Blind_Image_Restoration / functions /train_previewer_lora.sh
SunderAli17's picture
Create train_previewer_lora.sh
fb33b84 verified
raw
history blame
952 Bytes
# After DCP training, distill the Previewer with DCP in `train_previewer_lora.py`:
accelerate launch --num_processes <num_of_gpus> train_previewer_lora.py \
--output_dir <your/output/path> \
--train_data_dir <your/data/path> \
--logging_dir <your/logging/path> \
--pretrained_model_name_or_path <your/sdxl/path> \
--feature_extractor_path <your/dinov2/path> \
--pretrained_adapter_model_path <your/dcp/path> \
--losses_config_path config_files/losses.yaml \
--data_config_path config_files/IR_dataset.yaml \
--save_only_adapter \
--gradient_checkpointing \
--num_train_timesteps 1000 \
--num_ddim_timesteps 50 \
--lora_alpha 1 \
--mixed_precision fp16 \
--train_batch_size 32 \
--vae_encode_batch_size 16 \
--gradient_accumulation_steps 1 \
--learning_rate 1e-4 \
--lr_warmup_steps 1000 \
--lr_scheduler cosine \
--lr_num_cycles 1 \
--resume_from_checkpoint latest