Spaces:
Running
Running
import os | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from .zoedepth.models.zoedepth.zoedepth_v1 import ZoeDepth | |
from .zoedepth.utils.config import get_config | |
from annotator.base_annotator import BaseProcessor | |
class ZoeDetector(BaseProcessor): | |
def __init__(self,**kwargs): | |
super().__init__(**kwargs) | |
self.model = None | |
self.model_dir = os.path.join(self.models_path, "zoedepth") | |
def load_model(self): | |
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ZoeD_M12_N.pt" | |
modelpath = os.path.join(self.model_dir, "ZoeD_M12_N.pt") | |
if not os.path.exists(modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=self.model_dir) | |
conf = get_config("zoedepth", "infer") | |
model = ZoeDepth.build_from_config(conf) | |
model.load_state_dict(torch.load(modelpath, map_location=model.device)['model']) | |
model.eval() | |
self.model = model.to(self.device) | |
def unload_model(self): | |
if self.model is not None: | |
self.model.cpu() | |
def __call__(self, input_image): | |
if self.model is None: | |
self.load_model() | |
self.model.to(self.device) | |
assert input_image.ndim == 3 | |
image_depth = input_image | |
with torch.no_grad(): | |
image_depth = torch.from_numpy(image_depth).float().to(self.device) | |
image_depth = image_depth / 255.0 | |
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') | |
depth = self.model.infer(image_depth) | |
depth = depth[0, 0].cpu().numpy() | |
vmin = np.percentile(depth, 2) | |
vmax = np.percentile(depth, 85) | |
depth -= vmin | |
depth /= vmax - vmin | |
depth = 1.0 - depth | |
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) | |
return depth_image | |