Spaces:
Running
Running
bugfix with fastapi because bleeding edge gradio https://github.com/gradio-app/gradio/issues/9275
Browse files- __pycache__/config.cpython-311.pyc +0 -0
- app.py +3 -19
- rag/__pycache__/__init__.cpython-311.pyc +0 -0
- rag/__pycache__/rag_pipeline.cpython-311.pyc +0 -0
- rag/rag_pipeline.py +13 -37
- requirements.txt +1 -0
- utils/__pycache__/__init__.cpython-311.pyc +0 -0
- utils/__pycache__/prompts.cpython-311.pyc +0 -0
__pycache__/config.cpython-311.pyc
ADDED
Binary file (455 Bytes). View file
|
|
app.py
CHANGED
@@ -5,6 +5,7 @@ from utils.prompts import highlight_prompt, evidence_based_prompt
|
|
5 |
from utils.prompts import (
|
6 |
sample_questions,
|
7 |
)
|
|
|
8 |
from config import STUDY_FILES
|
9 |
|
10 |
# Cache for RAG pipelines
|
@@ -24,9 +25,6 @@ def get_rag_pipeline(study_name):
|
|
24 |
def query_rag(study_name: str, question: str, prompt_type: str) -> str:
|
25 |
rag = get_rag_pipeline(study_name)
|
26 |
|
27 |
-
# Extract study information using RAG
|
28 |
-
study_info = rag.extract_study_info()
|
29 |
-
|
30 |
if prompt_type == "Highlight":
|
31 |
prompt = highlight_prompt
|
32 |
elif prompt_type == "Evidence-based":
|
@@ -34,17 +32,8 @@ def query_rag(study_name: str, question: str, prompt_type: str) -> str:
|
|
34 |
else:
|
35 |
prompt = None
|
36 |
|
37 |
-
# Prepare the context with study info
|
38 |
-
context = "Study Information:\n"
|
39 |
-
for key, value in study_info.items():
|
40 |
-
context += f"{key}: {value}\n"
|
41 |
-
context += "\n"
|
42 |
-
|
43 |
-
# Add the question to the context
|
44 |
-
context += f"Question: {question}\n"
|
45 |
-
|
46 |
# Use the prepared context in the query
|
47 |
-
response = rag.query(
|
48 |
|
49 |
# Format the response as Markdown
|
50 |
formatted_response = f"## Question\n\n{question}\n\n## Answer\n\n{response['answer']}\n\n## Sources\n\n"
|
@@ -53,11 +42,6 @@ def query_rag(study_name: str, question: str, prompt_type: str) -> str:
|
|
53 |
f"- {source['title']} ({source.get('year', 'Year not specified')})\n"
|
54 |
)
|
55 |
|
56 |
-
# Add extracted study information to the response
|
57 |
-
formatted_response += "\n## Extracted Study Information\n\n"
|
58 |
-
for key, value in study_info.items():
|
59 |
-
formatted_response += f"- **{key.replace('_', ' ').title()}**: {value}\n"
|
60 |
-
|
61 |
return formatted_response
|
62 |
|
63 |
|
@@ -122,4 +106,4 @@ with gr.Blocks() as demo:
|
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
-
demo.launch(share=True)
|
|
|
5 |
from utils.prompts import (
|
6 |
sample_questions,
|
7 |
)
|
8 |
+
|
9 |
from config import STUDY_FILES
|
10 |
|
11 |
# Cache for RAG pipelines
|
|
|
25 |
def query_rag(study_name: str, question: str, prompt_type: str) -> str:
|
26 |
rag = get_rag_pipeline(study_name)
|
27 |
|
|
|
|
|
|
|
28 |
if prompt_type == "Highlight":
|
29 |
prompt = highlight_prompt
|
30 |
elif prompt_type == "Evidence-based":
|
|
|
32 |
else:
|
33 |
prompt = None
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Use the prepared context in the query
|
36 |
+
response = rag.query(question, prompt_template=prompt)
|
37 |
|
38 |
# Format the response as Markdown
|
39 |
formatted_response = f"## Question\n\n{question}\n\n## Answer\n\n{response['answer']}\n\n## Sources\n\n"
|
|
|
42 |
f"- {source['title']} ({source.get('year', 'Year not specified')})\n"
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
return formatted_response
|
46 |
|
47 |
|
|
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
+
demo.launch(share=True, debug=True)
|
rag/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (159 Bytes). View file
|
|
rag/__pycache__/rag_pipeline.cpython-311.pyc
ADDED
Binary file (5.58 kB). View file
|
|
rag/rag_pipeline.py
CHANGED
@@ -4,6 +4,8 @@ from llama_index.core import Document, VectorStoreIndex
|
|
4 |
from llama_index.core.node_parser import SentenceWindowNodeParser, SentenceSplitter
|
5 |
from llama_index.core import PromptTemplate
|
6 |
from typing import List
|
|
|
|
|
7 |
|
8 |
|
9 |
class RAGPipeline:
|
@@ -43,53 +45,22 @@ class RAGPipeline:
|
|
43 |
|
44 |
def build_index(self):
|
45 |
if self.index is None:
|
46 |
-
sentence_splitter = SentenceSplitter(chunk_size=
|
47 |
|
48 |
def _split(text: str) -> List[str]:
|
49 |
return sentence_splitter.split_text(text)
|
50 |
|
51 |
node_parser = SentenceWindowNodeParser.from_defaults(
|
52 |
sentence_splitter=_split,
|
53 |
-
window_size=
|
54 |
window_metadata_key="window",
|
55 |
original_text_metadata_key="original_text",
|
56 |
)
|
57 |
|
58 |
nodes = node_parser.get_nodes_from_documents(self.documents)
|
59 |
-
self.index = VectorStoreIndex(
|
60 |
-
|
61 |
-
|
62 |
-
extraction_prompt = PromptTemplate(
|
63 |
-
"Based on the given context, please extract the following information about the study:\n"
|
64 |
-
"1. Study ID\n"
|
65 |
-
"2. Author(s)\n"
|
66 |
-
"3. Year\n"
|
67 |
-
"4. Title\n"
|
68 |
-
"5. Study design\n"
|
69 |
-
"6. Study area/region\n"
|
70 |
-
"7. Study population\n"
|
71 |
-
"8. Disease under study\n"
|
72 |
-
"9. Duration of study\n"
|
73 |
-
"If the information is not available, please respond with 'Not found' for that field.\n"
|
74 |
-
"Context: {context_str}\n"
|
75 |
-
"Extracted information:"
|
76 |
-
)
|
77 |
-
|
78 |
-
query_engine = self.index.as_query_engine(
|
79 |
-
text_qa_template=extraction_prompt, similarity_top_k=5
|
80 |
-
)
|
81 |
-
|
82 |
-
response = query_engine.query("Extract study information")
|
83 |
-
|
84 |
-
# Parse the response to extract key-value pairs
|
85 |
-
lines = response.response.split("\n")
|
86 |
-
extracted_info = {}
|
87 |
-
for line in lines:
|
88 |
-
if ":" in line:
|
89 |
-
key, value = line.split(":", 1)
|
90 |
-
extracted_info[key.strip().lower().replace(" ", "_")] = value.strip()
|
91 |
-
|
92 |
-
return extracted_info
|
93 |
|
94 |
def query(
|
95 |
self, context: str, prompt_template: PromptTemplate = None
|
@@ -107,8 +78,13 @@ class RAGPipeline:
|
|
107 |
"When quoting specific information, please use square brackets to indicate the source, e.g. [1], [2], etc."
|
108 |
)
|
109 |
|
|
|
|
|
110 |
query_engine = self.index.as_query_engine(
|
111 |
-
text_qa_template=prompt_template,
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
response = query_engine.query(context)
|
|
|
4 |
from llama_index.core.node_parser import SentenceWindowNodeParser, SentenceSplitter
|
5 |
from llama_index.core import PromptTemplate
|
6 |
from typing import List
|
7 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
8 |
+
from llama_index.llms.openai import OpenAI
|
9 |
|
10 |
|
11 |
class RAGPipeline:
|
|
|
45 |
|
46 |
def build_index(self):
|
47 |
if self.index is None:
|
48 |
+
sentence_splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=20)
|
49 |
|
50 |
def _split(text: str) -> List[str]:
|
51 |
return sentence_splitter.split_text(text)
|
52 |
|
53 |
node_parser = SentenceWindowNodeParser.from_defaults(
|
54 |
sentence_splitter=_split,
|
55 |
+
window_size=5,
|
56 |
window_metadata_key="window",
|
57 |
original_text_metadata_key="original_text",
|
58 |
)
|
59 |
|
60 |
nodes = node_parser.get_nodes_from_documents(self.documents)
|
61 |
+
self.index = VectorStoreIndex(
|
62 |
+
nodes, embed_model=OpenAIEmbedding(model_name="text-embedding-3-large")
|
63 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def query(
|
66 |
self, context: str, prompt_template: PromptTemplate = None
|
|
|
78 |
"When quoting specific information, please use square brackets to indicate the source, e.g. [1], [2], etc."
|
79 |
)
|
80 |
|
81 |
+
# This is a hack to index all the documents in the store :)
|
82 |
+
n_documents = len(self.index.docstore.docs)
|
83 |
query_engine = self.index.as_query_engine(
|
84 |
+
text_qa_template=prompt_template,
|
85 |
+
similarity_top_k=n_documents,
|
86 |
+
response_mode="tree_summarize",
|
87 |
+
llm=OpenAI(model="gpt-4o-mini"),
|
88 |
)
|
89 |
|
90 |
response = query_engine.query(context)
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
gradio
|
2 |
llama-index
|
3 |
openai
|
|
|
1 |
+
fastapi==0.112.2
|
2 |
gradio
|
3 |
llama-index
|
4 |
openai
|
utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (161 Bytes). View file
|
|
utils/__pycache__/prompts.cpython-311.pyc
ADDED
Binary file (5.68 kB). View file
|
|