File size: 1,946 Bytes
cfb1a62
 
6ff89e0
cfb1a62
daee42b
cfb1a62
 
 
183168e
cfb1a62
 
 
 
 
 
daee42b
 
cfb1a62
 
daee42b
 
cfb1a62
 
 
6ff89e0
cfb1a62
daee42b
cfb1a62
 
daee42b
 
cfb1a62
 
 
 
 
 
 
 
daee42b
 
 
cfb1a62
daee42b
cfb1a62
 
 
 
 
 
 
daee42b
cfb1a62
 
 
 
 
 
daee42b
 
cfb1a62
 
 
daee42b
cfb1a62
 
 
 
 
daee42b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# app.py

import gradio as gr
import json
from rag.rag_pipeline import RAGPipeline
from utils.prompts import highlight_prompt, evidence_based_prompt
from config import STUDY_FILES


def load_rag_pipeline(study_name):
    study_file = STUDY_FILES.get(study_name)
    if study_file:
        return RAGPipeline(study_file)
    else:
        raise ValueError(f"Invalid study name: {study_name}")


def query_rag(study_name, question, prompt_type):
    rag = load_rag_pipeline(study_name)

    if prompt_type == "Highlight":
        prompt = highlight_prompt
    elif prompt_type == "Evidence-based":
        prompt = evidence_based_prompt
    else:
        prompt = None

    response = rag.query(question, prompt)
    return response.response


def get_study_info(study_name):
    study_file = STUDY_FILES.get(study_name)
    if study_file:
        with open(study_file, "r") as f:
            data = json.load(f)
        return f"Number of documents: {len(data)}\nFirst document title: {data[0]['title']}"
    else:
        return "Invalid study name"


with gr.Blocks() as demo:
    gr.Markdown("# RAG Pipeline Demo")

    with gr.Row():
        study_dropdown = gr.Dropdown(
            choices=list(STUDY_FILES.keys()), label="Select Study"
        )
        study_info = gr.Textbox(label="Study Information", interactive=False)

    study_dropdown.change(get_study_info, inputs=[study_dropdown], outputs=[study_info])

    with gr.Row():
        question_input = gr.Textbox(label="Enter your question")
        prompt_type = gr.Radio(
            ["Default", "Highlight", "Evidence-based"],
            label="Prompt Type",
            value="Default",
        )

    submit_button = gr.Button("Submit")

    answer_output = gr.Textbox(label="Answer")

    submit_button.click(
        query_rag,
        inputs=[study_dropdown, question_input, prompt_type],
        outputs=[answer_output],
    )

if __name__ == "__main__":
    demo.launch()