs']}" html += "
" html += "
" return html def store_message(name: str, message: str): if name and message: with open(DATA_FILE, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) writer.writerow( {"name": name.strip(), "message": message.strip(), "time": str(datetime.now())} ) commit_url = repo.push_to_hub() return "" iface = gr.Interface( store_message, [ inputs.Textbox(placeholder="Your name"), inputs.Textbox(placeholder="Your message", lines=2), ], "html", css=""" .message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; } """, title="Reading/writing to a HuggingFace dataset repo from Spaces", description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.", article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})", ) mname = "facebook/blenderbot-400M-distill" model = BlenderbotForConditionalGeneration.from_pretrained(mname) tokenizer = BlenderbotTokenizer.from_pretrained(mname) def take_last_tokens(inputs, note_history, history): """Filter the last 128 tokens""" if inputs['input_ids'].shape[1] > 128: inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) note_history = [' '.join(note_history[0].split(' ')[2:])] history = history[1:] return inputs, note_history, history def add_note_to_history(note, note_history): """Add a note to the historical information""" note_history.append(note) note_history = ' '.join(note_history) return [note_history] title = "Chatbot State of the Art now with Memory Saved to Dataset" description = """Chatbot With Memory""" def chat(message, history): history = history or [] if history: history_useful = [' '.join([str(a[0])+' '+str(a[1]) for a in history])] else: history_useful = [] history_useful = add_note_to_history(message, history_useful) inputs = tokenizer(history_useful, return_tensors="pt") inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) reply_ids = model.generate(**inputs) response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] history_useful = add_note_to_history(response, history_useful) list_history = history_useful[0].split(' ') history.append((list_history[-2], list_history[-1])) store_message(message, response) # Save to dataset return history, history gr.Interface( fn=chat, theme="huggingface", css=".footer {display:none !important}", inputs=["text", "state"], outputs=["chatbot", "state"], title=title, allow_flagging="never", description=f"Gradio chatbot backed by memory in a dataset repository.", article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})" ).launch()