import gradio as gr from transformers import Wav2Vec2ForCTC, AutoProcessor import torch import librosa import json with open('ISO_codes.json', 'r') as file: iso_codes = json.load(file) languages = list(iso_codes.keys()) model_id = "Sunbird/sunbird-mms" processor = AutoProcessor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id) def transcribe(audio_file_mic=None, audio_file_upload=None, language="Luganda (lug)"): if audio_file_mic: audio_file = audio_file_mic elif audio_file_upload: audio_file = audio_file_upload else: return "Please upload an audio file or record one" # Make sure audio is 16kHz speech, sample_rate = librosa.load(audio_file) if sample_rate != 16000: speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000) # Keep the same model in memory and simply switch out the language adapters by calling load_adapter() for the model and set_target_lang() for the tokenizer language_code = iso_codes[language] processor.tokenizer.set_target_lang(language_code) model.load_adapter(language_code) inputs = processor(speech, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) return transcription description = '''ASR with salt-mms''' iface = gr.Interface(fn=transcribe, inputs=[ gr.Audio(source="microphone", type="filepath", label="Record Audio"), gr.Audio(source="upload", type="filepath", label="Upload Audio"), gr.Dropdown(choices=languages, label="Language", value="Luganda (eng)") ], outputs=gr.Textbox(label="Transcription"), examples=examples, description=description ) iface.launch()