Spaces:
Running
Running
kwargs
Browse files- app.py +26 -1
- rag/rag_pipeline.py +3 -2
app.py
CHANGED
@@ -28,6 +28,31 @@ def get_rag_pipeline(study_name):
|
|
28 |
def query_rag(study_name, question, prompt_type):
|
29 |
rag = get_rag_pipeline(study_name)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if prompt_type == "Highlight":
|
32 |
prompt = highlight_prompt
|
33 |
elif prompt_type == "Evidence-based":
|
@@ -39,7 +64,7 @@ def query_rag(study_name, question, prompt_type):
|
|
39 |
else:
|
40 |
prompt = None
|
41 |
|
42 |
-
response = rag.query(question, prompt)
|
43 |
|
44 |
# Format the response as Markdown
|
45 |
formatted_response = f"## Question\n\n{response['question']}\n\n## Answer\n\n{response['answer']}\n\n## Sources\n\n"
|
|
|
28 |
def query_rag(study_name, question, prompt_type):
|
29 |
rag = get_rag_pipeline(study_name)
|
30 |
|
31 |
+
# Prepare a dictionary with all possible prompt parameters
|
32 |
+
prompt_params = {
|
33 |
+
"studyid": "", # retrieve or generate a study ID?
|
34 |
+
"author": "",
|
35 |
+
"year": "",
|
36 |
+
"title": "",
|
37 |
+
"appendix": "",
|
38 |
+
"publication_type": "",
|
39 |
+
"study_design": "",
|
40 |
+
"study_area_region": "",
|
41 |
+
"study_population": "",
|
42 |
+
"immunisable_disease": "",
|
43 |
+
"route_of_administration": "",
|
44 |
+
"duration_of_study": "",
|
45 |
+
"duration_covid19": "",
|
46 |
+
"study_comments": "",
|
47 |
+
"coverage_rates": "",
|
48 |
+
"proportion_recommended_age": "",
|
49 |
+
"immunisation_uptake": "",
|
50 |
+
"drop_out_rates": "",
|
51 |
+
"intentions_to_vaccinate": "",
|
52 |
+
"vaccine_confidence": "",
|
53 |
+
"query_str": question, # Add the question to the prompt parameters
|
54 |
+
}
|
55 |
+
|
56 |
if prompt_type == "Highlight":
|
57 |
prompt = highlight_prompt
|
58 |
elif prompt_type == "Evidence-based":
|
|
|
64 |
else:
|
65 |
prompt = None
|
66 |
|
67 |
+
response = rag.query(question, prompt, **prompt_params)
|
68 |
|
69 |
# Format the response as Markdown
|
70 |
formatted_response = f"## Question\n\n{response['question']}\n\n## Answer\n\n{response['answer']}\n\n## Sources\n\n"
|
rag/rag_pipeline.py
CHANGED
@@ -60,7 +60,7 @@ class RAGPipeline:
|
|
60 |
self.index = VectorStoreIndex(nodes)
|
61 |
|
62 |
def query(
|
63 |
-
self, question: str, prompt_template: PromptTemplate = None
|
64 |
) -> Dict[str, Any]:
|
65 |
self.build_index() # This will only build the index if it hasn't been built yet
|
66 |
|
@@ -80,7 +80,8 @@ class RAGPipeline:
|
|
80 |
query_engine = self.index.as_query_engine(
|
81 |
text_qa_template=prompt_template, similarity_top_k=5
|
82 |
)
|
83 |
-
response = query_engine.query(question)
|
|
|
84 |
|
85 |
return {
|
86 |
"question": question,
|
|
|
60 |
self.index = VectorStoreIndex(nodes)
|
61 |
|
62 |
def query(
|
63 |
+
self, question: str, prompt_template: PromptTemplate = None, **kwargs
|
64 |
) -> Dict[str, Any]:
|
65 |
self.build_index() # This will only build the index if it hasn't been built yet
|
66 |
|
|
|
80 |
query_engine = self.index.as_query_engine(
|
81 |
text_qa_template=prompt_template, similarity_top_k=5
|
82 |
)
|
83 |
+
# response = query_engine.query(question)
|
84 |
+
response = query_engine.query(question, **kwargs)
|
85 |
|
86 |
return {
|
87 |
"question": question,
|