acres / app.py
ak3ra's picture
response instead of everything
d377a8f
raw
history blame
2.78 kB
import gradio as gr
import json
from rag.rag_pipeline import RAGPipeline
from utils.prompts import highlight_prompt, evidence_based_prompt
from utils.prompts import (
sample_questions,
)
from config import STUDY_FILES
# Cache for RAG pipelines
rag_cache = {}
def get_rag_pipeline(study_name):
if study_name not in rag_cache:
study_file = STUDY_FILES.get(study_name)
if study_file:
rag_cache[study_name] = RAGPipeline(study_file)
else:
raise ValueError(f"Invalid study name: {study_name}")
return rag_cache[study_name]
def query_rag(study_name: str, question: str, prompt_type: str) -> str:
rag = get_rag_pipeline(study_name)
if prompt_type == "Highlight":
prompt = highlight_prompt
elif prompt_type == "Evidence-based":
prompt = evidence_based_prompt
else:
prompt = None
# Use the prepared context in the query
response = rag.query(question, prompt_template=prompt)
return response.response
def get_study_info(study_name):
study_file = STUDY_FILES.get(study_name)
if study_file:
with open(study_file, "r") as f:
data = json.load(f)
return f"**Number of documents:** {len(data)}\n\n**First document title:** {data[0]['title']}"
else:
return "Invalid study name"
def update_sample_questions(study_name):
return gr.Dropdown(choices=sample_questions.get(study_name, []), interactive=True)
with gr.Blocks() as demo:
gr.Markdown("# RAG Pipeline Demo")
with gr.Row():
study_dropdown = gr.Dropdown(
choices=list(STUDY_FILES.keys()), label="Select Study"
)
study_info = gr.Markdown(label="Study Information")
study_dropdown.change(get_study_info, inputs=[study_dropdown], outputs=[study_info])
with gr.Row():
question_input = gr.Textbox(label="Enter your question")
sample_question_dropdown = gr.Dropdown(
choices=[], label="Sample Questions", interactive=True
)
study_dropdown.change(
update_sample_questions,
inputs=[study_dropdown],
outputs=[sample_question_dropdown],
)
sample_question_dropdown.change(
lambda x: x, inputs=[sample_question_dropdown], outputs=[question_input]
)
prompt_type = gr.Radio(
[
"Default",
"Highlight",
"Evidence-based",
],
label="Prompt Type",
value="Default",
)
submit_button = gr.Button("Submit")
answer_output = gr.Markdown(label="Answer")
submit_button.click(
query_rag,
inputs=[study_dropdown, question_input, prompt_type],
outputs=[answer_output],
)
if __name__ == "__main__":
demo.launch(share=True, debug=True)