SunderAli17 commited on
Commit
73bdc04
1 Parent(s): be1d2b9

Create lcm_single_step_scheduler.py

Browse files
pipelines/lcm_single_step_scheduler.py ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
16
+ # and https://github.com/hojonathanho/diffusion
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+
25
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
26
+ from diffusers.utils import BaseOutput, logging
27
+ from diffusers.utils.torch_utils import randn_tensor
28
+ from diffusers.schedulers.scheduling_utils import SchedulerMixin
29
+
30
+
31
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
+
33
+
34
+ @dataclass
35
+ class LCMSingleStepSchedulerOutput(BaseOutput):
36
+ """
37
+ Output class for the scheduler's `step` function output.
38
+ Args:
39
+ pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
40
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
+ `pred_original_sample` can be used to preview progress or for guidance.
42
+ """
43
+
44
+ denoised: Optional[torch.FloatTensor] = None
45
+
46
+
47
+ # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
48
+ def betas_for_alpha_bar(
49
+ num_diffusion_timesteps,
50
+ max_beta=0.999,
51
+ alpha_transform_type="cosine",
52
+ ):
53
+ """
54
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
55
+ (1-beta) over time from t = [0,1].
56
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
57
+ to that part of the diffusion process.
58
+ Args:
59
+ num_diffusion_timesteps (`int`): the number of betas to produce.
60
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
61
+ prevent singularities.
62
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
63
+ Choose from `cosine` or `exp`
64
+ Returns:
65
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
66
+ """
67
+ if alpha_transform_type == "cosine":
68
+
69
+ def alpha_bar_fn(t):
70
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
71
+
72
+ elif alpha_transform_type == "exp":
73
+
74
+ def alpha_bar_fn(t):
75
+ return math.exp(t * -12.0)
76
+
77
+ else:
78
+ raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
79
+
80
+ betas = []
81
+ for i in range(num_diffusion_timesteps):
82
+ t1 = i / num_diffusion_timesteps
83
+ t2 = (i + 1) / num_diffusion_timesteps
84
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
85
+ return torch.tensor(betas, dtype=torch.float32)
86
+
87
+
88
+ # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
89
+ def rescale_zero_terminal_snr(betas: torch.FloatTensor) -> torch.FloatTensor:
90
+ """
91
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
92
+ Args:
93
+ betas (`torch.FloatTensor`):
94
+ the betas that the scheduler is being initialized with.
95
+ Returns:
96
+ `torch.FloatTensor`: rescaled betas with zero terminal SNR
97
+ """
98
+ # Convert betas to alphas_bar_sqrt
99
+ alphas = 1.0 - betas
100
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
101
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
102
+
103
+ # Store old values.
104
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
105
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
106
+
107
+ # Shift so the last timestep is zero.
108
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
109
+
110
+ # Scale so the first timestep is back to the old value.
111
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
112
+
113
+ # Convert alphas_bar_sqrt to betas
114
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
115
+ alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
116
+ alphas = torch.cat([alphas_bar[0:1], alphas])
117
+ betas = 1 - alphas
118
+
119
+ return betas
120
+
121
+
122
+ class LCMSingleStepScheduler(SchedulerMixin, ConfigMixin):
123
+ """
124
+ `LCMSingleStepScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
125
+ non-Markovian guidance.
126
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. [`~ConfigMixin`] takes care of storing all config
127
+ attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be
128
+ accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving
129
+ functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
130
+ Args:
131
+ num_train_timesteps (`int`, defaults to 1000):
132
+ The number of diffusion steps to train the model.
133
+ beta_start (`float`, defaults to 0.0001):
134
+ The starting `beta` value of inference.
135
+ beta_end (`float`, defaults to 0.02):
136
+ The final `beta` value.
137
+ beta_schedule (`str`, defaults to `"linear"`):
138
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
139
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
140
+ trained_betas (`np.ndarray`, *optional*):
141
+ Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
142
+ original_inference_steps (`int`, *optional*, defaults to 50):
143
+ The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
144
+ will ultimately take `num_inference_steps` evenly spaced timesteps to form the final timestep schedule.
145
+ clip_sample (`bool`, defaults to `True`):
146
+ Clip the predicted sample for numerical stability.
147
+ clip_sample_range (`float`, defaults to 1.0):
148
+ The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
149
+ set_alpha_to_one (`bool`, defaults to `True`):
150
+ Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
151
+ there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
152
+ otherwise it uses the alpha value at step 0.
153
+ steps_offset (`int`, defaults to 0):
154
+ An offset added to the inference steps. You can use a combination of `offset=1` and
155
+ `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
156
+ Diffusion.
157
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
158
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
159
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
160
+ Video](https://imagen.research.google/video/paper.pdf) paper).
161
+ thresholding (`bool`, defaults to `False`):
162
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
163
+ as Stable Diffusion.
164
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
165
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
166
+ sample_max_value (`float`, defaults to 1.0):
167
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
168
+ timestep_spacing (`str`, defaults to `"leading"`):
169
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
170
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
171
+ timestep_scaling (`float`, defaults to 10.0):
172
+ The factor the timesteps will be multiplied by when calculating the consistency model boundary conditions
173
+ `c_skip` and `c_out`. Increasing this will decrease the approximation error (although the approximation
174
+ error at the default of `10.0` is already pretty small).
175
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
176
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
177
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
178
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
179
+ """
180
+
181
+ order = 1
182
+
183
+ @register_to_config
184
+ def __init__(
185
+ self,
186
+ num_train_timesteps: int = 1000,
187
+ beta_start: float = 0.00085,
188
+ beta_end: float = 0.012,
189
+ beta_schedule: str = "scaled_linear",
190
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
191
+ original_inference_steps: int = 50,
192
+ clip_sample: bool = False,
193
+ clip_sample_range: float = 1.0,
194
+ set_alpha_to_one: bool = True,
195
+ steps_offset: int = 0,
196
+ prediction_type: str = "epsilon",
197
+ thresholding: bool = False,
198
+ dynamic_thresholding_ratio: float = 0.995,
199
+ sample_max_value: float = 1.0,
200
+ timestep_spacing: str = "leading",
201
+ timestep_scaling: float = 10.0,
202
+ rescale_betas_zero_snr: bool = False,
203
+ ):
204
+ if trained_betas is not None:
205
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
206
+ elif beta_schedule == "linear":
207
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
208
+ elif beta_schedule == "scaled_linear":
209
+ # this schedule is very specific to the latent diffusion model.
210
+ self.betas = (
211
+ torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
212
+ )
213
+ elif beta_schedule == "squaredcos_cap_v2":
214
+ # Glide cosine schedule
215
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
216
+ else:
217
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
218
+
219
+ # Rescale for zero SNR
220
+ if rescale_betas_zero_snr:
221
+ self.betas = rescale_zero_terminal_snr(self.betas)
222
+
223
+ self.alphas = 1.0 - self.betas
224
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
225
+
226
+ # At every step in ddim, we are looking into the previous alphas_cumprod
227
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
228
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
229
+ # whether we use the final alpha of the "non-previous" one.
230
+ self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
231
+
232
+ # standard deviation of the initial noise distribution
233
+ self.init_noise_sigma = 1.0
234
+
235
+ # setable values
236
+ self.num_inference_steps = None
237
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
238
+
239
+ self._step_index = None
240
+
241
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
242
+ def _init_step_index(self, timestep):
243
+ if isinstance(timestep, torch.Tensor):
244
+ timestep = timestep.to(self.timesteps.device)
245
+
246
+ index_candidates = (self.timesteps == timestep).nonzero()
247
+
248
+ # The sigma index that is taken for the **very** first `step`
249
+ # is always the second index (or the last index if there is only 1)
250
+ # This way we can ensure we don't accidentally skip a sigma in
251
+ # case we start in the middle of the denoising schedule (e.g. for image-to-image)
252
+ if len(index_candidates) > 1:
253
+ step_index = index_candidates[1]
254
+ else:
255
+ step_index = index_candidates[0]
256
+
257
+ self._step_index = step_index.item()
258
+
259
+ @property
260
+ def step_index(self):
261
+ return self._step_index
262
+
263
+ def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
264
+ """
265
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
266
+ current timestep.
267
+ Args:
268
+ sample (`torch.FloatTensor`):
269
+ The input sample.
270
+ timestep (`int`, *optional*):
271
+ The current timestep in the diffusion chain.
272
+ Returns:
273
+ `torch.FloatTensor`:
274
+ A scaled input sample.
275
+ """
276
+ return sample
277
+
278
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
279
+ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
280
+ """
281
+ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
282
+ prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
283
+ s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
284
+ pixels from saturation at each step. We find that dynamic thresholding results in significantly better
285
+ photorealism as well as better image-text alignment, especially when using very large guidance weights."
286
+ https://arxiv.org/abs/2205.11487
287
+ """
288
+ dtype = sample.dtype
289
+ batch_size, channels, *remaining_dims = sample.shape
290
+
291
+ if dtype not in (torch.float32, torch.float64):
292
+ sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
293
+
294
+ # Flatten sample for doing quantile calculation along each image
295
+ sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
296
+
297
+ abs_sample = sample.abs() # "a certain percentile absolute pixel value"
298
+
299
+ s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
300
+ s = torch.clamp(
301
+ s, min=1, max=self.config.sample_max_value
302
+ ) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
303
+ s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
304
+ sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
305
+
306
+ sample = sample.reshape(batch_size, channels, *remaining_dims)
307
+ sample = sample.to(dtype)
308
+
309
+ return sample
310
+
311
+ def set_timesteps(
312
+ self,
313
+ num_inference_steps: int = None,
314
+ device: Union[str, torch.device] = None,
315
+ original_inference_steps: Optional[int] = None,
316
+ strength: int = 1.0,
317
+ timesteps: Optional[list] = None,
318
+ ):
319
+ """
320
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
321
+ Args:
322
+ num_inference_steps (`int`):
323
+ The number of diffusion steps used when generating samples with a pre-trained model.
324
+ device (`str` or `torch.device`, *optional*):
325
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
326
+ original_inference_steps (`int`, *optional*):
327
+ The original number of inference steps, which will be used to generate a linearly-spaced timestep
328
+ schedule (which is different from the standard `diffusers` implementation). We will then take
329
+ `num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
330
+ our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
331
+ """
332
+
333
+ if num_inference_steps is not None and timesteps is not None:
334
+ raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
335
+
336
+ if timesteps is not None:
337
+ for i in range(1, len(timesteps)):
338
+ if timesteps[i] >= timesteps[i - 1]:
339
+ raise ValueError("`custom_timesteps` must be in descending order.")
340
+
341
+ if timesteps[0] >= self.config.num_train_timesteps:
342
+ raise ValueError(
343
+ f"`timesteps` must start before `self.config.train_timesteps`:"
344
+ f" {self.config.num_train_timesteps}."
345
+ )
346
+
347
+ timesteps = np.array(timesteps, dtype=np.int64)
348
+ else:
349
+ if num_inference_steps > self.config.num_train_timesteps:
350
+ raise ValueError(
351
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
352
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
353
+ f" maximal {self.config.num_train_timesteps} timesteps."
354
+ )
355
+
356
+ self.num_inference_steps = num_inference_steps
357
+ original_steps = (
358
+ original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps
359
+ )
360
+
361
+ if original_steps > self.config.num_train_timesteps:
362
+ raise ValueError(
363
+ f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
364
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
365
+ f" maximal {self.config.num_train_timesteps} timesteps."
366
+ )
367
+
368
+ if num_inference_steps > original_steps:
369
+ raise ValueError(
370
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
371
+ f" {original_steps} because the final timestep schedule will be a subset of the"
372
+ f" `original_inference_steps`-sized initial timestep schedule."
373
+ )
374
+
375
+ # LCM Timesteps Setting
376
+ # Currently, only linear spacing is supported.
377
+ c = self.config.num_train_timesteps // original_steps
378
+ # LCM Training Steps Schedule
379
+ lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * c - 1
380
+ skipping_step = len(lcm_origin_timesteps) // num_inference_steps
381
+ # LCM Inference Steps Schedule
382
+ timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps]
383
+
384
+ self.timesteps = torch.from_numpy(timesteps.copy()).to(device=device, dtype=torch.long)
385
+
386
+ self._step_index = None
387
+
388
+ def get_scalings_for_boundary_condition_discrete(self, timestep):
389
+ self.sigma_data = 0.5 # Default: 0.5
390
+ scaled_timestep = timestep * self.config.timestep_scaling
391
+
392
+ c_skip = self.sigma_data**2 / (scaled_timestep**2 + self.sigma_data**2)
393
+ c_out = scaled_timestep / (scaled_timestep**2 + self.sigma_data**2) ** 0.5
394
+ return c_skip, c_out
395
+
396
+ def append_dims(self, x, target_dims):
397
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
398
+ dims_to_append = target_dims - x.ndim
399
+ if dims_to_append < 0:
400
+ raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
401
+ return x[(...,) + (None,) * dims_to_append]
402
+
403
+ def extract_into_tensor(self, a, t, x_shape):
404
+ b, *_ = t.shape
405
+ out = a.gather(-1, t)
406
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
407
+
408
+ def step(
409
+ self,
410
+ model_output: torch.FloatTensor,
411
+ timestep: torch.Tensor,
412
+ sample: torch.FloatTensor,
413
+ generator: Optional[torch.Generator] = None,
414
+ return_dict: bool = True,
415
+ ) -> Union[LCMSingleStepSchedulerOutput, Tuple]:
416
+ """
417
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
418
+ process from the learned model outputs (most often the predicted noise).
419
+ Args:
420
+ model_output (`torch.FloatTensor`):
421
+ The direct output from learned diffusion model.
422
+ timestep (`float`):
423
+ The current discrete timestep in the diffusion chain.
424
+ sample (`torch.FloatTensor`):
425
+ A current instance of a sample created by the diffusion process.
426
+ generator (`torch.Generator`, *optional*):
427
+ A random number generator.
428
+ return_dict (`bool`, *optional*, defaults to `True`):
429
+ Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
430
+ Returns:
431
+ [`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
432
+ If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
433
+ tuple is returned where the first element is the sample tensor.
434
+ """
435
+ # 0. make sure everything is on the same device
436
+ alphas_cumprod = self.alphas_cumprod.to(sample.device)
437
+
438
+ # 1. compute alphas, betas
439
+ if timestep.ndim == 0:
440
+ timestep = timestep.unsqueeze(0)
441
+ alpha_prod_t = self.extract_into_tensor(alphas_cumprod, timestep, sample.shape)
442
+ beta_prod_t = 1 - alpha_prod_t
443
+
444
+ # 2. Get scalings for boundary conditions
445
+ c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
446
+ c_skip, c_out = [self.append_dims(x, sample.ndim) for x in [c_skip, c_out]]
447
+
448
+ # 3. Compute the predicted original sample x_0 based on the model parameterization
449
+ if self.config.prediction_type == "epsilon": # noise-prediction
450
+ predicted_original_sample = (sample - torch.sqrt(beta_prod_t) * model_output) / torch.sqrt(alpha_prod_t)
451
+ elif self.config.prediction_type == "sample": # x-prediction
452
+ predicted_original_sample = model_output
453
+ elif self.config.prediction_type == "v_prediction": # v-prediction
454
+ predicted_original_sample = torch.sqrt(alpha_prod_t) * sample - torch.sqrt(beta_prod_t) * model_output
455
+ else:
456
+ raise ValueError(
457
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
458
+ " `v_prediction` for `LCMScheduler`."
459
+ )
460
+
461
+ # 4. Clip or threshold "predicted x_0"
462
+ if self.config.thresholding:
463
+ predicted_original_sample = self._threshold_sample(predicted_original_sample)
464
+ elif self.config.clip_sample:
465
+ predicted_original_sample = predicted_original_sample.clamp(
466
+ -self.config.clip_sample_range, self.config.clip_sample_range
467
+ )
468
+
469
+ # 5. Denoise model output using boundary conditions
470
+ denoised = c_out * predicted_original_sample + c_skip * sample
471
+
472
+ if not return_dict:
473
+ return (denoised, )
474
+
475
+ return LCMSingleStepSchedulerOutput(denoised=denoised)
476
+
477
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
478
+ def add_noise(
479
+ self,
480
+ original_samples: torch.FloatTensor,
481
+ noise: torch.FloatTensor,
482
+ timesteps: torch.IntTensor,
483
+ ) -> torch.FloatTensor:
484
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
485
+ alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
486
+ timesteps = timesteps.to(original_samples.device)
487
+
488
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
489
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
490
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
491
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
492
+
493
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
494
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
495
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
496
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
497
+
498
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
499
+ return noisy_samples
500
+
501
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
502
+ def get_velocity(
503
+ self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
504
+ ) -> torch.FloatTensor:
505
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
506
+ alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
507
+ timesteps = timesteps.to(sample.device)
508
+
509
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
510
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
511
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
512
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
513
+
514
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
515
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
516
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
517
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
518
+
519
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
520
+ return velocity
521
+
522
+ def __len__(self):
523
+ return self.config.num_train_timesteps