Spaces:
Running
Running
File size: 1,184 Bytes
6ff89e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import os
from rag_pipeline import RAGPipeline
import openai
openai.api_key = os.environ.get('OPENAI_API_KEY')
# Initialize the RAG pipeline
rag = RAGPipeline("metadata_map.json", "pdfs")
def process_query(question, response_format):
response = rag.query(question)
if response_format == "Markdown":
return response["markdown"]
else:
return response["raw"]
# Define the Gradio interface
iface = gr.Interface(
fn=process_query,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question"),
gr.Radio(["Markdown", "Raw Text"], label="Response Format", value="Markdown")
],
outputs=gr.Markdown(label="Response"),
title="Vaccine Coverage and Hesitancy Research QA",
description="Ask questions about vaccine coverage and hesitancy. The system will provide answers based on the available research papers.",
examples=[
["What are the main factors contributing to vaccine hesitancy?", "Markdown"],
["What are the current vaccine coverage rates in African countries?", "Raw Text"],
],
allow_flagging="never"
)
# Launch the app
iface.launch() |