import gradio as gr from transformers import pipeline import torch import librosa import json import os # Assuming other necessary imports and setup are already done auth_token = os.environ.get("HF_TOKEN") target_lang_options = {"English": "eng", "Luganda": "lug", "Acholi": "ach", "Runyankole": "nyn", "Lugbara": "lgg"} languages = list(target_lang_options.keys()) # Helper function to format and group word timestamps def format_and_group_timestamps(chunks, interval=5.0): grouped = {} transcript = "" for chunk in chunks: start, end = chunk['timestamp'] word = chunk['text'] transcript += f"{word} " interval_start = int(start // interval) * interval if interval_start not in grouped: grouped[interval_start] = [] grouped[interval_start].append((start, end, word)) formatted_output = f"Transcript: {transcript.strip()}'\n\n-------\n\nword-stamped transcripts (every 5 seconds):\n\n" for interval_start, words in grouped.items(): formatted_output += f"({interval_start}, {interval_start + interval}) -- {' '.join([w[2] for w in words])}\n" return formatted_output # Modified transcribe_audio function to use Whisper for English def transcribe_audio(input_file, language, chunk_length_s=10, stride_length_s=(4, 2), return_timestamps="word"): target_lang_options = {"English": "eng", "Luganda": "lug", "Acholi": "ach", "Runyankole": "nyn", "Lugbara": "lgg"} target_lang_code = target_lang_options[language] if target_lang_code == "eng": # Use Whisper for English model = whisper.load_model("small") result = model.transcribe(input_file) # Assuming you want to keep the formatting function for consistency return result["text"] else: # Use specified model for other languages device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "Sunbird/sunbird-mms" auth_token = os.environ.get("HF_TOKEN") pipe = pipeline(model=model_id, device=device, token=auth_token) pipe.tokenizer.set_target_lang(target_lang_code) pipe.model.load_adapter(target_lang_code) output = pipe(input_file, chunk_length_s=chunk_length_s, stride_length_s=stride_length_s, return_timestamps=return_timestamps) formatted_output = format_and_group_timestamps(output['chunks']) return formatted_output # Interface setup remains the same description = '''ASR with salt-mms''' iface = gr.Interface(fn=transcribe_audio, inputs=[ gr.Audio(sources="upload", type="filepath", label="upload file to transcribe"), gr.Dropdown(choices=list(target_lang_options.keys()), label="Language", value="English") ], outputs=gr.Textbox(label="Transcription"), description=description ) # Launch the interface iface.launch()