SunderAli17 commited on
Commit
4b35002
1 Parent(s): a9823b9

Create ip_adapter.py

Browse files
Files changed (1) hide show
  1. module/ip_adapter/ip_adapter.py +236 -0
module/ip_adapter/ip_adapter.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from typing import List
4
+ from collections import namedtuple, OrderedDict
5
+
6
+ def is_torch2_available():
7
+ return hasattr(torch.nn.functional, "scaled_dot_product_attention")
8
+
9
+ if is_torch2_available():
10
+ from .attention_processor import (
11
+ AttnProcessor2_0 as AttnProcessor,
12
+ )
13
+ from .attention_processor import (
14
+ CNAttnProcessor2_0 as CNAttnProcessor,
15
+ )
16
+ from .attention_processor import (
17
+ IPAttnProcessor2_0 as IPAttnProcessor,
18
+ )
19
+ from .attention_processor import (
20
+ TA_IPAttnProcessor2_0 as TA_IPAttnProcessor,
21
+ )
22
+ else:
23
+ from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor, TA_IPAttnProcessor
24
+
25
+
26
+ class ImageProjModel(torch.nn.Module):
27
+ """Projection Model"""
28
+
29
+ def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4):
30
+ super().__init__()
31
+
32
+ self.cross_attention_dim = cross_attention_dim
33
+ self.clip_extra_context_tokens = clip_extra_context_tokens
34
+ self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
35
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
36
+
37
+ def forward(self, image_embeds):
38
+ embeds = image_embeds
39
+ clip_extra_context_tokens = self.proj(embeds).reshape(
40
+ -1, self.clip_extra_context_tokens, self.cross_attention_dim
41
+ )
42
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
43
+ return clip_extra_context_tokens
44
+
45
+
46
+ class MLPProjModel(torch.nn.Module):
47
+ """SD model with image prompt"""
48
+ def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280):
49
+ super().__init__()
50
+
51
+ self.proj = torch.nn.Sequential(
52
+ torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
53
+ torch.nn.GELU(),
54
+ torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
55
+ torch.nn.LayerNorm(cross_attention_dim)
56
+ )
57
+
58
+ def forward(self, image_embeds):
59
+ clip_extra_context_tokens = self.proj(image_embeds)
60
+ return clip_extra_context_tokens
61
+
62
+
63
+ class MultiIPAdapterImageProjection(torch.nn.Module):
64
+ def __init__(self, IPAdapterImageProjectionLayers):
65
+ super().__init__()
66
+ self.image_projection_layers = torch.nn.ModuleList(IPAdapterImageProjectionLayers)
67
+
68
+ def forward(self, image_embeds: List[torch.FloatTensor]):
69
+ projected_image_embeds = []
70
+
71
+ # currently, we accept `image_embeds` as
72
+ # 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
73
+ # 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
74
+ if not isinstance(image_embeds, list):
75
+ image_embeds = [image_embeds.unsqueeze(1)]
76
+
77
+ if len(image_embeds) != len(self.image_projection_layers):
78
+ raise ValueError(
79
+ f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
80
+ )
81
+
82
+ for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
83
+ batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
84
+ image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
85
+ image_embed = image_projection_layer(image_embed)
86
+ # image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])
87
+
88
+ projected_image_embeds.append(image_embed)
89
+
90
+ return projected_image_embeds
91
+
92
+
93
+ class IPAdapter(torch.nn.Module):
94
+ """IP-Adapter"""
95
+ def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
96
+ super().__init__()
97
+ self.unet = unet
98
+ self.image_proj = image_proj_model
99
+ self.ip_adapter = adapter_modules
100
+
101
+ if ckpt_path is not None:
102
+ self.load_from_checkpoint(ckpt_path)
103
+
104
+ def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
105
+ ip_tokens = self.image_proj(image_embeds)
106
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
107
+ # Predict the noise residual
108
+ noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
109
+ return noise_pred
110
+
111
+ def load_from_checkpoint(self, ckpt_path: str):
112
+ # Calculate original checksums
113
+ orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
114
+ orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
115
+
116
+ state_dict = torch.load(ckpt_path, map_location="cpu")
117
+ keys = list(state_dict.keys())
118
+ if keys != ["image_proj", "ip_adapter"]:
119
+ state_dict = revise_state_dict(state_dict)
120
+
121
+ # Load state dict for image_proj_model and adapter_modules
122
+ self.image_proj.load_state_dict(state_dict["image_proj"], strict=True)
123
+ self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=True)
124
+
125
+ # Calculate new checksums
126
+ new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
127
+ new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
128
+
129
+ # Verify if the weights have changed
130
+ assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
131
+ assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
132
+
133
+
134
+ class IPAdapterPlus(torch.nn.Module):
135
+ """IP-Adapter"""
136
+ def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
137
+ super().__init__()
138
+ self.unet = unet
139
+ self.image_proj = image_proj_model
140
+ self.ip_adapter = adapter_modules
141
+
142
+ if ckpt_path is not None:
143
+ self.load_from_checkpoint(ckpt_path)
144
+
145
+ def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
146
+ ip_tokens = self.image_proj(image_embeds)
147
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
148
+ # Predict the noise residual
149
+ noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
150
+ return noise_pred
151
+
152
+ def load_from_checkpoint(self, ckpt_path: str):
153
+ # Calculate original checksums
154
+ orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
155
+ orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
156
+ org_unet_sum = []
157
+ for attn_name, attn_proc in self.unet.attn_processors.items():
158
+ if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
159
+ org_unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
160
+ org_unet_sum = torch.sum(torch.stack(org_unet_sum))
161
+
162
+ state_dict = torch.load(ckpt_path, map_location="cpu")
163
+ keys = list(state_dict.keys())
164
+ if keys != ["image_proj", "ip_adapter"]:
165
+ state_dict = revise_state_dict(state_dict)
166
+
167
+ # Check if 'latents' exists in both the saved state_dict and the current model's state_dict
168
+ strict_load_image_proj_model = True
169
+ if "latents" in state_dict["image_proj"] and "latents" in self.image_proj.state_dict():
170
+ # Check if the shapes are mismatched
171
+ if state_dict["image_proj"]["latents"].shape != self.image_proj.state_dict()["latents"].shape:
172
+ print(f"Shapes of 'image_proj.latents' in checkpoint {ckpt_path} and current model do not match.")
173
+ print("Removing 'latents' from checkpoint and loading the rest of the weights.")
174
+ del state_dict["image_proj"]["latents"]
175
+ strict_load_image_proj_model = False
176
+
177
+ # Load state dict for image_proj_model and adapter_modules
178
+ self.image_proj.load_state_dict(state_dict["image_proj"], strict=strict_load_image_proj_model)
179
+ missing_key, unexpected_key = self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=False)
180
+ if len(missing_key) > 0:
181
+ for ms in missing_key:
182
+ if "ln" not in ms:
183
+ raise ValueError(f"Missing key in adapter_modules: {len(missing_key)}")
184
+ if len(unexpected_key) > 0:
185
+ raise ValueError(f"Unexpected key in adapter_modules: {len(unexpected_key)}")
186
+
187
+ # Calculate new checksums
188
+ new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
189
+ new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
190
+
191
+ # Verify if the weights loaded to unet
192
+ unet_sum = []
193
+ for attn_name, attn_proc in self.unet.attn_processors.items():
194
+ if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
195
+ unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
196
+ unet_sum = torch.sum(torch.stack(unet_sum))
197
+
198
+ assert org_unet_sum != unet_sum, "Weights of adapter_modules in unet did not change!"
199
+ assert (unet_sum - new_adapter_sum < 1e-4), "Weights of adapter_modules did not load to unet!"
200
+
201
+ # Verify if the weights have changed
202
+ assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
203
+ assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_mod`ules did not change!"
204
+
205
+
206
+ class IPAdapterXL(IPAdapter):
207
+ """SDXL"""
208
+
209
+ def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
210
+ ip_tokens = self.image_proj(image_embeds)
211
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
212
+ # Predict the noise residual
213
+ noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
214
+ return noise_pred
215
+
216
+
217
+ class IPAdapterPlusXL(IPAdapterPlus):
218
+ """IP-Adapter with fine-grained features"""
219
+
220
+ def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
221
+ ip_tokens = self.image_proj(image_embeds)
222
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
223
+ # Predict the noise residual
224
+ noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
225
+ return noise_pred
226
+
227
+
228
+ class IPAdapterFull(IPAdapterPlus):
229
+ """IP-Adapter with full features"""
230
+
231
+ def init_proj(self):
232
+ image_proj_model = MLPProjModel(
233
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
234
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
235
+ ).to(self.device, dtype=torch.float16)
236
+ return image_proj_model