Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Commit
•
7fe60bd
1
Parent(s):
7612a7b
Create vae.py
Browse files- module/diffusers_vae/vae.py +978 -0
module/diffusers_vae/vae.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Tuple
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
22 |
+
from diffusers.utils.torch_utils import randn_tensor
|
23 |
+
from diffusers.models.activations import get_activation
|
24 |
+
from diffusers.models.attention_processor import SpatialNorm
|
25 |
+
from diffusers.models.unet_2d_blocks import (
|
26 |
+
AutoencoderTinyBlock,
|
27 |
+
UNetMidBlock2D,
|
28 |
+
get_down_block,
|
29 |
+
get_up_block,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class DecoderOutput(BaseOutput):
|
35 |
+
r"""
|
36 |
+
Output of decoding method.
|
37 |
+
Args:
|
38 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
39 |
+
The decoded output sample from the last layer of the model.
|
40 |
+
"""
|
41 |
+
|
42 |
+
sample: torch.FloatTensor
|
43 |
+
|
44 |
+
|
45 |
+
class Encoder(nn.Module):
|
46 |
+
r"""
|
47 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
48 |
+
Args:
|
49 |
+
in_channels (`int`, *optional*, defaults to 3):
|
50 |
+
The number of input channels.
|
51 |
+
out_channels (`int`, *optional*, defaults to 3):
|
52 |
+
The number of output channels.
|
53 |
+
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
54 |
+
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
|
55 |
+
options.
|
56 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
57 |
+
The number of output channels for each block.
|
58 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
59 |
+
The number of layers per block.
|
60 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
61 |
+
The number of groups for normalization.
|
62 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
63 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
64 |
+
double_z (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether to double the number of output channels for the last block.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
in_channels: int = 3,
|
71 |
+
out_channels: int = 3,
|
72 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
|
73 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
74 |
+
layers_per_block: int = 2,
|
75 |
+
norm_num_groups: int = 32,
|
76 |
+
act_fn: str = "silu",
|
77 |
+
double_z: bool = True,
|
78 |
+
mid_block_add_attention=True,
|
79 |
+
):
|
80 |
+
super().__init__()
|
81 |
+
self.layers_per_block = layers_per_block
|
82 |
+
|
83 |
+
self.conv_in = nn.Conv2d(
|
84 |
+
in_channels,
|
85 |
+
block_out_channels[0],
|
86 |
+
kernel_size=3,
|
87 |
+
stride=1,
|
88 |
+
padding=1,
|
89 |
+
)
|
90 |
+
|
91 |
+
self.mid_block = None
|
92 |
+
self.down_blocks = nn.ModuleList([])
|
93 |
+
|
94 |
+
# down
|
95 |
+
output_channel = block_out_channels[0]
|
96 |
+
for i, down_block_type in enumerate(down_block_types):
|
97 |
+
input_channel = output_channel
|
98 |
+
output_channel = block_out_channels[i]
|
99 |
+
is_final_block = i == len(block_out_channels) - 1
|
100 |
+
|
101 |
+
down_block = get_down_block(
|
102 |
+
down_block_type,
|
103 |
+
num_layers=self.layers_per_block,
|
104 |
+
in_channels=input_channel,
|
105 |
+
out_channels=output_channel,
|
106 |
+
add_downsample=not is_final_block,
|
107 |
+
resnet_eps=1e-6,
|
108 |
+
downsample_padding=0,
|
109 |
+
resnet_act_fn=act_fn,
|
110 |
+
resnet_groups=norm_num_groups,
|
111 |
+
attention_head_dim=output_channel,
|
112 |
+
temb_channels=None,
|
113 |
+
)
|
114 |
+
self.down_blocks.append(down_block)
|
115 |
+
|
116 |
+
# mid
|
117 |
+
self.mid_block = UNetMidBlock2D(
|
118 |
+
in_channels=block_out_channels[-1],
|
119 |
+
resnet_eps=1e-6,
|
120 |
+
resnet_act_fn=act_fn,
|
121 |
+
output_scale_factor=1,
|
122 |
+
resnet_time_scale_shift="default",
|
123 |
+
attention_head_dim=block_out_channels[-1],
|
124 |
+
resnet_groups=norm_num_groups,
|
125 |
+
temb_channels=None,
|
126 |
+
add_attention=mid_block_add_attention,
|
127 |
+
)
|
128 |
+
|
129 |
+
# out
|
130 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
131 |
+
self.conv_act = nn.SiLU()
|
132 |
+
|
133 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
134 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
135 |
+
|
136 |
+
self.gradient_checkpointing = False
|
137 |
+
|
138 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
139 |
+
r"""The forward method of the `Encoder` class."""
|
140 |
+
|
141 |
+
sample = self.conv_in(sample)
|
142 |
+
|
143 |
+
if self.training and self.gradient_checkpointing:
|
144 |
+
|
145 |
+
def create_custom_forward(module):
|
146 |
+
def custom_forward(*inputs):
|
147 |
+
return module(*inputs)
|
148 |
+
|
149 |
+
return custom_forward
|
150 |
+
|
151 |
+
# down
|
152 |
+
if is_torch_version(">=", "1.11.0"):
|
153 |
+
for down_block in self.down_blocks:
|
154 |
+
sample = torch.utils.checkpoint.checkpoint(
|
155 |
+
create_custom_forward(down_block), sample, use_reentrant=False
|
156 |
+
)
|
157 |
+
# middle
|
158 |
+
sample = torch.utils.checkpoint.checkpoint(
|
159 |
+
create_custom_forward(self.mid_block), sample, use_reentrant=False
|
160 |
+
)
|
161 |
+
else:
|
162 |
+
for down_block in self.down_blocks:
|
163 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
|
164 |
+
# middle
|
165 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
|
166 |
+
|
167 |
+
else:
|
168 |
+
# down
|
169 |
+
for down_block in self.down_blocks:
|
170 |
+
sample = down_block(sample)
|
171 |
+
|
172 |
+
# middle
|
173 |
+
sample = self.mid_block(sample)
|
174 |
+
|
175 |
+
# post-process
|
176 |
+
sample = self.conv_norm_out(sample)
|
177 |
+
sample = self.conv_act(sample)
|
178 |
+
sample = self.conv_out(sample)
|
179 |
+
|
180 |
+
return sample
|
181 |
+
|
182 |
+
|
183 |
+
class Decoder(nn.Module):
|
184 |
+
r"""
|
185 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
186 |
+
Args:
|
187 |
+
in_channels (`int`, *optional*, defaults to 3):
|
188 |
+
The number of input channels.
|
189 |
+
out_channels (`int`, *optional*, defaults to 3):
|
190 |
+
The number of output channels.
|
191 |
+
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
192 |
+
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
193 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
194 |
+
The number of output channels for each block.
|
195 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
196 |
+
The number of layers per block.
|
197 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
198 |
+
The number of groups for normalization.
|
199 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
200 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
201 |
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
202 |
+
The normalization type to use. Can be either `"group"` or `"spatial"`.
|
203 |
+
"""
|
204 |
+
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
in_channels: int = 3,
|
208 |
+
out_channels: int = 3,
|
209 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
210 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
211 |
+
layers_per_block: int = 2,
|
212 |
+
norm_num_groups: int = 32,
|
213 |
+
act_fn: str = "silu",
|
214 |
+
norm_type: str = "group", # group, spatial
|
215 |
+
mid_block_add_attention=True,
|
216 |
+
):
|
217 |
+
super().__init__()
|
218 |
+
self.layers_per_block = layers_per_block
|
219 |
+
|
220 |
+
self.conv_in = nn.Conv2d(
|
221 |
+
in_channels,
|
222 |
+
block_out_channels[-1],
|
223 |
+
kernel_size=3,
|
224 |
+
stride=1,
|
225 |
+
padding=1,
|
226 |
+
)
|
227 |
+
|
228 |
+
self.mid_block = None
|
229 |
+
self.up_blocks = nn.ModuleList([])
|
230 |
+
|
231 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
232 |
+
|
233 |
+
# mid
|
234 |
+
self.mid_block = UNetMidBlock2D(
|
235 |
+
in_channels=block_out_channels[-1],
|
236 |
+
resnet_eps=1e-6,
|
237 |
+
resnet_act_fn=act_fn,
|
238 |
+
output_scale_factor=1,
|
239 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
240 |
+
attention_head_dim=block_out_channels[-1],
|
241 |
+
resnet_groups=norm_num_groups,
|
242 |
+
temb_channels=temb_channels,
|
243 |
+
add_attention=mid_block_add_attention,
|
244 |
+
)
|
245 |
+
|
246 |
+
# up
|
247 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
248 |
+
output_channel = reversed_block_out_channels[0]
|
249 |
+
for i, up_block_type in enumerate(up_block_types):
|
250 |
+
prev_output_channel = output_channel
|
251 |
+
output_channel = reversed_block_out_channels[i]
|
252 |
+
|
253 |
+
is_final_block = i == len(block_out_channels) - 1
|
254 |
+
|
255 |
+
up_block = get_up_block(
|
256 |
+
up_block_type,
|
257 |
+
num_layers=self.layers_per_block + 1,
|
258 |
+
in_channels=prev_output_channel,
|
259 |
+
out_channels=output_channel,
|
260 |
+
prev_output_channel=None,
|
261 |
+
add_upsample=not is_final_block,
|
262 |
+
resnet_eps=1e-6,
|
263 |
+
resnet_act_fn=act_fn,
|
264 |
+
resnet_groups=norm_num_groups,
|
265 |
+
attention_head_dim=output_channel,
|
266 |
+
temb_channels=temb_channels,
|
267 |
+
resnet_time_scale_shift=norm_type,
|
268 |
+
)
|
269 |
+
self.up_blocks.append(up_block)
|
270 |
+
prev_output_channel = output_channel
|
271 |
+
|
272 |
+
# out
|
273 |
+
if norm_type == "spatial":
|
274 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
275 |
+
else:
|
276 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
277 |
+
self.conv_act = nn.SiLU()
|
278 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
279 |
+
|
280 |
+
self.gradient_checkpointing = False
|
281 |
+
|
282 |
+
def forward(
|
283 |
+
self,
|
284 |
+
sample: torch.FloatTensor,
|
285 |
+
latent_embeds: Optional[torch.FloatTensor] = None,
|
286 |
+
) -> torch.FloatTensor:
|
287 |
+
r"""The forward method of the `Decoder` class."""
|
288 |
+
|
289 |
+
sample = self.conv_in(sample)
|
290 |
+
sample = sample.to(torch.float32)
|
291 |
+
|
292 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
293 |
+
|
294 |
+
if self.training and self.gradient_checkpointing:
|
295 |
+
|
296 |
+
def create_custom_forward(module):
|
297 |
+
def custom_forward(*inputs):
|
298 |
+
return module(*inputs)
|
299 |
+
|
300 |
+
return custom_forward
|
301 |
+
|
302 |
+
if is_torch_version(">=", "1.11.0"):
|
303 |
+
# middle
|
304 |
+
sample = torch.utils.checkpoint.checkpoint(
|
305 |
+
create_custom_forward(self.mid_block),
|
306 |
+
sample,
|
307 |
+
latent_embeds,
|
308 |
+
use_reentrant=False,
|
309 |
+
)
|
310 |
+
sample = sample.to(upscale_dtype)
|
311 |
+
|
312 |
+
# up
|
313 |
+
for up_block in self.up_blocks:
|
314 |
+
sample = torch.utils.checkpoint.checkpoint(
|
315 |
+
create_custom_forward(up_block),
|
316 |
+
sample,
|
317 |
+
latent_embeds,
|
318 |
+
use_reentrant=False,
|
319 |
+
)
|
320 |
+
else:
|
321 |
+
# middle
|
322 |
+
sample = torch.utils.checkpoint.checkpoint(
|
323 |
+
create_custom_forward(self.mid_block), sample, latent_embeds
|
324 |
+
)
|
325 |
+
sample = sample.to(upscale_dtype)
|
326 |
+
|
327 |
+
# up
|
328 |
+
for up_block in self.up_blocks:
|
329 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
330 |
+
else:
|
331 |
+
# middle
|
332 |
+
sample = self.mid_block(sample, latent_embeds)
|
333 |
+
sample = sample.to(upscale_dtype)
|
334 |
+
|
335 |
+
# up
|
336 |
+
for up_block in self.up_blocks:
|
337 |
+
sample = up_block(sample, latent_embeds)
|
338 |
+
|
339 |
+
# post-process
|
340 |
+
if latent_embeds is None:
|
341 |
+
sample = self.conv_norm_out(sample)
|
342 |
+
else:
|
343 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
344 |
+
sample = self.conv_act(sample)
|
345 |
+
sample = self.conv_out(sample)
|
346 |
+
|
347 |
+
return sample
|
348 |
+
|
349 |
+
|
350 |
+
class UpSample(nn.Module):
|
351 |
+
r"""
|
352 |
+
The `UpSample` layer of a variational autoencoder that upsamples its input.
|
353 |
+
Args:
|
354 |
+
in_channels (`int`, *optional*, defaults to 3):
|
355 |
+
The number of input channels.
|
356 |
+
out_channels (`int`, *optional*, defaults to 3):
|
357 |
+
The number of output channels.
|
358 |
+
"""
|
359 |
+
|
360 |
+
def __init__(
|
361 |
+
self,
|
362 |
+
in_channels: int,
|
363 |
+
out_channels: int,
|
364 |
+
) -> None:
|
365 |
+
super().__init__()
|
366 |
+
self.in_channels = in_channels
|
367 |
+
self.out_channels = out_channels
|
368 |
+
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
|
369 |
+
|
370 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
371 |
+
r"""The forward method of the `UpSample` class."""
|
372 |
+
x = torch.relu(x)
|
373 |
+
x = self.deconv(x)
|
374 |
+
return x
|
375 |
+
|
376 |
+
|
377 |
+
class MaskConditionEncoder(nn.Module):
|
378 |
+
"""
|
379 |
+
used in AsymmetricAutoencoderKL
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(
|
383 |
+
self,
|
384 |
+
in_ch: int,
|
385 |
+
out_ch: int = 192,
|
386 |
+
res_ch: int = 768,
|
387 |
+
stride: int = 16,
|
388 |
+
) -> None:
|
389 |
+
super().__init__()
|
390 |
+
|
391 |
+
channels = []
|
392 |
+
while stride > 1:
|
393 |
+
stride = stride // 2
|
394 |
+
in_ch_ = out_ch * 2
|
395 |
+
if out_ch > res_ch:
|
396 |
+
out_ch = res_ch
|
397 |
+
if stride == 1:
|
398 |
+
in_ch_ = res_ch
|
399 |
+
channels.append((in_ch_, out_ch))
|
400 |
+
out_ch *= 2
|
401 |
+
|
402 |
+
out_channels = []
|
403 |
+
for _in_ch, _out_ch in channels:
|
404 |
+
out_channels.append(_out_ch)
|
405 |
+
out_channels.append(channels[-1][0])
|
406 |
+
|
407 |
+
layers = []
|
408 |
+
in_ch_ = in_ch
|
409 |
+
for l in range(len(out_channels)):
|
410 |
+
out_ch_ = out_channels[l]
|
411 |
+
if l == 0 or l == 1:
|
412 |
+
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
|
413 |
+
else:
|
414 |
+
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
|
415 |
+
in_ch_ = out_ch_
|
416 |
+
|
417 |
+
self.layers = nn.Sequential(*layers)
|
418 |
+
|
419 |
+
def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor:
|
420 |
+
r"""The forward method of the `MaskConditionEncoder` class."""
|
421 |
+
out = {}
|
422 |
+
for l in range(len(self.layers)):
|
423 |
+
layer = self.layers[l]
|
424 |
+
x = layer(x)
|
425 |
+
out[str(tuple(x.shape))] = x
|
426 |
+
x = torch.relu(x)
|
427 |
+
return out
|
428 |
+
|
429 |
+
|
430 |
+
class MaskConditionDecoder(nn.Module):
|
431 |
+
r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
|
432 |
+
decoder with a conditioner on the mask and masked image.
|
433 |
+
Args:
|
434 |
+
in_channels (`int`, *optional*, defaults to 3):
|
435 |
+
The number of input channels.
|
436 |
+
out_channels (`int`, *optional*, defaults to 3):
|
437 |
+
The number of output channels.
|
438 |
+
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
439 |
+
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
440 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
441 |
+
The number of output channels for each block.
|
442 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
443 |
+
The number of layers per block.
|
444 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
445 |
+
The number of groups for normalization.
|
446 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
447 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
448 |
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
449 |
+
The normalization type to use. Can be either `"group"` or `"spatial"`.
|
450 |
+
"""
|
451 |
+
|
452 |
+
def __init__(
|
453 |
+
self,
|
454 |
+
in_channels: int = 3,
|
455 |
+
out_channels: int = 3,
|
456 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
457 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
458 |
+
layers_per_block: int = 2,
|
459 |
+
norm_num_groups: int = 32,
|
460 |
+
act_fn: str = "silu",
|
461 |
+
norm_type: str = "group", # group, spatial
|
462 |
+
):
|
463 |
+
super().__init__()
|
464 |
+
self.layers_per_block = layers_per_block
|
465 |
+
|
466 |
+
self.conv_in = nn.Conv2d(
|
467 |
+
in_channels,
|
468 |
+
block_out_channels[-1],
|
469 |
+
kernel_size=3,
|
470 |
+
stride=1,
|
471 |
+
padding=1,
|
472 |
+
)
|
473 |
+
|
474 |
+
self.mid_block = None
|
475 |
+
self.up_blocks = nn.ModuleList([])
|
476 |
+
|
477 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
478 |
+
|
479 |
+
# mid
|
480 |
+
self.mid_block = UNetMidBlock2D(
|
481 |
+
in_channels=block_out_channels[-1],
|
482 |
+
resnet_eps=1e-6,
|
483 |
+
resnet_act_fn=act_fn,
|
484 |
+
output_scale_factor=1,
|
485 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
486 |
+
attention_head_dim=block_out_channels[-1],
|
487 |
+
resnet_groups=norm_num_groups,
|
488 |
+
temb_channels=temb_channels,
|
489 |
+
)
|
490 |
+
|
491 |
+
# up
|
492 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
493 |
+
output_channel = reversed_block_out_channels[0]
|
494 |
+
for i, up_block_type in enumerate(up_block_types):
|
495 |
+
prev_output_channel = output_channel
|
496 |
+
output_channel = reversed_block_out_channels[i]
|
497 |
+
|
498 |
+
is_final_block = i == len(block_out_channels) - 1
|
499 |
+
|
500 |
+
up_block = get_up_block(
|
501 |
+
up_block_type,
|
502 |
+
num_layers=self.layers_per_block + 1,
|
503 |
+
in_channels=prev_output_channel,
|
504 |
+
out_channels=output_channel,
|
505 |
+
prev_output_channel=None,
|
506 |
+
add_upsample=not is_final_block,
|
507 |
+
resnet_eps=1e-6,
|
508 |
+
resnet_act_fn=act_fn,
|
509 |
+
resnet_groups=norm_num_groups,
|
510 |
+
attention_head_dim=output_channel,
|
511 |
+
temb_channels=temb_channels,
|
512 |
+
resnet_time_scale_shift=norm_type,
|
513 |
+
)
|
514 |
+
self.up_blocks.append(up_block)
|
515 |
+
prev_output_channel = output_channel
|
516 |
+
|
517 |
+
# condition encoder
|
518 |
+
self.condition_encoder = MaskConditionEncoder(
|
519 |
+
in_ch=out_channels,
|
520 |
+
out_ch=block_out_channels[0],
|
521 |
+
res_ch=block_out_channels[-1],
|
522 |
+
)
|
523 |
+
|
524 |
+
# out
|
525 |
+
if norm_type == "spatial":
|
526 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
527 |
+
else:
|
528 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
529 |
+
self.conv_act = nn.SiLU()
|
530 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
531 |
+
|
532 |
+
self.gradient_checkpointing = False
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self,
|
536 |
+
z: torch.FloatTensor,
|
537 |
+
image: Optional[torch.FloatTensor] = None,
|
538 |
+
mask: Optional[torch.FloatTensor] = None,
|
539 |
+
latent_embeds: Optional[torch.FloatTensor] = None,
|
540 |
+
) -> torch.FloatTensor:
|
541 |
+
r"""The forward method of the `MaskConditionDecoder` class."""
|
542 |
+
sample = z
|
543 |
+
sample = self.conv_in(sample)
|
544 |
+
|
545 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
546 |
+
if self.training and self.gradient_checkpointing:
|
547 |
+
|
548 |
+
def create_custom_forward(module):
|
549 |
+
def custom_forward(*inputs):
|
550 |
+
return module(*inputs)
|
551 |
+
|
552 |
+
return custom_forward
|
553 |
+
|
554 |
+
if is_torch_version(">=", "1.11.0"):
|
555 |
+
# middle
|
556 |
+
sample = torch.utils.checkpoint.checkpoint(
|
557 |
+
create_custom_forward(self.mid_block),
|
558 |
+
sample,
|
559 |
+
latent_embeds,
|
560 |
+
use_reentrant=False,
|
561 |
+
)
|
562 |
+
sample = sample.to(upscale_dtype)
|
563 |
+
|
564 |
+
# condition encoder
|
565 |
+
if image is not None and mask is not None:
|
566 |
+
masked_image = (1 - mask) * image
|
567 |
+
im_x = torch.utils.checkpoint.checkpoint(
|
568 |
+
create_custom_forward(self.condition_encoder),
|
569 |
+
masked_image,
|
570 |
+
mask,
|
571 |
+
use_reentrant=False,
|
572 |
+
)
|
573 |
+
|
574 |
+
# up
|
575 |
+
for up_block in self.up_blocks:
|
576 |
+
if image is not None and mask is not None:
|
577 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
578 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
579 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
580 |
+
sample = torch.utils.checkpoint.checkpoint(
|
581 |
+
create_custom_forward(up_block),
|
582 |
+
sample,
|
583 |
+
latent_embeds,
|
584 |
+
use_reentrant=False,
|
585 |
+
)
|
586 |
+
if image is not None and mask is not None:
|
587 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
588 |
+
else:
|
589 |
+
# middle
|
590 |
+
sample = torch.utils.checkpoint.checkpoint(
|
591 |
+
create_custom_forward(self.mid_block), sample, latent_embeds
|
592 |
+
)
|
593 |
+
sample = sample.to(upscale_dtype)
|
594 |
+
|
595 |
+
# condition encoder
|
596 |
+
if image is not None and mask is not None:
|
597 |
+
masked_image = (1 - mask) * image
|
598 |
+
im_x = torch.utils.checkpoint.checkpoint(
|
599 |
+
create_custom_forward(self.condition_encoder),
|
600 |
+
masked_image,
|
601 |
+
mask,
|
602 |
+
)
|
603 |
+
|
604 |
+
# up
|
605 |
+
for up_block in self.up_blocks:
|
606 |
+
if image is not None and mask is not None:
|
607 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
608 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
609 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
610 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
611 |
+
if image is not None and mask is not None:
|
612 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
613 |
+
else:
|
614 |
+
# middle
|
615 |
+
sample = self.mid_block(sample, latent_embeds)
|
616 |
+
sample = sample.to(upscale_dtype)
|
617 |
+
|
618 |
+
# condition encoder
|
619 |
+
if image is not None and mask is not None:
|
620 |
+
masked_image = (1 - mask) * image
|
621 |
+
im_x = self.condition_encoder(masked_image, mask)
|
622 |
+
|
623 |
+
# up
|
624 |
+
for up_block in self.up_blocks:
|
625 |
+
if image is not None and mask is not None:
|
626 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
627 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
628 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
629 |
+
sample = up_block(sample, latent_embeds)
|
630 |
+
if image is not None and mask is not None:
|
631 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
632 |
+
|
633 |
+
# post-process
|
634 |
+
if latent_embeds is None:
|
635 |
+
sample = self.conv_norm_out(sample)
|
636 |
+
else:
|
637 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
638 |
+
sample = self.conv_act(sample)
|
639 |
+
sample = self.conv_out(sample)
|
640 |
+
|
641 |
+
return sample
|
642 |
+
|
643 |
+
|
644 |
+
class VectorQuantizer(nn.Module):
|
645 |
+
"""
|
646 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
|
647 |
+
multiplications and allows for post-hoc remapping of indices.
|
648 |
+
"""
|
649 |
+
|
650 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
651 |
+
# backwards compatibility we use the buggy version by default, but you can
|
652 |
+
# specify legacy=False to fix it.
|
653 |
+
def __init__(
|
654 |
+
self,
|
655 |
+
n_e: int,
|
656 |
+
vq_embed_dim: int,
|
657 |
+
beta: float,
|
658 |
+
remap=None,
|
659 |
+
unknown_index: str = "random",
|
660 |
+
sane_index_shape: bool = False,
|
661 |
+
legacy: bool = True,
|
662 |
+
):
|
663 |
+
super().__init__()
|
664 |
+
self.n_e = n_e
|
665 |
+
self.vq_embed_dim = vq_embed_dim
|
666 |
+
self.beta = beta
|
667 |
+
self.legacy = legacy
|
668 |
+
|
669 |
+
self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
|
670 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
671 |
+
|
672 |
+
self.remap = remap
|
673 |
+
if self.remap is not None:
|
674 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
675 |
+
self.used: torch.Tensor
|
676 |
+
self.re_embed = self.used.shape[0]
|
677 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
678 |
+
if self.unknown_index == "extra":
|
679 |
+
self.unknown_index = self.re_embed
|
680 |
+
self.re_embed = self.re_embed + 1
|
681 |
+
print(
|
682 |
+
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
683 |
+
f"Using {self.unknown_index} for unknown indices."
|
684 |
+
)
|
685 |
+
else:
|
686 |
+
self.re_embed = n_e
|
687 |
+
|
688 |
+
self.sane_index_shape = sane_index_shape
|
689 |
+
|
690 |
+
def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
|
691 |
+
ishape = inds.shape
|
692 |
+
assert len(ishape) > 1
|
693 |
+
inds = inds.reshape(ishape[0], -1)
|
694 |
+
used = self.used.to(inds)
|
695 |
+
match = (inds[:, :, None] == used[None, None, ...]).long()
|
696 |
+
new = match.argmax(-1)
|
697 |
+
unknown = match.sum(2) < 1
|
698 |
+
if self.unknown_index == "random":
|
699 |
+
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
700 |
+
else:
|
701 |
+
new[unknown] = self.unknown_index
|
702 |
+
return new.reshape(ishape)
|
703 |
+
|
704 |
+
def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
|
705 |
+
ishape = inds.shape
|
706 |
+
assert len(ishape) > 1
|
707 |
+
inds = inds.reshape(ishape[0], -1)
|
708 |
+
used = self.used.to(inds)
|
709 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
710 |
+
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
711 |
+
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
712 |
+
return back.reshape(ishape)
|
713 |
+
|
714 |
+
def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]:
|
715 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
716 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
717 |
+
z_flattened = z.view(-1, self.vq_embed_dim)
|
718 |
+
|
719 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
720 |
+
min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
|
721 |
+
|
722 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
723 |
+
perplexity = None
|
724 |
+
min_encodings = None
|
725 |
+
|
726 |
+
# compute loss for embedding
|
727 |
+
if not self.legacy:
|
728 |
+
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
729 |
+
else:
|
730 |
+
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
731 |
+
|
732 |
+
# preserve gradients
|
733 |
+
z_q: torch.FloatTensor = z + (z_q - z).detach()
|
734 |
+
|
735 |
+
# reshape back to match original input shape
|
736 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
737 |
+
|
738 |
+
if self.remap is not None:
|
739 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
740 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
741 |
+
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
742 |
+
|
743 |
+
if self.sane_index_shape:
|
744 |
+
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
745 |
+
|
746 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
747 |
+
|
748 |
+
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor:
|
749 |
+
# shape specifying (batch, height, width, channel)
|
750 |
+
if self.remap is not None:
|
751 |
+
indices = indices.reshape(shape[0], -1) # add batch axis
|
752 |
+
indices = self.unmap_to_all(indices)
|
753 |
+
indices = indices.reshape(-1) # flatten again
|
754 |
+
|
755 |
+
# get quantized latent vectors
|
756 |
+
z_q: torch.FloatTensor = self.embedding(indices)
|
757 |
+
|
758 |
+
if shape is not None:
|
759 |
+
z_q = z_q.view(shape)
|
760 |
+
# reshape back to match original input shape
|
761 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
762 |
+
|
763 |
+
return z_q
|
764 |
+
|
765 |
+
|
766 |
+
class DiagonalGaussianDistribution(object):
|
767 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
768 |
+
self.parameters = parameters
|
769 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
770 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
771 |
+
self.deterministic = deterministic
|
772 |
+
self.std = torch.exp(0.5 * self.logvar)
|
773 |
+
self.var = torch.exp(self.logvar)
|
774 |
+
if self.deterministic:
|
775 |
+
self.var = self.std = torch.zeros_like(
|
776 |
+
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
777 |
+
)
|
778 |
+
|
779 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
|
780 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
781 |
+
sample = randn_tensor(
|
782 |
+
self.mean.shape,
|
783 |
+
generator=generator,
|
784 |
+
device=self.parameters.device,
|
785 |
+
dtype=self.parameters.dtype,
|
786 |
+
)
|
787 |
+
x = self.mean + self.std * sample
|
788 |
+
return x
|
789 |
+
|
790 |
+
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
791 |
+
if self.deterministic:
|
792 |
+
return torch.Tensor([0.0])
|
793 |
+
else:
|
794 |
+
if other is None:
|
795 |
+
return 0.5 * torch.sum(
|
796 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
797 |
+
dim=[1, 2, 3],
|
798 |
+
)
|
799 |
+
else:
|
800 |
+
return 0.5 * torch.sum(
|
801 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
802 |
+
+ self.var / other.var
|
803 |
+
- 1.0
|
804 |
+
- self.logvar
|
805 |
+
+ other.logvar,
|
806 |
+
dim=[1, 2, 3],
|
807 |
+
)
|
808 |
+
|
809 |
+
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
810 |
+
if self.deterministic:
|
811 |
+
return torch.Tensor([0.0])
|
812 |
+
logtwopi = np.log(2.0 * np.pi)
|
813 |
+
return 0.5 * torch.sum(
|
814 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
815 |
+
dim=dims,
|
816 |
+
)
|
817 |
+
|
818 |
+
def mode(self) -> torch.Tensor:
|
819 |
+
return self.mean
|
820 |
+
|
821 |
+
|
822 |
+
class EncoderTiny(nn.Module):
|
823 |
+
r"""
|
824 |
+
The `EncoderTiny` layer is a simpler version of the `Encoder` layer.
|
825 |
+
Args:
|
826 |
+
in_channels (`int`):
|
827 |
+
The number of input channels.
|
828 |
+
out_channels (`int`):
|
829 |
+
The number of output channels.
|
830 |
+
num_blocks (`Tuple[int, ...]`):
|
831 |
+
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
|
832 |
+
use.
|
833 |
+
block_out_channels (`Tuple[int, ...]`):
|
834 |
+
The number of output channels for each block.
|
835 |
+
act_fn (`str`):
|
836 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
837 |
+
"""
|
838 |
+
|
839 |
+
def __init__(
|
840 |
+
self,
|
841 |
+
in_channels: int,
|
842 |
+
out_channels: int,
|
843 |
+
num_blocks: Tuple[int, ...],
|
844 |
+
block_out_channels: Tuple[int, ...],
|
845 |
+
act_fn: str,
|
846 |
+
):
|
847 |
+
super().__init__()
|
848 |
+
|
849 |
+
layers = []
|
850 |
+
for i, num_block in enumerate(num_blocks):
|
851 |
+
num_channels = block_out_channels[i]
|
852 |
+
|
853 |
+
if i == 0:
|
854 |
+
layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
|
855 |
+
else:
|
856 |
+
layers.append(
|
857 |
+
nn.Conv2d(
|
858 |
+
num_channels,
|
859 |
+
num_channels,
|
860 |
+
kernel_size=3,
|
861 |
+
padding=1,
|
862 |
+
stride=2,
|
863 |
+
bias=False,
|
864 |
+
)
|
865 |
+
)
|
866 |
+
|
867 |
+
for _ in range(num_block):
|
868 |
+
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
869 |
+
|
870 |
+
layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))
|
871 |
+
|
872 |
+
self.layers = nn.Sequential(*layers)
|
873 |
+
self.gradient_checkpointing = False
|
874 |
+
|
875 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
876 |
+
r"""The forward method of the `EncoderTiny` class."""
|
877 |
+
if self.training and self.gradient_checkpointing:
|
878 |
+
|
879 |
+
def create_custom_forward(module):
|
880 |
+
def custom_forward(*inputs):
|
881 |
+
return module(*inputs)
|
882 |
+
|
883 |
+
return custom_forward
|
884 |
+
|
885 |
+
if is_torch_version(">=", "1.11.0"):
|
886 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
|
887 |
+
else:
|
888 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
|
889 |
+
|
890 |
+
else:
|
891 |
+
# scale image from [-1, 1] to [0, 1] to match TAESD convention
|
892 |
+
x = self.layers(x.add(1).div(2))
|
893 |
+
|
894 |
+
return x
|
895 |
+
|
896 |
+
|
897 |
+
class DecoderTiny(nn.Module):
|
898 |
+
r"""
|
899 |
+
The `DecoderTiny` layer is a simpler version of the `Decoder` layer.
|
900 |
+
Args:
|
901 |
+
in_channels (`int`):
|
902 |
+
The number of input channels.
|
903 |
+
out_channels (`int`):
|
904 |
+
The number of output channels.
|
905 |
+
num_blocks (`Tuple[int, ...]`):
|
906 |
+
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
|
907 |
+
use.
|
908 |
+
block_out_channels (`Tuple[int, ...]`):
|
909 |
+
The number of output channels for each block.
|
910 |
+
upsampling_scaling_factor (`int`):
|
911 |
+
The scaling factor to use for upsampling.
|
912 |
+
act_fn (`str`):
|
913 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
914 |
+
"""
|
915 |
+
|
916 |
+
def __init__(
|
917 |
+
self,
|
918 |
+
in_channels: int,
|
919 |
+
out_channels: int,
|
920 |
+
num_blocks: Tuple[int, ...],
|
921 |
+
block_out_channels: Tuple[int, ...],
|
922 |
+
upsampling_scaling_factor: int,
|
923 |
+
act_fn: str,
|
924 |
+
):
|
925 |
+
super().__init__()
|
926 |
+
|
927 |
+
layers = [
|
928 |
+
nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
|
929 |
+
get_activation(act_fn),
|
930 |
+
]
|
931 |
+
|
932 |
+
for i, num_block in enumerate(num_blocks):
|
933 |
+
is_final_block = i == (len(num_blocks) - 1)
|
934 |
+
num_channels = block_out_channels[i]
|
935 |
+
|
936 |
+
for _ in range(num_block):
|
937 |
+
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
938 |
+
|
939 |
+
if not is_final_block:
|
940 |
+
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))
|
941 |
+
|
942 |
+
conv_out_channel = num_channels if not is_final_block else out_channels
|
943 |
+
layers.append(
|
944 |
+
nn.Conv2d(
|
945 |
+
num_channels,
|
946 |
+
conv_out_channel,
|
947 |
+
kernel_size=3,
|
948 |
+
padding=1,
|
949 |
+
bias=is_final_block,
|
950 |
+
)
|
951 |
+
)
|
952 |
+
|
953 |
+
self.layers = nn.Sequential(*layers)
|
954 |
+
self.gradient_checkpointing = False
|
955 |
+
|
956 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
957 |
+
r"""The forward method of the `DecoderTiny` class."""
|
958 |
+
# Clamp.
|
959 |
+
x = torch.tanh(x / 3) * 3
|
960 |
+
|
961 |
+
if self.training and self.gradient_checkpointing:
|
962 |
+
|
963 |
+
def create_custom_forward(module):
|
964 |
+
def custom_forward(*inputs):
|
965 |
+
return module(*inputs)
|
966 |
+
|
967 |
+
return custom_forward
|
968 |
+
|
969 |
+
if is_torch_version(">=", "1.11.0"):
|
970 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
|
971 |
+
else:
|
972 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
|
973 |
+
|
974 |
+
else:
|
975 |
+
x = self.layers(x)
|
976 |
+
|
977 |
+
# scale image from [0, 1] to [-1, 1] to match diffusers convention
|
978 |
+
return x.mul(2).sub(1)
|