import json from typing import Dict, Any from llama_index.core import Document, VectorStoreIndex from llama_index.core.node_parser import SentenceWindowNodeParser, SentenceSplitter from llama_index.core import PromptTemplate from typing import List from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI class RAGPipeline: def __init__(self, study_json, use_semantic_splitter=False): self.study_json = study_json self.use_semantic_splitter = use_semantic_splitter self.documents = None self.index = None self.load_documents() self.build_index() def load_documents(self): if self.documents is None: with open(self.study_json, "r") as f: self.data = json.load(f) self.documents = [] for index, doc_data in enumerate(self.data): doc_content = ( f"Title: {doc_data['title']}\n" f"Abstract: {doc_data['abstract']}\n" f"Authors: {', '.join(doc_data['authors'])}\n" ) metadata = { "title": doc_data.get("title"), "authors": doc_data.get("authors", []), "year": doc_data.get("year"), "doi": doc_data.get("doi"), } self.documents.append( Document(text=doc_content, id_=f"doc_{index}", metadata=metadata) ) def build_index(self): if self.index is None: sentence_splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=20) def _split(text: str) -> List[str]: return sentence_splitter.split_text(text) node_parser = SentenceWindowNodeParser.from_defaults( sentence_splitter=_split, window_size=5, window_metadata_key="window", original_text_metadata_key="original_text", ) nodes = node_parser.get_nodes_from_documents(self.documents) self.index = VectorStoreIndex( nodes, embed_model=OpenAIEmbedding(model_name="text-embedding-3-large") ) def query( self, context: str, prompt_template: PromptTemplate = None ) -> Dict[str, Any]: if prompt_template is None: prompt_template = PromptTemplate( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given this information, please answer the question: {query_str}\n" "Provide an answer to the question using evidence from the context above. " "Cite sources using square brackets for EVERY piece of information, e.g. [1], [2], etc. " "Even if there's only one source, still include the citation. " "If you're unsure about a source, use [?]. " "Ensure that EVERY statement from the context is properly cited." ) # This is a hack to index all the documents in the store :) n_documents = len(self.index.docstore.docs) query_engine = self.index.as_query_engine( text_qa_template=prompt_template, similarity_top_k=n_documents, response_mode="tree_summarize", llm=OpenAI(model="gpt-4o-mini"), ) response = query_engine.query(context) return response