Spaces:
Sleeping
Sleeping
SunderAli17
commited on
Commit
•
4ffd2b7
1
Parent(s):
7f1b096
Create utils.py
Browse files- utils/utils.py +51 -0
utils/utils.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from einops import rearrange
|
4 |
+
from kornia.geometry.transform.crop2d import warp_affine
|
5 |
+
|
6 |
+
from utils.matlab_cp2tform import get_similarity_transform_for_cv2
|
7 |
+
from torchvision.transforms import Pad
|
8 |
+
|
9 |
+
REFERNCE_FACIAL_POINTS_RELATIVE = np.array([[38.29459953, 51.69630051],
|
10 |
+
[72.53179932, 51.50139999],
|
11 |
+
[56.02519989, 71.73660278],
|
12 |
+
[41.54930115, 92.3655014],
|
13 |
+
[70.72990036, 92.20410156]
|
14 |
+
]) / 112 # Original points are 112 * 96 added 8 to the x axis to make it 112 * 112
|
15 |
+
|
16 |
+
|
17 |
+
@torch.no_grad()
|
18 |
+
def detect_face(images: torch.Tensor, mtcnn: torch.nn.Module) -> torch.Tensor:
|
19 |
+
"""
|
20 |
+
Detect faces in the images using MTCNN. If no face is detected, use the whole image.
|
21 |
+
"""
|
22 |
+
images = rearrange(images, "b c h w -> b h w c")
|
23 |
+
if images.dtype != torch.uint8:
|
24 |
+
images = ((images * 0.5 + 0.5) * 255).type(torch.uint8) # Unnormalize
|
25 |
+
|
26 |
+
_, _, landmarks = mtcnn(images, landmarks=True)
|
27 |
+
|
28 |
+
return landmarks
|
29 |
+
|
30 |
+
|
31 |
+
def extract_faces_and_landmarks(images: torch.Tensor, output_size=112, mtcnn: torch.nn.Module = None, refernce_points=REFERNCE_FACIAL_POINTS_RELATIVE):
|
32 |
+
"""
|
33 |
+
detect faces in the images and crop them (in a differentiable way) to 112x112 using MTCNN.
|
34 |
+
"""
|
35 |
+
images = Pad(200)(images)
|
36 |
+
landmarks_batched = detect_face(images, mtcnn=mtcnn)
|
37 |
+
affine_transformations = []
|
38 |
+
invalid_indices = []
|
39 |
+
for i, landmarks in enumerate(landmarks_batched):
|
40 |
+
if landmarks is None:
|
41 |
+
invalid_indices.append(i)
|
42 |
+
affine_transformations.append(np.eye(2, 3).astype(np.float32))
|
43 |
+
else:
|
44 |
+
affine_transformations.append(get_similarity_transform_for_cv2(landmarks[0].astype(np.float32),
|
45 |
+
refernce_points.astype(np.float32) * output_size))
|
46 |
+
affine_transformations = torch.from_numpy(np.stack(affine_transformations).astype(np.float32)).to(device=images.device, dtype=torch.float32)
|
47 |
+
|
48 |
+
invalid_indices = torch.tensor(invalid_indices).to(device=images.device)
|
49 |
+
|
50 |
+
fp_images = images.to(torch.float32)
|
51 |
+
return warp_affine(fp_images, affine_transformations, dsize=(output_size, output_size)).to(dtype=images.dtype), invalid_indices
|