SunderAli17's picture
Create losses.py
6f884cb verified
raw
history blame
21.2 kB
import torch
import wandb
import cv2
import torch.nn.functional as F
import numpy as np
from facenet_pytorch import MTCNN
from torchvision import transforms
from dreamsim import dreamsim
from einops import rearrange
import kornia.augmentation as K
import lpips
from pretrained_models.arcface import Backbone
from utils.vis_utils import add_text_to_image
from utils.utils import extract_faces_and_landmarks
import clip
class Loss():
"""
General purpose loss class.
Mainly handles dtype and visualize_every_k.
keeps current iteration of loss, mainly for visualization purposes.
"""
def __init__(self, visualize_every_k=-1, dtype=torch.float32, accelerator=None, **kwargs):
self.visualize_every_k = visualize_every_k
self.iteration = -1
self.dtype=dtype
self.accelerator = accelerator
def __call__(self, **kwargs):
self.iteration += 1
return self.forward(**kwargs)
class L1Loss(Loss):
"""
Simple L1 loss between predicted_pixel_values and pixel_values
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
**kwargs
) -> torch.Tensor:
return F.l1_loss(predict, target, reduction="mean")
class DreamSIMLoss(Loss):
"""DreamSIM loss between predicted_pixel_values and pixel_values.
DreamSIM is similar to LPIPS (https://dreamsim-nights.github.io/) but is trained on more human defined similarity dataset
DreamSIM expects an RGB image of size 224x224 and values between 0 and 1. So we need to normalize the input images to 0-1 range and resize them to 224x224.
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def __init__(self, device: str='cuda:0', **kwargs):
super().__init__(**kwargs)
self.model, _ = dreamsim(pretrained=True, device=device)
self.model.to(dtype=self.dtype, device=device)
self.model = self.accelerator.prepare(self.model)
self.transforms = transforms.Compose([
transforms.Lambda(lambda x: (x + 1) / 2),
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC)])
def forward(
self,
predicted_pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
**kwargs,
) -> torch.Tensor:
predicted_pixel_values.to(dtype=self.dtype)
encoder_pixel_values.to(dtype=self.dtype)
return self.model(self.transforms(predicted_pixel_values), self.transforms(encoder_pixel_values)).mean()
class LPIPSLoss(Loss):
"""LPIPS loss between predicted_pixel_values and pixel_values.
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.model = lpips.LPIPS(net='vgg')
self.model.to(dtype=self.dtype, device=self.accelerator.device)
self.model = self.accelerator.prepare(self.model)
def forward(self, predict, target, **kwargs):
predict.to(dtype=self.dtype)
target.to(dtype=self.dtype)
return self.model(predict, target).mean()
class LCMVisualization(Loss):
"""Dummy loss used to visualize the LCM outputs
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
pixel_values (torch.Tensor): The input image to the decoder
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def forward(
self,
predicted_pixel_values: torch.Tensor,
pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
timesteps: torch.Tensor,
**kwargs,
) -> None:
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
predicted_pixel_values = rearrange(predicted_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
pixel_values = rearrange(pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
encoder_pixel_values = rearrange(encoder_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
image = np.hstack([encoder_pixel_values, pixel_values, predicted_pixel_values])
for tracker in self.accelerator.trackers:
if tracker.name == 'wandb':
tracker.log({"TrainVisualization": wandb.Image(image, caption=f"Encoder Input Image, Decoder Input Image, Predicted LCM Image. Timesteps {timesteps.cpu().tolist()}")})
return torch.tensor(0.0)
class L2Loss(Loss):
"""
Regular diffusion loss between predicted noise and target noise.
Args:
predicted_noise (torch.Tensor): noise predicted by the diffusion model
target_noise (torch.Tensor): actual noise added to the image.
"""
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
weights: torch.Tensor = None,
**kwargs
) -> torch.Tensor:
if weights is not None:
loss = (predict.float() - target.float()).pow(2) * weights
return loss.mean()
return F.mse_loss(predict.float(), target.float(), reduction="mean")
class HuberLoss(Loss):
"""Huber loss between predicted_pixel_values and pixel_values.
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def __init__(self, huber_c=0.001, **kwargs):
super().__init__(**kwargs)
self.huber_c = huber_c
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
weights: torch.Tensor = None,
**kwargs
) -> torch.Tensor:
loss = torch.sqrt((predict.float() - target.float()) ** 2 + self.huber_c**2) - self.huber_c
if weights is not None:
return (loss * weights).mean()
return loss.mean()
class WeightedNoiseLoss(Loss):
"""
Weighted diffusion loss between predicted noise and target noise.
Args:
predicted_noise (torch.Tensor): noise predicted by the diffusion model
target_noise (torch.Tensor): actual noise added to the image.
loss_batch_weights (torch.Tensor): weighting for each batch item. Can be used to e.g. zero-out loss for InstantID training if keypoint extraction fails.
"""
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
weights,
**kwargs
) -> torch.Tensor:
return F.mse_loss(predict.float() * weights, target.float() * weights, reduction="mean")
class IDLoss(Loss):
"""
Use pretrained facenet model to extract features from the face of the predicted image and target image.
Facenet expects 112x112 images, so we crop the face using MTCNN and resize it to 112x112.
Then we use the cosine similarity between the features to calculate the loss. (The cosine similarity is 1 - cosine distance).
Also notice that the outputs of facenet are normalized so the dot product is the same as cosine distance.
"""
def __init__(self, pretrained_arcface_path: str, skip_not_found=True, **kwargs):
super().__init__(**kwargs)
assert pretrained_arcface_path is not None, "please pass `pretrained_arcface_path` in the losses config. You can download the pretrained model from "\
"https://drive.google.com/file/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view?usp=sharing"
self.mtcnn = MTCNN(device=self.accelerator.device)
self.mtcnn.forward = self.mtcnn.detect
self.facenet_input_size = 112 # Has to be 112, can't find weights for 224 size.
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
self.facenet.load_state_dict(torch.load(pretrained_arcface_path))
self.face_pool = torch.nn.AdaptiveAvgPool2d((self.facenet_input_size, self.facenet_input_size))
self.facenet.requires_grad_(False)
self.facenet.eval()
self.facenet.to(device=self.accelerator.device, dtype=self.dtype) # not implemented for half precision
self.face_pool.to(device=self.accelerator.device, dtype=self.dtype) # not implemented for half precision
self.visualization_resize = transforms.Resize((self.facenet_input_size, self.facenet_input_size), interpolation=transforms.InterpolationMode.BICUBIC)
self.reference_facial_points = np.array([[38.29459953, 51.69630051],
[72.53179932, 51.50139999],
[56.02519989, 71.73660278],
[41.54930115, 92.3655014],
[70.72990036, 92.20410156]
]) # Original points are 112 * 96 added 8 to the x axis to make it 112 * 112
self.facenet, self.face_pool, self.mtcnn = self.accelerator.prepare(self.facenet, self.face_pool, self.mtcnn)
self.skip_not_found = skip_not_found
def extract_feats(self, x: torch.Tensor):
"""
Extract features from the face of the image using facenet model.
"""
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(
self,
predicted_pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
timesteps: torch.Tensor,
**kwargs
):
encoder_pixel_values = encoder_pixel_values.to(dtype=self.dtype)
predicted_pixel_values = predicted_pixel_values.to(dtype=self.dtype)
predicted_pixel_values_face, predicted_invalid_indices = extract_faces_and_landmarks(predicted_pixel_values, mtcnn=self.mtcnn)
with torch.no_grad():
encoder_pixel_values_face, source_invalid_indices = extract_faces_and_landmarks(encoder_pixel_values, mtcnn=self.mtcnn)
if self.skip_not_found:
valid_indices = []
for i in range(predicted_pixel_values.shape[0]):
if i not in predicted_invalid_indices and i not in source_invalid_indices:
valid_indices.append(i)
else:
valid_indices = list(range(predicted_pixel_values))
valid_indices = torch.tensor(valid_indices).to(device=predicted_pixel_values.device)
if len(valid_indices) == 0:
loss = (predicted_pixel_values_face * 0.0).mean() # It's done this way so the `backwards` will delete the computation graph of the predicted_pixel_values.
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
return loss
with torch.no_grad():
pixel_values_feats = self.extract_feats(encoder_pixel_values_face[valid_indices])
predicted_pixel_values_feats = self.extract_feats(predicted_pixel_values_face[valid_indices])
loss = 1 - torch.einsum("bi,bi->b", pixel_values_feats, predicted_pixel_values_feats)
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
return loss.mean()
def visualize(
self,
predicted_pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
predicted_pixel_values_face: torch.Tensor,
encoder_pixel_values_face: torch.Tensor,
timesteps: torch.Tensor,
valid_indices: torch.Tensor,
loss: torch.Tensor,
) -> None:
small_predicted_pixel_values = (rearrange(self.visualization_resize(predicted_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy())
small_pixle_values = rearrange(self.visualization_resize(encoder_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy()
small_predicted_pixel_values_face = rearrange(self.visualization_resize(predicted_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
small_pixle_values_face = rearrange(self.visualization_resize(encoder_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
small_predicted_pixel_values = add_text_to_image(((small_predicted_pixel_values * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Images", add_below=False)
small_pixle_values = add_text_to_image(((small_pixle_values * 0.5 + 0.5) * 255).astype(np.uint8), "Target Images", add_below=False)
small_predicted_pixel_values_face = add_text_to_image(((small_predicted_pixel_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Faces", add_below=False)
small_pixle_values_face = add_text_to_image(((small_pixle_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Target Faces", add_below=False)
final_image = np.hstack([small_predicted_pixel_values, small_pixle_values, small_predicted_pixel_values_face, small_pixle_values_face])
for tracker in self.accelerator.trackers:
if tracker.name == 'wandb':
tracker.log({"IDLoss Visualization": wandb.Image(final_image, caption=f"loss: {loss.cpu().tolist()} timesteps: {timesteps.cpu().tolist()}, valid_indices: {valid_indices.cpu().tolist()}")})
class ImageAugmentations(torch.nn.Module):
# Standard image augmentations used for CLIP loss to discourage adversarial outputs.
def __init__(self, output_size, augmentations_number, p=0.7):
super().__init__()
self.output_size = output_size
self.augmentations_number = augmentations_number
self.augmentations = torch.nn.Sequential(
K.RandomAffine(degrees=15, translate=0.1, p=p, padding_mode="border"), # type: ignore
K.RandomPerspective(0.7, p=p),
)
self.avg_pool = torch.nn.AdaptiveAvgPool2d((self.output_size, self.output_size))
self.device = None
def forward(self, input):
"""Extents the input batch with augmentations
If the input is consists of images [I1, I2] the extended augmented output
will be [I1_resized, I2_resized, I1_aug1, I2_aug1, I1_aug2, I2_aug2 ...]
Args:
input ([type]): input batch of shape [batch, C, H, W]
Returns:
updated batch: of shape [batch * augmentations_number, C, H, W]
"""
# We want to multiply the number of images in the batch in contrast to regular augmantations
# that do not change the number of samples in the batch)
resized_images = self.avg_pool(input)
resized_images = torch.tile(resized_images, dims=(self.augmentations_number, 1, 1, 1))
batch_size = input.shape[0]
# We want at least one non augmented image
non_augmented_batch = resized_images[:batch_size]
augmented_batch = self.augmentations(resized_images[batch_size:])
updated_batch = torch.cat([non_augmented_batch, augmented_batch], dim=0)
return updated_batch
class CLIPLoss(Loss):
def __init__(self, augmentations_number: int = 4, **kwargs):
super().__init__(**kwargs)
self.clip_model, clip_preprocess = clip.load("ViT-B/16", device=self.accelerator.device, jit=False)
self.clip_model.device = None
self.clip_model.eval().requires_grad_(False)
self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
clip_preprocess.transforms[:2] + # to match CLIP input scale assumptions
clip_preprocess.transforms[4:]) # + skip convert PIL to tensor
self.clip_size = self.clip_model.visual.input_resolution
self.clip_normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]
)
self.image_augmentations = ImageAugmentations(output_size=self.clip_size,
augmentations_number=augmentations_number)
self.clip_model, self.image_augmentations = self.accelerator.prepare(self.clip_model, self.image_augmentations)
def forward(self, decoder_prompts, predicted_pixel_values: torch.Tensor, **kwargs) -> torch.Tensor:
if not isinstance(decoder_prompts, list):
decoder_prompts = [decoder_prompts]
tokens = clip.tokenize(decoder_prompts).to(predicted_pixel_values.device)
image = self.preprocess(predicted_pixel_values)
logits_per_image, _ = self.clip_model(image, tokens)
logits_per_image = torch.diagonal(logits_per_image)
return (1. - logits_per_image / 100).mean()
class DINOLoss(Loss):
def __init__(
self,
dino_model,
dino_preprocess,
output_hidden_states: bool = False,
center_momentum: float = 0.9,
student_temp: float = 0.1,
teacher_temp: float = 0.04,
warmup_teacher_temp: float = 0.04,
warmup_teacher_temp_epochs: int = 30,
**kwargs):
super().__init__(**kwargs)
self.dino_model = dino_model
self.output_hidden_states = output_hidden_states
self.rescale_factor = dino_preprocess.rescale_factor
# Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
self.preprocess = transforms.Compose(
[
transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0]),
transforms.Resize(size=256),
transforms.CenterCrop(size=(224, 224)),
transforms.Normalize(mean=dino_preprocess.image_mean, std=dino_preprocess.image_std)
]
)
self.student_temp = student_temp
self.teacher_temp = teacher_temp
self.center_momentum = center_momentum
self.center = torch.zeros(1, 257, 1024).to(self.accelerator.device, dtype=self.dtype)
# TODO: add temp, now fixed to 0.04
# we apply a warm up for the teacher temperature because
# a too high temperature makes the training instable at the beginning
# self.teacher_temp_schedule = np.concatenate((
# np.linspace(warmup_teacher_temp,
# teacher_temp, warmup_teacher_temp_epochs),
# np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
# ))
self.dino_model = self.accelerator.prepare(self.dino_model)
def forward(
self,
target: torch.Tensor,
predict: torch.Tensor,
weights: torch.Tensor = None,
**kwargs) -> torch.Tensor:
predict = self.preprocess(predict)
target = self.preprocess(target)
encoder_input = torch.cat([target, predict]).to(self.dino_model.device, dtype=self.dino_model.dtype)
if self.output_hidden_states:
raise ValueError("Output hidden states not supported for DINO loss.")
image_enc_hidden_states = self.dino_model(encoder_input, output_hidden_states=True).hidden_states[-2]
else:
image_enc_hidden_states = self.dino_model(encoder_input).last_hidden_state
teacher_output, student_output = image_enc_hidden_states.chunk(2, dim=0) # [B, 257, 1024]
student_out = student_output.float() / self.student_temp
# teacher centering and sharpening
# temp = self.teacher_temp_schedule[epoch]
temp = self.teacher_temp
teacher_out = F.softmax((teacher_output.float() - self.center) / temp, dim=-1)
teacher_out = teacher_out.detach()
loss = torch.sum(-teacher_out * F.log_softmax(student_out, dim=-1), dim=-1, keepdim=True)
# self.update_center(teacher_output)
if weights is not None:
loss = loss * weights
return loss.mean()
return loss.mean()
@torch.no_grad()
def update_center(self, teacher_output):
"""
Update center used for teacher output.
"""
batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
self.accelerator.reduce(batch_center, reduction="sum")
batch_center = batch_center / (len(teacher_output) * self.accelerator.num_processes)
# ema update
self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum)