Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
import torch | |
from PIL import Image | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
models = { | |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
} | |
processors = { | |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True) | |
} | |
MARKDOWN = """ | |
This demo utilizes <a href="https://huggingface.co/microsoft/Phi-3.5-vision-instruct">Phi-3.5-Vision Instruct</a> by @Microsoft. | |
Try out with different images and generate captions. Do provide your feedback. | |
Model Card is acquired from <a href="https://huggingface.co/microsoft/Phi-3.5-vision-instruct"> Microsoft's Phi Vision Instruct</a> | |
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)** | |
""" | |
kwargs = {} | |
kwargs['torch_dtype'] = torch.bfloat16 | |
promptu = '<|user|>\n' | |
prompta = '<|assistant|>\n' | |
prompts = "<|end|>\n" | |
def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"): | |
model = models[model_id] | |
processor = processors[model_id] | |
prompt = f"{promptu}<|image_1|>\n{text_input}{prompts}{prompta}" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
generate_ids = model.generate(**inputs, | |
max_new_tokens=1000, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False)[0] | |
return response | |
theme = gr.themes.Soft( | |
font=[gr.themes.GoogleFont('Pacifico'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
with gr.Blocks(js=js_func, theme=theme) as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Tab(label="Phi-3.5 Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct") | |
text_input = gr.Textbox(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) | |
demo.launch(debug=True) |