import gradio as gr import pandas as pd from transformers import AutoModelForSeq2SeqLM, AutoModelForTableQuestionAnswering, AutoTokenizer, pipeline model_tapas = "google/tapas-large-finetuned-wtq" tokenizer_tapas = AutoTokenizer.from_pretrained(model_tapas) pipe_tapas = pipeline("table-question-answering", model=model_tapas, tokenizer=tokenizer_tapas) def process(query, file, correct_answer): table = pd.read_csv(file.name).astype(str).fillna('') #table = table[:rows] if rows else table result_tapas = pipe_tapas(table = table, query = query) return result_tapas['answer'] query_text = gr.Text(label = "Enter a question") input_file = gr.File(label = "Upload a CVS file", type = "file") # outputs from the app answer_text_tapas = gr.Text(label = "TAPAS answer") description = """ # Siddharth Test Gradio Table QA """ iface = gr.Interface( theme="huggingface", description=description, fn = process, inputs = [query_text, input_file,], outputs = [answer_text_tapas], examples = [["Apps with more than 4.7 rating in art and design?","playstore_text_csv.csv","Harley Quinn wallpapers HD --- ",], ["How many apps have Beauty genres?","playstore_text_csv.csv",""], ["Average Installs of apps with Beauty genres?","playstore_text_csv.csv",""] ] , allow_flagging="never" ) iface.launch()