Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,105 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from typing import Dict, Any
|
5 |
+
from llama_index.core import (
|
6 |
+
SimpleDirectoryReader,
|
7 |
+
VectorStoreIndex,
|
8 |
+
Document,
|
9 |
+
Response,
|
10 |
+
PromptTemplate
|
11 |
+
)
|
12 |
+
from llama_index.core.node_parser import SentenceSplitter
|
13 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
14 |
|
15 |
+
# Make sure to set your OpenAI API key in the Hugging Face Spaces secrets
|
16 |
+
import openai
|
17 |
+
openai.api_key = os.environ.get('OPENAI_API_KEY')
|
18 |
|
19 |
+
|
20 |
+
|
21 |
+
class RAGPipeline:
|
22 |
+
def __init__(self, metadata_file, pdf_dir, use_semantic_splitter=False):
|
23 |
+
self.metadata_file = metadata_file
|
24 |
+
self.pdf_dir = pdf_dir
|
25 |
+
self.index = None
|
26 |
+
self.use_semantic_splitter = use_semantic_splitter
|
27 |
+
self.load_documents()
|
28 |
+
self.build_index()
|
29 |
+
|
30 |
+
def load_documents(self):
|
31 |
+
with open(self.metadata_file, 'r') as f:
|
32 |
+
self.metadata = json.load(f)
|
33 |
+
|
34 |
+
self.documents = []
|
35 |
+
for item_key, item_data in self.metadata.items():
|
36 |
+
metadata = item_data['metadata']
|
37 |
+
pdf_path = item_data.get('pdf_path')
|
38 |
+
|
39 |
+
if pdf_path:
|
40 |
+
full_pdf_path = os.path.join(self.pdf_dir, os.path.basename(pdf_path))
|
41 |
+
if os.path.exists(full_pdf_path):
|
42 |
+
pdf_content = SimpleDirectoryReader(input_files=[full_pdf_path]).load_data()[0].text
|
43 |
+
else:
|
44 |
+
pdf_content = "PDF file not found"
|
45 |
+
else:
|
46 |
+
pdf_content = "PDF path not available in metadata"
|
47 |
+
|
48 |
+
doc_content = (
|
49 |
+
f"Title: {metadata['title']}\n"
|
50 |
+
f"Abstract: {metadata['abstract']}\n"
|
51 |
+
f"Authors: {metadata['authors']}\n"
|
52 |
+
f"Year: {metadata['year']}\n"
|
53 |
+
f"DOI: {metadata['doi']}\n"
|
54 |
+
f"Full Text: {pdf_content}"
|
55 |
+
)
|
56 |
+
|
57 |
+
self.documents.append(Document(
|
58 |
+
text=doc_content,
|
59 |
+
id_=item_key,
|
60 |
+
metadata={
|
61 |
+
"title": metadata['title'],
|
62 |
+
"abstract": metadata['abstract'],
|
63 |
+
"authors": metadata['authors'],
|
64 |
+
"year": metadata['year'],
|
65 |
+
"doi": metadata['doi']
|
66 |
+
}
|
67 |
+
))
|
68 |
+
|
69 |
+
|
70 |
+
def build_index(self):
|
71 |
+
if self.use_semantic_splitter:
|
72 |
+
embed_model = OpenAIEmbedding()
|
73 |
+
splitter = SemanticSplitterNodeParser(
|
74 |
+
buffer_size=1,
|
75 |
+
breakpoint_percentile_threshold=95,
|
76 |
+
embed_model=embed_model
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
splitter = SentenceSplitter(chunk_size=1024, chunk_overlap=20)
|
80 |
+
|
81 |
+
nodes = splitter.get_nodes_from_documents(self.documents)
|
82 |
+
self.index = VectorStoreIndex(nodes)
|
83 |
+
|
84 |
+
|
85 |
+
def query(self, question, prompt_template=None):
|
86 |
+
if prompt_template is None:
|
87 |
+
prompt_template = PromptTemplate(
|
88 |
+
"Context information is below.\n"
|
89 |
+
"---------------------\n"
|
90 |
+
"{context_str}\n"
|
91 |
+
"---------------------\n"
|
92 |
+
"Given this information, please answer the question: {query_str}\n"
|
93 |
+
"Include all relevant information from the provided context. "
|
94 |
+
"If information comes from multiple sources, please mention all of them. "
|
95 |
+
"If the information is not available in the context, please state that clearly. "
|
96 |
+
"When quoting specific information, please use square brackets to indicate the source, e.g. [1], [2], etc."
|
97 |
+
)
|
98 |
+
|
99 |
+
query_engine = self.index.as_query_engine(
|
100 |
+
text_qa_template=prompt_template,
|
101 |
+
similarity_top_k=5
|
102 |
+
)
|
103 |
+
response = query_engine.query(question)
|
104 |
+
|
105 |
+
return response
|