Spaces:
Running
Running
Huang
commited on
Commit
•
11ccb1b
1
Parent(s):
e68406d
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Image/__pycache__/processor.cpython-39.pyc +0 -0
- Image/processor.py +47 -0
- annotator/__init__.py +22 -0
- annotator/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/__pycache__/base_annotator.cpython-39.pyc +0 -0
- annotator/__pycache__/util.cpython-39.pyc +0 -0
- annotator/base_annotator.py +19 -0
- annotator/binary/__init__.py +15 -0
- annotator/binary/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/canny/__init__.py +6 -0
- annotator/canny/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/hed/__init__.py +103 -0
- annotator/hed/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/keypose/__init__.py +217 -0
- annotator/keypose/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/keypose/faster_rcnn_r50_fpn_coco.py +182 -0
- annotator/keypose/hrnet_w48_coco_256x192.py +169 -0
- annotator/midas/LICENSE +21 -0
- annotator/midas/__init__.py +189 -0
- annotator/midas/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/midas/api.py +48 -0
- annotator/midas/midas/__init__.py +0 -0
- annotator/midas/midas/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/midas/midas/__pycache__/base_model.cpython-39.pyc +0 -0
- annotator/midas/midas/__pycache__/blocks.cpython-39.pyc +0 -0
- annotator/midas/midas/__pycache__/dpt_depth.cpython-39.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net.cpython-39.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net_custom.cpython-39.pyc +0 -0
- annotator/midas/midas/__pycache__/transforms.cpython-39.pyc +0 -0
- annotator/midas/midas/__pycache__/vit.cpython-39.pyc +0 -0
- annotator/midas/midas/base_model.py +16 -0
- annotator/midas/midas/blocks.py +342 -0
- annotator/midas/midas/dpt_depth.py +109 -0
- annotator/midas/midas/midas_net.py +76 -0
- annotator/midas/midas/midas_net_custom.py +128 -0
- annotator/midas/midas/transforms.py +234 -0
- annotator/midas/midas/vit.py +491 -0
- annotator/midas/utils.py +190 -0
- annotator/mlsd/LICENSE +201 -0
- annotator/mlsd/__init__.py +56 -0
- annotator/mlsd/__pycache__/__init__.cpython-39.pyc +0 -0
- annotator/mlsd/__pycache__/utils.cpython-39.pyc +0 -0
- annotator/mlsd/models/__pycache__/mbv2_mlsd_large.cpython-39.pyc +0 -0
- annotator/mlsd/models/__pycache__/mbv2_mlsd_tiny.cpython-39.pyc +0 -0
- annotator/mlsd/models/mbv2_mlsd_large.py +292 -0
- annotator/mlsd/models/mbv2_mlsd_tiny.py +275 -0
- annotator/mlsd/utils.py +582 -0
- annotator/openpose/LICENSE +108 -0
- annotator/openpose/__init__.py +270 -0
- annotator/openpose/__pycache__/__init__.cpython-39.pyc +0 -0
Image/__pycache__/processor.cpython-39.pyc
ADDED
Binary file (1.78 kB). View file
|
|
Image/processor.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def pad64(x):
|
6 |
+
return int(np.ceil(float(x) / 64.0) * 64 - x)
|
7 |
+
|
8 |
+
|
9 |
+
def safer_memory(x):
|
10 |
+
# Fix many MAC/AMD problems
|
11 |
+
return np.ascontiguousarray(x.copy()).copy()
|
12 |
+
|
13 |
+
|
14 |
+
def HWC3(x):
|
15 |
+
assert x.dtype == np.uint8
|
16 |
+
if x.ndim == 2:
|
17 |
+
x = x[:, :, None]
|
18 |
+
assert x.ndim == 3
|
19 |
+
H, W, C = x.shape
|
20 |
+
assert C == 1 or C == 3 or C == 4
|
21 |
+
if C == 3:
|
22 |
+
return x
|
23 |
+
if C == 1:
|
24 |
+
return np.concatenate([x, x, x], axis=2)
|
25 |
+
if C == 4:
|
26 |
+
color = x[:, :, 0:3].astype(np.float32)
|
27 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
28 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
29 |
+
y = y.clip(0, 255).astype(np.uint8)
|
30 |
+
return y
|
31 |
+
|
32 |
+
|
33 |
+
def resize_image_with_pad(input_image, resolution):
|
34 |
+
img = HWC3(input_image)
|
35 |
+
H_raw, W_raw, _ = img.shape
|
36 |
+
k = float(resolution) / float(min(H_raw, W_raw))
|
37 |
+
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
|
38 |
+
H_target = int(np.round(float(H_raw) * k))
|
39 |
+
W_target = int(np.round(float(W_raw) * k))
|
40 |
+
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
|
41 |
+
H_pad, W_pad = pad64(H_target), pad64(W_target)
|
42 |
+
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
|
43 |
+
|
44 |
+
def remove_pad(x):
|
45 |
+
return safer_memory(x[:H_target, :W_target])
|
46 |
+
|
47 |
+
return safer_memory(img_padded), remove_pad
|
annotator/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .canny import CannyDetector
|
2 |
+
from .openpose import OpenposeDetector
|
3 |
+
from .binary import BinaryDetector
|
4 |
+
from .hed import HedDetector
|
5 |
+
# from .keypose import KeyPoseProcess
|
6 |
+
from .midas import MidasProcessor
|
7 |
+
from .mlsd import MLSDProcessor
|
8 |
+
from .uniformer import UniformerDetector
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
UniformerDetector, HedDetector, MLSDProcessor, BinaryDetector, CannyDetector, OpenposeDetector, MidasProcessor
|
12 |
+
]
|
13 |
+
#
|
14 |
+
#
|
15 |
+
# # default cache
|
16 |
+
# default_home = os.path.join(os.path.expanduser("~"), ".cache")
|
17 |
+
# model_cache_home = os.path.expanduser(
|
18 |
+
# os.getenv(
|
19 |
+
# "HF_HOME",
|
20 |
+
# os.path.join(os.getenv("XDG_CACHE_HOME", default_home), "model"),
|
21 |
+
# )
|
22 |
+
# )
|
annotator/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (522 Bytes). View file
|
|
annotator/__pycache__/base_annotator.cpython-39.pyc
ADDED
Binary file (907 Bytes). View file
|
|
annotator/__pycache__/util.cpython-39.pyc
ADDED
Binary file (3.01 kB). View file
|
|
annotator/base_annotator.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# # default cache
|
4 |
+
default_home = os.path.join(os.path.expanduser("~"), ".cache")
|
5 |
+
model_cache_home = os.path.expanduser(
|
6 |
+
os.getenv(
|
7 |
+
"HF_HOME",
|
8 |
+
os.path.join(os.getenv("XDG_CACHE_HOME", default_home), "model"),
|
9 |
+
)
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
class BaseProcessor:
|
14 |
+
def __init__(self, **kwargs):
|
15 |
+
self.device = kwargs.get("device") if kwargs.get("device") is not None else "cpu"
|
16 |
+
self.models_path = kwargs.get("models_path") if kwargs.get("models_path") is not None else model_cache_home
|
17 |
+
|
18 |
+
def unload_model(self):
|
19 |
+
pass
|
annotator/binary/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
|
4 |
+
class BinaryDetector:
|
5 |
+
def __call__(self, img, bin_threshold):
|
6 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
7 |
+
|
8 |
+
if bin_threshold == 0 or bin_threshold == 255:
|
9 |
+
# Otsu's threshold
|
10 |
+
otsu_threshold, img_bin = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
11 |
+
print("Otsu threshold:", otsu_threshold)
|
12 |
+
else:
|
13 |
+
_, img_bin = cv2.threshold(img_gray, bin_threshold, 255, cv2.THRESH_BINARY_INV)
|
14 |
+
|
15 |
+
return cv2.cvtColor(img_bin, cv2.COLOR_GRAY2RGB)
|
annotator/binary/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (776 Bytes). View file
|
|
annotator/canny/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
|
4 |
+
class CannyDetector:
|
5 |
+
def __call__(self, img, low_threshold=100, high_threshold=200):
|
6 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
annotator/canny/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (561 Bytes). View file
|
|
annotator/hed/__init__.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
|
2 |
+
# Please use this implementation in your products
|
3 |
+
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
4 |
+
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
5 |
+
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
6 |
+
# and in this way it works better for gradio's RGB protocol
|
7 |
+
|
8 |
+
import os
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from einops import rearrange
|
14 |
+
|
15 |
+
from annotator.base_annotator import BaseProcessor
|
16 |
+
from annotator.util import safe_step
|
17 |
+
|
18 |
+
|
19 |
+
class DoubleConvBlock(torch.nn.Module):
|
20 |
+
def __init__(self, input_channel, output_channel, layer_number):
|
21 |
+
super().__init__()
|
22 |
+
self.convs = torch.nn.Sequential()
|
23 |
+
self.convs.append(
|
24 |
+
torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1),
|
25 |
+
padding=1))
|
26 |
+
for i in range(1, layer_number):
|
27 |
+
self.convs.append(
|
28 |
+
torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3),
|
29 |
+
stride=(1, 1), padding=1))
|
30 |
+
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1),
|
31 |
+
padding=0)
|
32 |
+
|
33 |
+
def __call__(self, x, down_sampling=False):
|
34 |
+
h = x
|
35 |
+
if down_sampling:
|
36 |
+
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
37 |
+
for conv in self.convs:
|
38 |
+
h = conv(h)
|
39 |
+
h = torch.nn.functional.relu(h)
|
40 |
+
return h, self.projection(h)
|
41 |
+
|
42 |
+
|
43 |
+
class ControlNetHED_Apache2(torch.nn.Module):
|
44 |
+
def __init__(self):
|
45 |
+
super().__init__()
|
46 |
+
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
47 |
+
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
48 |
+
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
49 |
+
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
50 |
+
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
51 |
+
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
52 |
+
|
53 |
+
def __call__(self, x):
|
54 |
+
h = x - self.norm
|
55 |
+
h, projection1 = self.block1(h)
|
56 |
+
h, projection2 = self.block2(h, down_sampling=True)
|
57 |
+
h, projection3 = self.block3(h, down_sampling=True)
|
58 |
+
h, projection4 = self.block4(h, down_sampling=True)
|
59 |
+
h, projection5 = self.block5(h, down_sampling=True)
|
60 |
+
return projection1, projection2, projection3, projection4, projection5
|
61 |
+
|
62 |
+
|
63 |
+
netNetwork = None
|
64 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
|
65 |
+
|
66 |
+
|
67 |
+
class HedDetector(BaseProcessor):
|
68 |
+
def __init__(self, **kwargs):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
self.model_dir = os.path.join(self.models_path, "hed")
|
71 |
+
self.net_work = None
|
72 |
+
|
73 |
+
def unload_hed_model(self):
|
74 |
+
if self.net_work is not None:
|
75 |
+
self.net_work.cpu()
|
76 |
+
|
77 |
+
def load_hed_model(self):
|
78 |
+
model_path = os.path.join(self.model_dir, "ControlNetHED.pth")
|
79 |
+
if not os.path.exists(model_path):
|
80 |
+
from basicsr.utils.download_util import load_file_from_url
|
81 |
+
load_file_from_url(remote_model_path, model_dir=self.model_dir)
|
82 |
+
|
83 |
+
net_work = ControlNetHED_Apache2()
|
84 |
+
net_work.load_state_dict(torch.load(model_path, map_location='cpu'))
|
85 |
+
net_work.to(self.device).float().eval()
|
86 |
+
self.net_work = net_work
|
87 |
+
|
88 |
+
def __call__(self, input_image, is_safe=False, **kwargs):
|
89 |
+
assert input_image.ndim == 3
|
90 |
+
H, W, C = input_image.shape
|
91 |
+
self.load_hed_model()
|
92 |
+
with torch.no_grad():
|
93 |
+
image_hed = torch.from_numpy(input_image.copy()).float().to(self.device)
|
94 |
+
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
95 |
+
edges = self.net_work(image_hed)
|
96 |
+
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
97 |
+
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
98 |
+
edges = np.stack(edges, axis=2)
|
99 |
+
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
100 |
+
if is_safe:
|
101 |
+
edge = safe_step(edge)
|
102 |
+
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
103 |
+
return edge
|
annotator/hed/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (4.46 kB). View file
|
|
annotator/keypose/__init__.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
https://mmpose.readthedocs.io/en/latest/model_zoo.html#wholebody-2d-keypoint
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import os
|
11 |
+
from annotator.base_annotator import BaseProcessor
|
12 |
+
|
13 |
+
import mmcv
|
14 |
+
from mmdet.apis import inference_detector, init_detector
|
15 |
+
from mmpose.apis import inference_top_down_pose_model
|
16 |
+
from mmpose.apis import init_pose_model, process_mmdet_results, vis_pose_result
|
17 |
+
|
18 |
+
|
19 |
+
def preprocessing(image, device):
|
20 |
+
# Resize
|
21 |
+
scale = 640 / max(image.shape[:2])
|
22 |
+
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
|
23 |
+
raw_image = image.astype(np.uint8)
|
24 |
+
|
25 |
+
# Subtract mean values
|
26 |
+
image = image.astype(np.float32)
|
27 |
+
image -= np.array(
|
28 |
+
[
|
29 |
+
float(104.008),
|
30 |
+
float(116.669),
|
31 |
+
float(122.675),
|
32 |
+
]
|
33 |
+
)
|
34 |
+
|
35 |
+
# Convert to torch.Tensor and add "batch" axis
|
36 |
+
image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
|
37 |
+
image = image.to(device)
|
38 |
+
|
39 |
+
return image, raw_image
|
40 |
+
|
41 |
+
|
42 |
+
def imshow_keypoints(img,
|
43 |
+
pose_result,
|
44 |
+
skeleton=None,
|
45 |
+
kpt_score_thr=0.1,
|
46 |
+
pose_kpt_color=None,
|
47 |
+
pose_link_color=None,
|
48 |
+
radius=4,
|
49 |
+
thickness=1):
|
50 |
+
"""Draw keypoints and links on an image.
|
51 |
+
Args:
|
52 |
+
img (ndarry): The image to draw poses on.
|
53 |
+
pose_result (list[kpts]): The poses to draw. Each element kpts is
|
54 |
+
a set of K keypoints as an Kx3 numpy.ndarray, where each
|
55 |
+
keypoint is represented as x, y, score.
|
56 |
+
kpt_score_thr (float, optional): Minimum score of keypoints
|
57 |
+
to be shown. Default: 0.3.
|
58 |
+
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
|
59 |
+
the keypoint will not be drawn.
|
60 |
+
pose_link_color (np.array[Mx3]): Color of M links. If None, the
|
61 |
+
links will not be drawn.
|
62 |
+
thickness (int): Thickness of lines.
|
63 |
+
"""
|
64 |
+
|
65 |
+
img_h, img_w, _ = img.shape
|
66 |
+
img = np.zeros(img.shape)
|
67 |
+
|
68 |
+
for idx, kpts in enumerate(pose_result):
|
69 |
+
if idx > 1:
|
70 |
+
continue
|
71 |
+
kpts = kpts['keypoints']
|
72 |
+
# print(kpts)
|
73 |
+
kpts = np.array(kpts, copy=False)
|
74 |
+
|
75 |
+
# draw each point on image
|
76 |
+
if pose_kpt_color is not None:
|
77 |
+
assert len(pose_kpt_color) == len(kpts)
|
78 |
+
|
79 |
+
for kid, kpt in enumerate(kpts):
|
80 |
+
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
|
81 |
+
|
82 |
+
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
|
83 |
+
# skip the point that should not be drawn
|
84 |
+
continue
|
85 |
+
|
86 |
+
color = tuple(int(c) for c in pose_kpt_color[kid])
|
87 |
+
cv2.circle(img, (int(x_coord), int(y_coord)),
|
88 |
+
radius, color, -1)
|
89 |
+
|
90 |
+
# draw links
|
91 |
+
if skeleton is not None and pose_link_color is not None:
|
92 |
+
assert len(pose_link_color) == len(skeleton)
|
93 |
+
|
94 |
+
for sk_id, sk in enumerate(skeleton):
|
95 |
+
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
|
96 |
+
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
|
97 |
+
|
98 |
+
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0
|
99 |
+
or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr
|
100 |
+
or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None):
|
101 |
+
# skip the link that should not be drawn
|
102 |
+
continue
|
103 |
+
color = tuple(int(c) for c in pose_link_color[sk_id])
|
104 |
+
cv2.line(img, pos1, pos2, color, thickness=thickness)
|
105 |
+
|
106 |
+
return img
|
107 |
+
|
108 |
+
|
109 |
+
human_det, pose_model = None, None
|
110 |
+
det_model_path = "https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
|
111 |
+
pose_model_path = "https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth"
|
112 |
+
|
113 |
+
det_config = 'faster_rcnn_r50_fpn_coco.py'
|
114 |
+
pose_config = 'hrnet_w48_coco_256x192.py'
|
115 |
+
|
116 |
+
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
|
117 |
+
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
|
118 |
+
det_cat_id = 1
|
119 |
+
bbox_thr = 0.2
|
120 |
+
|
121 |
+
skeleton = [
|
122 |
+
[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8],
|
123 |
+
[7, 9], [8, 10],
|
124 |
+
[1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]
|
125 |
+
]
|
126 |
+
|
127 |
+
pose_kpt_color = [
|
128 |
+
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
129 |
+
[0, 255, 0],
|
130 |
+
[255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0],
|
131 |
+
[255, 128, 0],
|
132 |
+
[0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0]
|
133 |
+
]
|
134 |
+
|
135 |
+
pose_link_color = [
|
136 |
+
[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0],
|
137 |
+
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0],
|
138 |
+
[255, 128, 0],
|
139 |
+
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
140 |
+
[51, 153, 255],
|
141 |
+
[51, 153, 255], [51, 153, 255], [51, 153, 255]
|
142 |
+
]
|
143 |
+
|
144 |
+
|
145 |
+
class KeyPoseProcess(BaseProcessor):
|
146 |
+
def __init__(self, **kwargs):
|
147 |
+
super().__init__(**kwargs)
|
148 |
+
self.model_dir = os.path.join(self.models_path, "keypose")
|
149 |
+
self.netNetwork = None
|
150 |
+
|
151 |
+
def unload_hed_model(self):
|
152 |
+
if self.netNetwork is not None:
|
153 |
+
self.netNetwork.cpu()
|
154 |
+
|
155 |
+
def find_download_model(self, checkpoint, remote_path):
|
156 |
+
model_path = os.path.join(self.model_dir, checkpoint)
|
157 |
+
|
158 |
+
if not os.path.exists(model_path):
|
159 |
+
from basicsr.utils.download_util import load_file_from_url
|
160 |
+
load_file_from_url(remote_path, model_dir=self.model_dir)
|
161 |
+
|
162 |
+
return model_path
|
163 |
+
|
164 |
+
def __call__(self, input_image, **kwargs):
|
165 |
+
assert input_image.ndim == 3
|
166 |
+
input_image = input_image.copy()
|
167 |
+
|
168 |
+
if self.netNetwork is None:
|
169 |
+
det_model_local_path = self.find_download_model(det_checkpoint, det_model_path)
|
170 |
+
hrnet_model_local = self.find_download_model(pose_checkpoint, pose_model_path)
|
171 |
+
det_config_mmcv = mmcv.Config.fromfile(det_config)
|
172 |
+
pose_config_mmcv = mmcv.Config.fromfile(pose_config)
|
173 |
+
human_det = init_detector(det_config_mmcv, det_model_local_path,
|
174 |
+
device=self.device)
|
175 |
+
pose_model = init_pose_model(pose_config_mmcv, hrnet_model_local,
|
176 |
+
device=self.device)
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
image = torch.from_numpy(input_image).float().to(self.device)
|
180 |
+
image = image / 255.0
|
181 |
+
mmdet_results = inference_detector(human_det, image)
|
182 |
+
|
183 |
+
# keep the person class bounding boxes.
|
184 |
+
person_results = process_mmdet_results(mmdet_results, det_cat_id)
|
185 |
+
|
186 |
+
return_heatmap = False
|
187 |
+
dataset = pose_model.cfg.data['test']['type']
|
188 |
+
|
189 |
+
# e.g. use ('backbone', ) to return backbone feature
|
190 |
+
output_layer_names = None
|
191 |
+
pose_results, _ = inference_top_down_pose_model(
|
192 |
+
pose_model,
|
193 |
+
image,
|
194 |
+
person_results,
|
195 |
+
bbox_thr=bbox_thr,
|
196 |
+
format='xyxy',
|
197 |
+
dataset=dataset,
|
198 |
+
dataset_info=None,
|
199 |
+
return_heatmap=return_heatmap,
|
200 |
+
outputs=output_layer_names
|
201 |
+
)
|
202 |
+
|
203 |
+
im_keypose_out = imshow_keypoints(
|
204 |
+
image,
|
205 |
+
pose_results,
|
206 |
+
skeleton=skeleton,
|
207 |
+
pose_kpt_color=pose_kpt_color,
|
208 |
+
pose_link_color=pose_link_color,
|
209 |
+
radius=2,
|
210 |
+
thickness=2
|
211 |
+
)
|
212 |
+
im_keypose_out = im_keypose_out.astype(np.uint8)
|
213 |
+
|
214 |
+
# image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
215 |
+
# edge = netNetwork(image_hed)[0]
|
216 |
+
# edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
217 |
+
return im_keypose_out
|
annotator/keypose/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (6.33 kB). View file
|
|
annotator/keypose/faster_rcnn_r50_fpn_coco.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpoint_config = dict(interval=1)
|
2 |
+
# yapf:disable
|
3 |
+
log_config = dict(
|
4 |
+
interval=50,
|
5 |
+
hooks=[
|
6 |
+
dict(type='TextLoggerHook'),
|
7 |
+
# dict(type='TensorboardLoggerHook')
|
8 |
+
])
|
9 |
+
# yapf:enable
|
10 |
+
dist_params = dict(backend='nccl')
|
11 |
+
log_level = 'INFO'
|
12 |
+
load_from = None
|
13 |
+
resume_from = None
|
14 |
+
workflow = [('train', 1)]
|
15 |
+
# optimizer
|
16 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
17 |
+
optimizer_config = dict(grad_clip=None)
|
18 |
+
# learning policy
|
19 |
+
lr_config = dict(
|
20 |
+
policy='step',
|
21 |
+
warmup='linear',
|
22 |
+
warmup_iters=500,
|
23 |
+
warmup_ratio=0.001,
|
24 |
+
step=[8, 11])
|
25 |
+
total_epochs = 12
|
26 |
+
|
27 |
+
model = dict(
|
28 |
+
type='FasterRCNN',
|
29 |
+
pretrained='torchvision://resnet50',
|
30 |
+
backbone=dict(
|
31 |
+
type='ResNet',
|
32 |
+
depth=50,
|
33 |
+
num_stages=4,
|
34 |
+
out_indices=(0, 1, 2, 3),
|
35 |
+
frozen_stages=1,
|
36 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
37 |
+
norm_eval=True,
|
38 |
+
style='pytorch'),
|
39 |
+
neck=dict(
|
40 |
+
type='FPN',
|
41 |
+
in_channels=[256, 512, 1024, 2048],
|
42 |
+
out_channels=256,
|
43 |
+
num_outs=5),
|
44 |
+
rpn_head=dict(
|
45 |
+
type='RPNHead',
|
46 |
+
in_channels=256,
|
47 |
+
feat_channels=256,
|
48 |
+
anchor_generator=dict(
|
49 |
+
type='AnchorGenerator',
|
50 |
+
scales=[8],
|
51 |
+
ratios=[0.5, 1.0, 2.0],
|
52 |
+
strides=[4, 8, 16, 32, 64]),
|
53 |
+
bbox_coder=dict(
|
54 |
+
type='DeltaXYWHBBoxCoder',
|
55 |
+
target_means=[.0, .0, .0, .0],
|
56 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
57 |
+
loss_cls=dict(
|
58 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
59 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
60 |
+
roi_head=dict(
|
61 |
+
type='StandardRoIHead',
|
62 |
+
bbox_roi_extractor=dict(
|
63 |
+
type='SingleRoIExtractor',
|
64 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
65 |
+
out_channels=256,
|
66 |
+
featmap_strides=[4, 8, 16, 32]),
|
67 |
+
bbox_head=dict(
|
68 |
+
type='Shared2FCBBoxHead',
|
69 |
+
in_channels=256,
|
70 |
+
fc_out_channels=1024,
|
71 |
+
roi_feat_size=7,
|
72 |
+
num_classes=80,
|
73 |
+
bbox_coder=dict(
|
74 |
+
type='DeltaXYWHBBoxCoder',
|
75 |
+
target_means=[0., 0., 0., 0.],
|
76 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
77 |
+
reg_class_agnostic=False,
|
78 |
+
loss_cls=dict(
|
79 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
80 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
81 |
+
# model training and testing settings
|
82 |
+
train_cfg=dict(
|
83 |
+
rpn=dict(
|
84 |
+
assigner=dict(
|
85 |
+
type='MaxIoUAssigner',
|
86 |
+
pos_iou_thr=0.7,
|
87 |
+
neg_iou_thr=0.3,
|
88 |
+
min_pos_iou=0.3,
|
89 |
+
match_low_quality=True,
|
90 |
+
ignore_iof_thr=-1),
|
91 |
+
sampler=dict(
|
92 |
+
type='RandomSampler',
|
93 |
+
num=256,
|
94 |
+
pos_fraction=0.5,
|
95 |
+
neg_pos_ub=-1,
|
96 |
+
add_gt_as_proposals=False),
|
97 |
+
allowed_border=-1,
|
98 |
+
pos_weight=-1,
|
99 |
+
debug=False),
|
100 |
+
rpn_proposal=dict(
|
101 |
+
nms_pre=2000,
|
102 |
+
max_per_img=1000,
|
103 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
104 |
+
min_bbox_size=0),
|
105 |
+
rcnn=dict(
|
106 |
+
assigner=dict(
|
107 |
+
type='MaxIoUAssigner',
|
108 |
+
pos_iou_thr=0.5,
|
109 |
+
neg_iou_thr=0.5,
|
110 |
+
min_pos_iou=0.5,
|
111 |
+
match_low_quality=False,
|
112 |
+
ignore_iof_thr=-1),
|
113 |
+
sampler=dict(
|
114 |
+
type='RandomSampler',
|
115 |
+
num=512,
|
116 |
+
pos_fraction=0.25,
|
117 |
+
neg_pos_ub=-1,
|
118 |
+
add_gt_as_proposals=True),
|
119 |
+
pos_weight=-1,
|
120 |
+
debug=False)),
|
121 |
+
test_cfg=dict(
|
122 |
+
rpn=dict(
|
123 |
+
nms_pre=1000,
|
124 |
+
max_per_img=1000,
|
125 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
126 |
+
min_bbox_size=0),
|
127 |
+
rcnn=dict(
|
128 |
+
score_thr=0.05,
|
129 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
130 |
+
max_per_img=100)
|
131 |
+
# soft-nms is also supported for rcnn testing
|
132 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
133 |
+
))
|
134 |
+
|
135 |
+
dataset_type = 'CocoDataset'
|
136 |
+
data_root = 'data/coco'
|
137 |
+
img_norm_cfg = dict(
|
138 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
139 |
+
train_pipeline = [
|
140 |
+
dict(type='LoadImageFromFile'),
|
141 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
142 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
143 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
144 |
+
dict(type='Normalize', **img_norm_cfg),
|
145 |
+
dict(type='Pad', size_divisor=32),
|
146 |
+
dict(type='DefaultFormatBundle'),
|
147 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
148 |
+
]
|
149 |
+
test_pipeline = [
|
150 |
+
dict(type='LoadImageFromFile'),
|
151 |
+
dict(
|
152 |
+
type='MultiScaleFlipAug',
|
153 |
+
img_scale=(1333, 800),
|
154 |
+
flip=False,
|
155 |
+
transforms=[
|
156 |
+
dict(type='Resize', keep_ratio=True),
|
157 |
+
dict(type='RandomFlip'),
|
158 |
+
dict(type='Normalize', **img_norm_cfg),
|
159 |
+
dict(type='Pad', size_divisor=32),
|
160 |
+
dict(type='DefaultFormatBundle'),
|
161 |
+
dict(type='Collect', keys=['img']),
|
162 |
+
])
|
163 |
+
]
|
164 |
+
data = dict(
|
165 |
+
samples_per_gpu=2,
|
166 |
+
workers_per_gpu=2,
|
167 |
+
train=dict(
|
168 |
+
type=dataset_type,
|
169 |
+
ann_file=f'{data_root}/annotations/instances_train2017.json',
|
170 |
+
img_prefix=f'{data_root}/train2017/',
|
171 |
+
pipeline=train_pipeline),
|
172 |
+
val=dict(
|
173 |
+
type=dataset_type,
|
174 |
+
ann_file=f'{data_root}/annotations/instances_val2017.json',
|
175 |
+
img_prefix=f'{data_root}/val2017/',
|
176 |
+
pipeline=test_pipeline),
|
177 |
+
test=dict(
|
178 |
+
type=dataset_type,
|
179 |
+
ann_file=f'{data_root}/annotations/instances_val2017.json',
|
180 |
+
img_prefix=f'{data_root}/val2017/',
|
181 |
+
pipeline=test_pipeline))
|
182 |
+
evaluation = dict(interval=1, metric='bbox')
|
annotator/keypose/hrnet_w48_coco_256x192.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# _base_ = [
|
2 |
+
# '../../../../_base_/default_runtime.py',
|
3 |
+
# '../../../../_base_/datasets/coco.py'
|
4 |
+
# ]
|
5 |
+
evaluation = dict(interval=10, metric='mAP', save_best='AP')
|
6 |
+
|
7 |
+
optimizer = dict(
|
8 |
+
type='Adam',
|
9 |
+
lr=5e-4,
|
10 |
+
)
|
11 |
+
optimizer_config = dict(grad_clip=None)
|
12 |
+
# learning policy
|
13 |
+
lr_config = dict(
|
14 |
+
policy='step',
|
15 |
+
warmup='linear',
|
16 |
+
warmup_iters=500,
|
17 |
+
warmup_ratio=0.001,
|
18 |
+
step=[170, 200])
|
19 |
+
total_epochs = 210
|
20 |
+
channel_cfg = dict(
|
21 |
+
num_output_channels=17,
|
22 |
+
dataset_joints=17,
|
23 |
+
dataset_channel=[
|
24 |
+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
|
25 |
+
],
|
26 |
+
inference_channel=[
|
27 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
28 |
+
])
|
29 |
+
|
30 |
+
# model settings
|
31 |
+
model = dict(
|
32 |
+
type='TopDown',
|
33 |
+
pretrained='https://download.openmmlab.com/mmpose/'
|
34 |
+
'pretrain_models/hrnet_w48-8ef0771d.pth',
|
35 |
+
backbone=dict(
|
36 |
+
type='HRNet',
|
37 |
+
in_channels=3,
|
38 |
+
extra=dict(
|
39 |
+
stage1=dict(
|
40 |
+
num_modules=1,
|
41 |
+
num_branches=1,
|
42 |
+
block='BOTTLENECK',
|
43 |
+
num_blocks=(4, ),
|
44 |
+
num_channels=(64, )),
|
45 |
+
stage2=dict(
|
46 |
+
num_modules=1,
|
47 |
+
num_branches=2,
|
48 |
+
block='BASIC',
|
49 |
+
num_blocks=(4, 4),
|
50 |
+
num_channels=(48, 96)),
|
51 |
+
stage3=dict(
|
52 |
+
num_modules=4,
|
53 |
+
num_branches=3,
|
54 |
+
block='BASIC',
|
55 |
+
num_blocks=(4, 4, 4),
|
56 |
+
num_channels=(48, 96, 192)),
|
57 |
+
stage4=dict(
|
58 |
+
num_modules=3,
|
59 |
+
num_branches=4,
|
60 |
+
block='BASIC',
|
61 |
+
num_blocks=(4, 4, 4, 4),
|
62 |
+
num_channels=(48, 96, 192, 384))),
|
63 |
+
),
|
64 |
+
keypoint_head=dict(
|
65 |
+
type='TopdownHeatmapSimpleHead',
|
66 |
+
in_channels=48,
|
67 |
+
out_channels=channel_cfg['num_output_channels'],
|
68 |
+
num_deconv_layers=0,
|
69 |
+
extra=dict(final_conv_kernel=1, ),
|
70 |
+
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
|
71 |
+
train_cfg=dict(),
|
72 |
+
test_cfg=dict(
|
73 |
+
flip_test=True,
|
74 |
+
post_process='default',
|
75 |
+
shift_heatmap=True,
|
76 |
+
modulate_kernel=11))
|
77 |
+
|
78 |
+
data_cfg = dict(
|
79 |
+
image_size=[192, 256],
|
80 |
+
heatmap_size=[48, 64],
|
81 |
+
num_output_channels=channel_cfg['num_output_channels'],
|
82 |
+
num_joints=channel_cfg['dataset_joints'],
|
83 |
+
dataset_channel=channel_cfg['dataset_channel'],
|
84 |
+
inference_channel=channel_cfg['inference_channel'],
|
85 |
+
soft_nms=False,
|
86 |
+
nms_thr=1.0,
|
87 |
+
oks_thr=0.9,
|
88 |
+
vis_thr=0.2,
|
89 |
+
use_gt_bbox=False,
|
90 |
+
det_bbox_thr=0.0,
|
91 |
+
bbox_file='data/coco/person_detection_results/'
|
92 |
+
'COCO_val2017_detections_AP_H_56_person.json',
|
93 |
+
)
|
94 |
+
|
95 |
+
train_pipeline = [
|
96 |
+
dict(type='LoadImageFromFile'),
|
97 |
+
dict(type='TopDownGetBboxCenterScale', padding=1.25),
|
98 |
+
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
|
99 |
+
dict(type='TopDownRandomFlip', flip_prob=0.5),
|
100 |
+
dict(
|
101 |
+
type='TopDownHalfBodyTransform',
|
102 |
+
num_joints_half_body=8,
|
103 |
+
prob_half_body=0.3),
|
104 |
+
dict(
|
105 |
+
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
|
106 |
+
dict(type='TopDownAffine'),
|
107 |
+
dict(type='ToTensor'),
|
108 |
+
dict(
|
109 |
+
type='NormalizeTensor',
|
110 |
+
mean=[0.485, 0.456, 0.406],
|
111 |
+
std=[0.229, 0.224, 0.225]),
|
112 |
+
dict(type='TopDownGenerateTarget', sigma=2),
|
113 |
+
dict(
|
114 |
+
type='Collect',
|
115 |
+
keys=['img', 'target', 'target_weight'],
|
116 |
+
meta_keys=[
|
117 |
+
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
|
118 |
+
'rotation', 'bbox_score', 'flip_pairs'
|
119 |
+
]),
|
120 |
+
]
|
121 |
+
|
122 |
+
val_pipeline = [
|
123 |
+
dict(type='LoadImageFromFile'),
|
124 |
+
dict(type='TopDownGetBboxCenterScale', padding=1.25),
|
125 |
+
dict(type='TopDownAffine'),
|
126 |
+
dict(type='ToTensor'),
|
127 |
+
dict(
|
128 |
+
type='NormalizeTensor',
|
129 |
+
mean=[0.485, 0.456, 0.406],
|
130 |
+
std=[0.229, 0.224, 0.225]),
|
131 |
+
dict(
|
132 |
+
type='Collect',
|
133 |
+
keys=['img'],
|
134 |
+
meta_keys=[
|
135 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
136 |
+
'flip_pairs'
|
137 |
+
]),
|
138 |
+
]
|
139 |
+
|
140 |
+
test_pipeline = val_pipeline
|
141 |
+
|
142 |
+
data_root = 'data/coco'
|
143 |
+
data = dict(
|
144 |
+
samples_per_gpu=32,
|
145 |
+
workers_per_gpu=2,
|
146 |
+
val_dataloader=dict(samples_per_gpu=32),
|
147 |
+
test_dataloader=dict(samples_per_gpu=32),
|
148 |
+
train=dict(
|
149 |
+
type='TopDownCocoDataset',
|
150 |
+
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
|
151 |
+
img_prefix=f'{data_root}/train2017/',
|
152 |
+
data_cfg=data_cfg,
|
153 |
+
pipeline=train_pipeline,
|
154 |
+
dataset_info={{_base_.dataset_info}}),
|
155 |
+
val=dict(
|
156 |
+
type='TopDownCocoDataset',
|
157 |
+
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
|
158 |
+
img_prefix=f'{data_root}/val2017/',
|
159 |
+
data_cfg=data_cfg,
|
160 |
+
pipeline=val_pipeline,
|
161 |
+
dataset_info={{_base_.dataset_info}}),
|
162 |
+
test=dict(
|
163 |
+
type='TopDownCocoDataset',
|
164 |
+
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
|
165 |
+
img_prefix=f'{data_root}/val2017/',
|
166 |
+
data_cfg=data_cfg,
|
167 |
+
pipeline=test_pipeline,
|
168 |
+
dataset_info={{_base_.dataset_info}}),
|
169 |
+
)
|
annotator/midas/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
annotator/midas/__init__.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from einops import rearrange
|
6 |
+
from annotator.base_annotator import BaseProcessor
|
7 |
+
from .midas.dpt_depth import DPTDepthModel
|
8 |
+
from .midas.midas_net import MidasNet
|
9 |
+
from .midas.midas_net_custom import MidasNet_small
|
10 |
+
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
11 |
+
from torchvision.transforms import Compose
|
12 |
+
|
13 |
+
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
14 |
+
|
15 |
+
|
16 |
+
def load_midas_transform(model_type):
|
17 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
18 |
+
# load transform only
|
19 |
+
if model_type == "dpt_large": # DPT-Large
|
20 |
+
net_w, net_h = 384, 384
|
21 |
+
resize_mode = "minimal"
|
22 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
23 |
+
|
24 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
25 |
+
net_w, net_h = 384, 384
|
26 |
+
resize_mode = "minimal"
|
27 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
28 |
+
|
29 |
+
elif model_type == "midas_v21":
|
30 |
+
net_w, net_h = 384, 384
|
31 |
+
resize_mode = "upper_bound"
|
32 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
33 |
+
|
34 |
+
elif model_type == "midas_v21_small":
|
35 |
+
net_w, net_h = 256, 256
|
36 |
+
resize_mode = "upper_bound"
|
37 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
38 |
+
|
39 |
+
else:
|
40 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
41 |
+
|
42 |
+
transform = Compose(
|
43 |
+
[
|
44 |
+
Resize(
|
45 |
+
net_w,
|
46 |
+
net_h,
|
47 |
+
resize_target=None,
|
48 |
+
keep_aspect_ratio=True,
|
49 |
+
ensure_multiple_of=32,
|
50 |
+
resize_method=resize_mode,
|
51 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
52 |
+
),
|
53 |
+
normalization,
|
54 |
+
PrepareForNet(),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
return transform
|
59 |
+
|
60 |
+
|
61 |
+
class MidasProcessor(BaseProcessor):
|
62 |
+
MODEL_TYPES_TORCH_HUB = [
|
63 |
+
"DPT_Large",
|
64 |
+
"DPT_Hybrid",
|
65 |
+
"MiDaS_small"
|
66 |
+
]
|
67 |
+
MODEL_TYPES_ISL = [
|
68 |
+
"dpt_large",
|
69 |
+
"dpt_hybrid",
|
70 |
+
"midas_v21",
|
71 |
+
"midas_v21_small",
|
72 |
+
]
|
73 |
+
|
74 |
+
def __init__(self, **kwargs):
|
75 |
+
super().__init__(**kwargs)
|
76 |
+
self.model_dir = os.path.join(self.models_path, "midas")
|
77 |
+
self.model = None
|
78 |
+
|
79 |
+
def load_model(self, model_type):
|
80 |
+
ISL_PATHS = {
|
81 |
+
"dpt_large": os.path.join(self.model_dir, "dpt_large-midas-2f21e586.pt"),
|
82 |
+
"dpt_hybrid": os.path.join(self.model_dir, "dpt_hybrid-midas-501f0c75.pt"),
|
83 |
+
"midas_v21": "",
|
84 |
+
"midas_v21_small": "",
|
85 |
+
}
|
86 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
87 |
+
# load network
|
88 |
+
model_path = ISL_PATHS[model_type]
|
89 |
+
# old_model_path = OLD_ISL_PATHS[model_type]
|
90 |
+
if model_type == "dpt_large": # DPT-Large
|
91 |
+
model = DPTDepthModel(
|
92 |
+
path=model_path,
|
93 |
+
backbone="vitl16_384",
|
94 |
+
non_negative=True,
|
95 |
+
)
|
96 |
+
net_w, net_h = 384, 384
|
97 |
+
resize_mode = "minimal"
|
98 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
99 |
+
|
100 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
101 |
+
if not os.path.exists(model_path):
|
102 |
+
from basicsr.utils.download_util import load_file_from_url
|
103 |
+
load_file_from_url(remote_model_path, model_dir=self.model_dir)
|
104 |
+
|
105 |
+
model = DPTDepthModel(
|
106 |
+
path=model_path,
|
107 |
+
backbone="vitb_rn50_384",
|
108 |
+
non_negative=True,
|
109 |
+
)
|
110 |
+
net_w, net_h = 384, 384
|
111 |
+
resize_mode = "minimal"
|
112 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
113 |
+
|
114 |
+
elif model_type == "midas_v21":
|
115 |
+
model = MidasNet(model_path, non_negative=True)
|
116 |
+
net_w, net_h = 384, 384
|
117 |
+
resize_mode = "upper_bound"
|
118 |
+
normalization = NormalizeImage(
|
119 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
120 |
+
)
|
121 |
+
|
122 |
+
elif model_type == "midas_v21_small":
|
123 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
124 |
+
non_negative=True, blocks={'expand': True})
|
125 |
+
net_w, net_h = 256, 256
|
126 |
+
resize_mode = "upper_bound"
|
127 |
+
normalization = NormalizeImage(
|
128 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
129 |
+
)
|
130 |
+
|
131 |
+
else:
|
132 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
133 |
+
assert False
|
134 |
+
|
135 |
+
transform = Compose(
|
136 |
+
[
|
137 |
+
Resize(
|
138 |
+
net_w,
|
139 |
+
net_h,
|
140 |
+
resize_target=None,
|
141 |
+
keep_aspect_ratio=True,
|
142 |
+
ensure_multiple_of=32,
|
143 |
+
resize_method=resize_mode,
|
144 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
145 |
+
),
|
146 |
+
normalization,
|
147 |
+
PrepareForNet(),
|
148 |
+
]
|
149 |
+
)
|
150 |
+
|
151 |
+
model.eval()
|
152 |
+
self.model = model
|
153 |
+
|
154 |
+
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, *args, **kwargs):
|
155 |
+
if self.model is None:
|
156 |
+
self.load_model(model_type="dpt_hybrid")
|
157 |
+
if self.device != 'mps':
|
158 |
+
self.model = self.model.to(self.device)
|
159 |
+
assert input_image.ndim == 3
|
160 |
+
image_depth = input_image
|
161 |
+
with torch.no_grad():
|
162 |
+
image_depth = torch.from_numpy(image_depth).float()
|
163 |
+
if self.device != 'mps':
|
164 |
+
image_depth = image_depth.to(self.device)
|
165 |
+
image_depth = image_depth / 127.5 - 1.0
|
166 |
+
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
167 |
+
depth = self.model(image_depth)[0]
|
168 |
+
|
169 |
+
depth_pt = depth.clone()
|
170 |
+
depth_pt -= torch.min(depth_pt)
|
171 |
+
depth_pt /= torch.max(depth_pt)
|
172 |
+
depth_pt = depth_pt.cpu().numpy()
|
173 |
+
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
174 |
+
|
175 |
+
depth_np = depth.cpu().numpy()
|
176 |
+
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
177 |
+
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
178 |
+
z = np.ones_like(x) * a
|
179 |
+
x[depth_pt < bg_th] = 0
|
180 |
+
y[depth_pt < bg_th] = 0
|
181 |
+
normal = np.stack([x, y, z], axis=2)
|
182 |
+
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
183 |
+
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]
|
184 |
+
|
185 |
+
return depth_image, normal_image
|
186 |
+
|
187 |
+
def unload_midas_model(self):
|
188 |
+
if self.model is not None:
|
189 |
+
self.model = self.model.cpu()
|
annotator/midas/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (4.62 kB). View file
|
|
annotator/midas/api.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # based on https://github.com/isl-org/MiDaS
|
2 |
+
# # Third-party model: Midas depth estimation model.
|
3 |
+
#
|
4 |
+
# import cv2
|
5 |
+
# import torch
|
6 |
+
# import torch.nn as nn
|
7 |
+
#
|
8 |
+
#
|
9 |
+
# from torchvision.transforms import Compose
|
10 |
+
#
|
11 |
+
#
|
12 |
+
#
|
13 |
+
#
|
14 |
+
# # OLD_ISL_PATHS = {
|
15 |
+
# # "dpt_large": os.path.join(old_modeldir, "dpt_large-midas-2f21e586.pt"),
|
16 |
+
# # "dpt_hybrid": os.path.join(old_modeldir, "dpt_hybrid-midas-501f0c75.pt"),
|
17 |
+
# # "midas_v21": "",
|
18 |
+
# # "midas_v21_small": "",
|
19 |
+
# # }
|
20 |
+
#
|
21 |
+
#
|
22 |
+
# def disabled_train(self, mode=True):
|
23 |
+
# """Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
# does not change anymore."""
|
25 |
+
# return self
|
26 |
+
#
|
27 |
+
#
|
28 |
+
#
|
29 |
+
#
|
30 |
+
#
|
31 |
+
#
|
32 |
+
#
|
33 |
+
#
|
34 |
+
#
|
35 |
+
# class MiDaSInference(nn.Module):
|
36 |
+
#
|
37 |
+
#
|
38 |
+
# def __init__(self, model_type):
|
39 |
+
# super().__init__()
|
40 |
+
# assert (model_type in self.MODEL_TYPES_ISL)
|
41 |
+
# model, _ = load_model(model_type)
|
42 |
+
# self.model = model
|
43 |
+
# self.model.train = disabled_train
|
44 |
+
#
|
45 |
+
# def forward(self, x):
|
46 |
+
# with torch.no_grad():
|
47 |
+
# prediction = self.model(x)
|
48 |
+
# return prediction
|
annotator/midas/midas/__init__.py
ADDED
File without changes
|
annotator/midas/midas/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (190 Bytes). View file
|
|
annotator/midas/midas/__pycache__/base_model.cpython-39.pyc
ADDED
Binary file (716 Bytes). View file
|
|
annotator/midas/midas/__pycache__/blocks.cpython-39.pyc
ADDED
Binary file (7.28 kB). View file
|
|
annotator/midas/midas/__pycache__/dpt_depth.cpython-39.pyc
ADDED
Binary file (2.93 kB). View file
|
|
annotator/midas/midas/__pycache__/midas_net.cpython-39.pyc
ADDED
Binary file (2.61 kB). View file
|
|
annotator/midas/midas/__pycache__/midas_net_custom.cpython-39.pyc
ADDED
Binary file (3.74 kB). View file
|
|
annotator/midas/midas/__pycache__/transforms.cpython-39.pyc
ADDED
Binary file (5.72 kB). View file
|
|
annotator/midas/midas/__pycache__/vit.cpython-39.pyc
ADDED
Binary file (9.58 kB). View file
|
|
annotator/midas/midas/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
annotator/midas/midas/blocks.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
+
if backbone == "vitl16_384":
|
13 |
+
pretrained = _make_pretrained_vitl16_384(
|
14 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
+
)
|
16 |
+
scratch = _make_scratch(
|
17 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
+
elif backbone == "vitb_rn50_384":
|
20 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
+
use_pretrained,
|
22 |
+
hooks=hooks,
|
23 |
+
use_vit_only=use_vit_only,
|
24 |
+
use_readout=use_readout,
|
25 |
+
)
|
26 |
+
scratch = _make_scratch(
|
27 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
+
elif backbone == "vitb16_384":
|
30 |
+
pretrained = _make_pretrained_vitb16_384(
|
31 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
+
)
|
33 |
+
scratch = _make_scratch(
|
34 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
+
elif backbone == "resnext101_wsl":
|
37 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
+
elif backbone == "efficientnet_lite3":
|
40 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
+
else:
|
43 |
+
print(f"Backbone '{backbone}' not implemented")
|
44 |
+
assert False
|
45 |
+
|
46 |
+
return pretrained, scratch
|
47 |
+
|
48 |
+
|
49 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
+
scratch = nn.Module()
|
51 |
+
|
52 |
+
out_shape1 = out_shape
|
53 |
+
out_shape2 = out_shape
|
54 |
+
out_shape3 = out_shape
|
55 |
+
out_shape4 = out_shape
|
56 |
+
if expand==True:
|
57 |
+
out_shape1 = out_shape
|
58 |
+
out_shape2 = out_shape*2
|
59 |
+
out_shape3 = out_shape*4
|
60 |
+
out_shape4 = out_shape*8
|
61 |
+
|
62 |
+
scratch.layer1_rn = nn.Conv2d(
|
63 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
+
)
|
65 |
+
scratch.layer2_rn = nn.Conv2d(
|
66 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
+
)
|
68 |
+
scratch.layer3_rn = nn.Conv2d(
|
69 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
+
)
|
71 |
+
scratch.layer4_rn = nn.Conv2d(
|
72 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
+
)
|
74 |
+
|
75 |
+
return scratch
|
76 |
+
|
77 |
+
|
78 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
+
efficientnet = torch.hub.load(
|
80 |
+
"rwightman/gen-efficientnet-pytorch",
|
81 |
+
"tf_efficientnet_lite3",
|
82 |
+
pretrained=use_pretrained,
|
83 |
+
exportable=exportable
|
84 |
+
)
|
85 |
+
return _make_efficientnet_backbone(efficientnet)
|
86 |
+
|
87 |
+
|
88 |
+
def _make_efficientnet_backbone(effnet):
|
89 |
+
pretrained = nn.Module()
|
90 |
+
|
91 |
+
pretrained.layer1 = nn.Sequential(
|
92 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
+
)
|
94 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
+
|
98 |
+
return pretrained
|
99 |
+
|
100 |
+
|
101 |
+
def _make_resnet_backbone(resnet):
|
102 |
+
pretrained = nn.Module()
|
103 |
+
pretrained.layer1 = nn.Sequential(
|
104 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
+
)
|
106 |
+
|
107 |
+
pretrained.layer2 = resnet.layer2
|
108 |
+
pretrained.layer3 = resnet.layer3
|
109 |
+
pretrained.layer4 = resnet.layer4
|
110 |
+
|
111 |
+
return pretrained
|
112 |
+
|
113 |
+
|
114 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
+
return _make_resnet_backbone(resnet)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
class Interpolate(nn.Module):
|
121 |
+
"""Interpolation module.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
+
"""Init.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
scale_factor (float): scaling
|
129 |
+
mode (str): interpolation mode
|
130 |
+
"""
|
131 |
+
super(Interpolate, self).__init__()
|
132 |
+
|
133 |
+
self.interp = nn.functional.interpolate
|
134 |
+
self.scale_factor = scale_factor
|
135 |
+
self.mode = mode
|
136 |
+
self.align_corners = align_corners
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
"""Forward pass.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
x (tensor): input
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
tensor: interpolated data
|
146 |
+
"""
|
147 |
+
|
148 |
+
x = self.interp(
|
149 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
+
)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class ResidualConvUnit(nn.Module):
|
156 |
+
"""Residual convolution module.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, features):
|
160 |
+
"""Init.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
features (int): number of features
|
164 |
+
"""
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
self.conv1 = nn.Conv2d(
|
168 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
+
)
|
170 |
+
|
171 |
+
self.conv2 = nn.Conv2d(
|
172 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
+
)
|
174 |
+
|
175 |
+
self.relu = nn.ReLU(inplace=True)
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
"""Forward pass.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
x (tensor): input
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
tensor: output
|
185 |
+
"""
|
186 |
+
out = self.relu(x)
|
187 |
+
out = self.conv1(out)
|
188 |
+
out = self.relu(out)
|
189 |
+
out = self.conv2(out)
|
190 |
+
|
191 |
+
return out + x
|
192 |
+
|
193 |
+
|
194 |
+
class FeatureFusionBlock(nn.Module):
|
195 |
+
"""Feature fusion block.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, features):
|
199 |
+
"""Init.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
features (int): number of features
|
203 |
+
"""
|
204 |
+
super(FeatureFusionBlock, self).__init__()
|
205 |
+
|
206 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
+
|
209 |
+
def forward(self, *xs):
|
210 |
+
"""Forward pass.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
tensor: output
|
214 |
+
"""
|
215 |
+
output = xs[0]
|
216 |
+
|
217 |
+
if len(xs) == 2:
|
218 |
+
output += self.resConfUnit1(xs[1])
|
219 |
+
|
220 |
+
output = self.resConfUnit2(output)
|
221 |
+
|
222 |
+
output = nn.functional.interpolate(
|
223 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
+
)
|
225 |
+
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
class ResidualConvUnit_custom(nn.Module):
|
232 |
+
"""Residual convolution module.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, features, activation, bn):
|
236 |
+
"""Init.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
features (int): number of features
|
240 |
+
"""
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.bn = bn
|
244 |
+
|
245 |
+
self.groups=1
|
246 |
+
|
247 |
+
self.conv1 = nn.Conv2d(
|
248 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
+
)
|
250 |
+
|
251 |
+
self.conv2 = nn.Conv2d(
|
252 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
+
)
|
254 |
+
|
255 |
+
if self.bn==True:
|
256 |
+
self.bn1 = nn.BatchNorm2d(features)
|
257 |
+
self.bn2 = nn.BatchNorm2d(features)
|
258 |
+
|
259 |
+
self.activation = activation
|
260 |
+
|
261 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
"""Forward pass.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x (tensor): input
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
tensor: output
|
271 |
+
"""
|
272 |
+
|
273 |
+
out = self.activation(x)
|
274 |
+
out = self.conv1(out)
|
275 |
+
if self.bn==True:
|
276 |
+
out = self.bn1(out)
|
277 |
+
|
278 |
+
out = self.activation(out)
|
279 |
+
out = self.conv2(out)
|
280 |
+
if self.bn==True:
|
281 |
+
out = self.bn2(out)
|
282 |
+
|
283 |
+
if self.groups > 1:
|
284 |
+
out = self.conv_merge(out)
|
285 |
+
|
286 |
+
return self.skip_add.add(out, x)
|
287 |
+
|
288 |
+
# return out + x
|
289 |
+
|
290 |
+
|
291 |
+
class FeatureFusionBlock_custom(nn.Module):
|
292 |
+
"""Feature fusion block.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
+
"""Init.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
features (int): number of features
|
300 |
+
"""
|
301 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
+
|
303 |
+
self.deconv = deconv
|
304 |
+
self.align_corners = align_corners
|
305 |
+
|
306 |
+
self.groups=1
|
307 |
+
|
308 |
+
self.expand = expand
|
309 |
+
out_features = features
|
310 |
+
if self.expand==True:
|
311 |
+
out_features = features//2
|
312 |
+
|
313 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
+
|
315 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
+
|
318 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
+
|
320 |
+
def forward(self, *xs):
|
321 |
+
"""Forward pass.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
tensor: output
|
325 |
+
"""
|
326 |
+
output = xs[0]
|
327 |
+
|
328 |
+
if len(xs) == 2:
|
329 |
+
res = self.resConfUnit1(xs[1])
|
330 |
+
output = self.skip_add.add(output, res)
|
331 |
+
# output += res
|
332 |
+
|
333 |
+
output = self.resConfUnit2(output)
|
334 |
+
|
335 |
+
output = nn.functional.interpolate(
|
336 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
+
)
|
338 |
+
|
339 |
+
output = self.out_conv(output)
|
340 |
+
|
341 |
+
return output
|
342 |
+
|
annotator/midas/midas/dpt_depth.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def _make_fusion_block(features, use_bn):
|
16 |
+
return FeatureFusionBlock_custom(
|
17 |
+
features,
|
18 |
+
nn.ReLU(False),
|
19 |
+
deconv=False,
|
20 |
+
bn=use_bn,
|
21 |
+
expand=False,
|
22 |
+
align_corners=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class DPT(BaseModel):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
head,
|
30 |
+
features=256,
|
31 |
+
backbone="vitb_rn50_384",
|
32 |
+
readout="project",
|
33 |
+
channels_last=False,
|
34 |
+
use_bn=False,
|
35 |
+
):
|
36 |
+
|
37 |
+
super(DPT, self).__init__()
|
38 |
+
|
39 |
+
self.channels_last = channels_last
|
40 |
+
|
41 |
+
hooks = {
|
42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
+
"vitb16_384": [2, 5, 8, 11],
|
44 |
+
"vitl16_384": [5, 11, 17, 23],
|
45 |
+
}
|
46 |
+
|
47 |
+
# Instantiate backbone and reassemble blocks
|
48 |
+
self.pretrained, self.scratch = _make_encoder(
|
49 |
+
backbone,
|
50 |
+
features,
|
51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
+
groups=1,
|
53 |
+
expand=False,
|
54 |
+
exportable=False,
|
55 |
+
hooks=hooks[backbone],
|
56 |
+
use_readout=readout,
|
57 |
+
)
|
58 |
+
|
59 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
+
|
64 |
+
self.scratch.output_conv = head
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.channels_last == True:
|
69 |
+
x.contiguous(memory_format=torch.channels_last)
|
70 |
+
|
71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
+
|
73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
+
|
78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
+
|
83 |
+
out = self.scratch.output_conv(path_1)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class DPTDepthModel(DPT):
|
89 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
+
|
92 |
+
head = nn.Sequential(
|
93 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
+
nn.ReLU(True),
|
97 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
+
nn.Identity(),
|
100 |
+
)
|
101 |
+
|
102 |
+
super().__init__(head, **kwargs)
|
103 |
+
|
104 |
+
if path is not None:
|
105 |
+
self.load(path)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return super().forward(x).squeeze(dim=1)
|
109 |
+
|
annotator/midas/midas/midas_net.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
+
"""Init.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
21 |
+
features (int, optional): Number of features. Defaults to 256.
|
22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
+
"""
|
24 |
+
print("Loading weights: ", path)
|
25 |
+
|
26 |
+
super(MidasNet, self).__init__()
|
27 |
+
|
28 |
+
use_pretrained = False if path is None else True
|
29 |
+
|
30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
+
|
32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
+
|
37 |
+
self.scratch.output_conv = nn.Sequential(
|
38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
+
)
|
45 |
+
|
46 |
+
if path:
|
47 |
+
self.load(path)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Forward pass.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor): input data (image)
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tensor: depth
|
57 |
+
"""
|
58 |
+
|
59 |
+
layer_1 = self.pretrained.layer1(x)
|
60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
+
|
64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
+
|
69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
+
|
74 |
+
out = self.scratch.output_conv(path_1)
|
75 |
+
|
76 |
+
return torch.squeeze(out, dim=1)
|
annotator/midas/midas/midas_net_custom.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_small(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
+
blocks={'expand': True}):
|
18 |
+
"""Init.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
22 |
+
features (int, optional): Number of features. Defaults to 256.
|
23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
+
"""
|
25 |
+
print("Loading weights: ", path)
|
26 |
+
|
27 |
+
super(MidasNet_small, self).__init__()
|
28 |
+
|
29 |
+
use_pretrained = False if path else True
|
30 |
+
|
31 |
+
self.channels_last = channels_last
|
32 |
+
self.blocks = blocks
|
33 |
+
self.backbone = backbone
|
34 |
+
|
35 |
+
self.groups = 1
|
36 |
+
|
37 |
+
features1=features
|
38 |
+
features2=features
|
39 |
+
features3=features
|
40 |
+
features4=features
|
41 |
+
self.expand = False
|
42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
+
self.expand = True
|
44 |
+
features1=features
|
45 |
+
features2=features*2
|
46 |
+
features3=features*4
|
47 |
+
features4=features*8
|
48 |
+
|
49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
+
|
51 |
+
self.scratch.activation = nn.ReLU(False)
|
52 |
+
|
53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
+
|
58 |
+
|
59 |
+
self.scratch.output_conv = nn.Sequential(
|
60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
+
self.scratch.activation,
|
64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
+
nn.Identity(),
|
67 |
+
)
|
68 |
+
|
69 |
+
if path:
|
70 |
+
self.load(path)
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
x (tensor): input data (image)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tensor: depth
|
81 |
+
"""
|
82 |
+
if self.channels_last==True:
|
83 |
+
print("self.channels_last = ", self.channels_last)
|
84 |
+
x.contiguous(memory_format=torch.channels_last)
|
85 |
+
|
86 |
+
|
87 |
+
layer_1 = self.pretrained.layer1(x)
|
88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
+
|
92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
+
|
97 |
+
|
98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
+
|
103 |
+
out = self.scratch.output_conv(path_1)
|
104 |
+
|
105 |
+
return torch.squeeze(out, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def fuse_model(m):
|
110 |
+
prev_previous_type = nn.Identity()
|
111 |
+
prev_previous_name = ''
|
112 |
+
previous_type = nn.Identity()
|
113 |
+
previous_name = ''
|
114 |
+
for name, module in m.named_modules():
|
115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
+
# print("FUSED ", previous_name, name)
|
123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
+
|
125 |
+
prev_previous_type = previous_type
|
126 |
+
prev_previous_name = previous_name
|
127 |
+
previous_type = type(module)
|
128 |
+
previous_name = name
|
annotator/midas/midas/transforms.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
width,
|
55 |
+
height,
|
56 |
+
resize_target=True,
|
57 |
+
keep_aspect_ratio=False,
|
58 |
+
ensure_multiple_of=1,
|
59 |
+
resize_method="lower_bound",
|
60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
61 |
+
):
|
62 |
+
"""Init.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
self.__width = width
|
86 |
+
self.__height = height
|
87 |
+
|
88 |
+
self.__resize_target = resize_target
|
89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
+
self.__multiple_of = ensure_multiple_of
|
91 |
+
self.__resize_method = resize_method
|
92 |
+
self.__image_interpolation_method = image_interpolation_method
|
93 |
+
|
94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
+
|
97 |
+
if max_val is not None and y > max_val:
|
98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
+
|
100 |
+
if y < min_val:
|
101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
return y
|
104 |
+
|
105 |
+
def get_size(self, width, height):
|
106 |
+
# determine new height and width
|
107 |
+
scale_height = self.__height / height
|
108 |
+
scale_width = self.__width / width
|
109 |
+
|
110 |
+
if self.__keep_aspect_ratio:
|
111 |
+
if self.__resize_method == "lower_bound":
|
112 |
+
# scale such that output size is lower bound
|
113 |
+
if scale_width > scale_height:
|
114 |
+
# fit width
|
115 |
+
scale_height = scale_width
|
116 |
+
else:
|
117 |
+
# fit height
|
118 |
+
scale_width = scale_height
|
119 |
+
elif self.__resize_method == "upper_bound":
|
120 |
+
# scale such that output size is upper bound
|
121 |
+
if scale_width < scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "minimal":
|
128 |
+
# scale as least as possbile
|
129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
f"resize_method {self.__resize_method} not implemented"
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.__resize_method == "lower_bound":
|
141 |
+
new_height = self.constrain_to_multiple_of(
|
142 |
+
scale_height * height, min_val=self.__height
|
143 |
+
)
|
144 |
+
new_width = self.constrain_to_multiple_of(
|
145 |
+
scale_width * width, min_val=self.__width
|
146 |
+
)
|
147 |
+
elif self.__resize_method == "upper_bound":
|
148 |
+
new_height = self.constrain_to_multiple_of(
|
149 |
+
scale_height * height, max_val=self.__height
|
150 |
+
)
|
151 |
+
new_width = self.constrain_to_multiple_of(
|
152 |
+
scale_width * width, max_val=self.__width
|
153 |
+
)
|
154 |
+
elif self.__resize_method == "minimal":
|
155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
+
|
160 |
+
return (new_width, new_height)
|
161 |
+
|
162 |
+
def __call__(self, sample):
|
163 |
+
width, height = self.get_size(
|
164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
+
)
|
166 |
+
|
167 |
+
# resize sample
|
168 |
+
sample["image"] = cv2.resize(
|
169 |
+
sample["image"],
|
170 |
+
(width, height),
|
171 |
+
interpolation=self.__image_interpolation_method,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.__resize_target:
|
175 |
+
if "disparity" in sample:
|
176 |
+
sample["disparity"] = cv2.resize(
|
177 |
+
sample["disparity"],
|
178 |
+
(width, height),
|
179 |
+
interpolation=cv2.INTER_NEAREST,
|
180 |
+
)
|
181 |
+
|
182 |
+
if "depth" in sample:
|
183 |
+
sample["depth"] = cv2.resize(
|
184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
+
)
|
186 |
+
|
187 |
+
sample["mask"] = cv2.resize(
|
188 |
+
sample["mask"].astype(np.float32),
|
189 |
+
(width, height),
|
190 |
+
interpolation=cv2.INTER_NEAREST,
|
191 |
+
)
|
192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
193 |
+
|
194 |
+
return sample
|
195 |
+
|
196 |
+
|
197 |
+
class NormalizeImage(object):
|
198 |
+
"""Normlize image by given mean and std.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, mean, std):
|
202 |
+
self.__mean = mean
|
203 |
+
self.__std = std
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
+
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class PrepareForNet(object):
|
212 |
+
"""Prepare sample for usage as network input.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
def __call__(self, sample):
|
219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
+
|
222 |
+
if "mask" in sample:
|
223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
+
|
226 |
+
if "disparity" in sample:
|
227 |
+
disparity = sample["disparity"].astype(np.float32)
|
228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
+
|
230 |
+
if "depth" in sample:
|
231 |
+
depth = sample["depth"].astype(np.float32)
|
232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
+
|
234 |
+
return sample
|
annotator/midas/midas/vit.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class Slice(nn.Module):
|
10 |
+
def __init__(self, start_index=1):
|
11 |
+
super(Slice, self).__init__()
|
12 |
+
self.start_index = start_index
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
return x[:, self.start_index :]
|
16 |
+
|
17 |
+
|
18 |
+
class AddReadout(nn.Module):
|
19 |
+
def __init__(self, start_index=1):
|
20 |
+
super(AddReadout, self).__init__()
|
21 |
+
self.start_index = start_index
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
if self.start_index == 2:
|
25 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
+
else:
|
27 |
+
readout = x[:, 0]
|
28 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
+
|
30 |
+
|
31 |
+
class ProjectReadout(nn.Module):
|
32 |
+
def __init__(self, in_features, start_index=1):
|
33 |
+
super(ProjectReadout, self).__init__()
|
34 |
+
self.start_index = start_index
|
35 |
+
|
36 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
+
|
42 |
+
return self.project(features)
|
43 |
+
|
44 |
+
|
45 |
+
class Transpose(nn.Module):
|
46 |
+
def __init__(self, dim0, dim1):
|
47 |
+
super(Transpose, self).__init__()
|
48 |
+
self.dim0 = dim0
|
49 |
+
self.dim1 = dim1
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = x.transpose(self.dim0, self.dim1)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
def forward_vit(pretrained, x):
|
57 |
+
b, c, h, w = x.shape
|
58 |
+
|
59 |
+
glob = pretrained.model.forward_flex(x)
|
60 |
+
|
61 |
+
layer_1 = pretrained.activations["1"]
|
62 |
+
layer_2 = pretrained.activations["2"]
|
63 |
+
layer_3 = pretrained.activations["3"]
|
64 |
+
layer_4 = pretrained.activations["4"]
|
65 |
+
|
66 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
+
|
71 |
+
unflatten = nn.Sequential(
|
72 |
+
nn.Unflatten(
|
73 |
+
2,
|
74 |
+
torch.Size(
|
75 |
+
[
|
76 |
+
h // pretrained.model.patch_size[1],
|
77 |
+
w // pretrained.model.patch_size[0],
|
78 |
+
]
|
79 |
+
),
|
80 |
+
)
|
81 |
+
)
|
82 |
+
|
83 |
+
if layer_1.ndim == 3:
|
84 |
+
layer_1 = unflatten(layer_1)
|
85 |
+
if layer_2.ndim == 3:
|
86 |
+
layer_2 = unflatten(layer_2)
|
87 |
+
if layer_3.ndim == 3:
|
88 |
+
layer_3 = unflatten(layer_3)
|
89 |
+
if layer_4.ndim == 3:
|
90 |
+
layer_4 = unflatten(layer_4)
|
91 |
+
|
92 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
+
|
97 |
+
return layer_1, layer_2, layer_3, layer_4
|
98 |
+
|
99 |
+
|
100 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
+
posemb_tok, posemb_grid = (
|
102 |
+
posemb[:, : self.start_index],
|
103 |
+
posemb[0, self.start_index :],
|
104 |
+
)
|
105 |
+
|
106 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
+
|
108 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
+
|
112 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
+
|
114 |
+
return posemb
|
115 |
+
|
116 |
+
|
117 |
+
def forward_flex(self, x):
|
118 |
+
b, c, h, w = x.shape
|
119 |
+
|
120 |
+
pos_embed = self._resize_pos_embed(
|
121 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
+
)
|
123 |
+
|
124 |
+
B = x.shape[0]
|
125 |
+
|
126 |
+
if hasattr(self.patch_embed, "backbone"):
|
127 |
+
x = self.patch_embed.backbone(x)
|
128 |
+
if isinstance(x, (list, tuple)):
|
129 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
+
|
131 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
+
|
133 |
+
if getattr(self, "dist_token", None) is not None:
|
134 |
+
cls_tokens = self.cls_token.expand(
|
135 |
+
B, -1, -1
|
136 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
+
else:
|
140 |
+
cls_tokens = self.cls_token.expand(
|
141 |
+
B, -1, -1
|
142 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
+
|
145 |
+
x = x + pos_embed
|
146 |
+
x = self.pos_drop(x)
|
147 |
+
|
148 |
+
for blk in self.blocks:
|
149 |
+
x = blk(x)
|
150 |
+
|
151 |
+
x = self.norm(x)
|
152 |
+
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
activations = {}
|
157 |
+
|
158 |
+
|
159 |
+
def get_activation(name):
|
160 |
+
def hook(model, input, output):
|
161 |
+
activations[name] = output
|
162 |
+
|
163 |
+
return hook
|
164 |
+
|
165 |
+
|
166 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
+
if use_readout == "ignore":
|
168 |
+
readout_oper = [Slice(start_index)] * len(features)
|
169 |
+
elif use_readout == "add":
|
170 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
+
elif use_readout == "project":
|
172 |
+
readout_oper = [
|
173 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
+
]
|
175 |
+
else:
|
176 |
+
assert (
|
177 |
+
False
|
178 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
+
|
180 |
+
return readout_oper
|
181 |
+
|
182 |
+
|
183 |
+
def _make_vit_b16_backbone(
|
184 |
+
model,
|
185 |
+
features=[96, 192, 384, 768],
|
186 |
+
size=[384, 384],
|
187 |
+
hooks=[2, 5, 8, 11],
|
188 |
+
vit_features=768,
|
189 |
+
use_readout="ignore",
|
190 |
+
start_index=1,
|
191 |
+
):
|
192 |
+
pretrained = nn.Module()
|
193 |
+
|
194 |
+
pretrained.model = model
|
195 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
+
|
200 |
+
pretrained.activations = activations
|
201 |
+
|
202 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
+
|
204 |
+
# 32, 48, 136, 384
|
205 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
+
readout_oper[0],
|
207 |
+
Transpose(1, 2),
|
208 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
+
nn.Conv2d(
|
210 |
+
in_channels=vit_features,
|
211 |
+
out_channels=features[0],
|
212 |
+
kernel_size=1,
|
213 |
+
stride=1,
|
214 |
+
padding=0,
|
215 |
+
),
|
216 |
+
nn.ConvTranspose2d(
|
217 |
+
in_channels=features[0],
|
218 |
+
out_channels=features[0],
|
219 |
+
kernel_size=4,
|
220 |
+
stride=4,
|
221 |
+
padding=0,
|
222 |
+
bias=True,
|
223 |
+
dilation=1,
|
224 |
+
groups=1,
|
225 |
+
),
|
226 |
+
)
|
227 |
+
|
228 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
+
readout_oper[1],
|
230 |
+
Transpose(1, 2),
|
231 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
+
nn.Conv2d(
|
233 |
+
in_channels=vit_features,
|
234 |
+
out_channels=features[1],
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0,
|
238 |
+
),
|
239 |
+
nn.ConvTranspose2d(
|
240 |
+
in_channels=features[1],
|
241 |
+
out_channels=features[1],
|
242 |
+
kernel_size=2,
|
243 |
+
stride=2,
|
244 |
+
padding=0,
|
245 |
+
bias=True,
|
246 |
+
dilation=1,
|
247 |
+
groups=1,
|
248 |
+
),
|
249 |
+
)
|
250 |
+
|
251 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
+
readout_oper[2],
|
253 |
+
Transpose(1, 2),
|
254 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
+
nn.Conv2d(
|
256 |
+
in_channels=vit_features,
|
257 |
+
out_channels=features[2],
|
258 |
+
kernel_size=1,
|
259 |
+
stride=1,
|
260 |
+
padding=0,
|
261 |
+
),
|
262 |
+
)
|
263 |
+
|
264 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
+
readout_oper[3],
|
266 |
+
Transpose(1, 2),
|
267 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
+
nn.Conv2d(
|
269 |
+
in_channels=vit_features,
|
270 |
+
out_channels=features[3],
|
271 |
+
kernel_size=1,
|
272 |
+
stride=1,
|
273 |
+
padding=0,
|
274 |
+
),
|
275 |
+
nn.Conv2d(
|
276 |
+
in_channels=features[3],
|
277 |
+
out_channels=features[3],
|
278 |
+
kernel_size=3,
|
279 |
+
stride=2,
|
280 |
+
padding=1,
|
281 |
+
),
|
282 |
+
)
|
283 |
+
|
284 |
+
pretrained.model.start_index = start_index
|
285 |
+
pretrained.model.patch_size = [16, 16]
|
286 |
+
|
287 |
+
# We inject this function into the VisionTransformer instances so that
|
288 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
+
_resize_pos_embed, pretrained.model
|
292 |
+
)
|
293 |
+
|
294 |
+
return pretrained
|
295 |
+
|
296 |
+
|
297 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
+
|
300 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
+
return _make_vit_b16_backbone(
|
302 |
+
model,
|
303 |
+
features=[256, 512, 1024, 1024],
|
304 |
+
hooks=hooks,
|
305 |
+
vit_features=1024,
|
306 |
+
use_readout=use_readout,
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
+
|
313 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
+
return _make_vit_b16_backbone(
|
315 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
+
|
322 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
+
return _make_vit_b16_backbone(
|
324 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
+
model = timm.create_model(
|
330 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
+
)
|
332 |
+
|
333 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
+
return _make_vit_b16_backbone(
|
335 |
+
model,
|
336 |
+
features=[96, 192, 384, 768],
|
337 |
+
hooks=hooks,
|
338 |
+
use_readout=use_readout,
|
339 |
+
start_index=2,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
def _make_vit_b_rn50_backbone(
|
344 |
+
model,
|
345 |
+
features=[256, 512, 768, 768],
|
346 |
+
size=[384, 384],
|
347 |
+
hooks=[0, 1, 8, 11],
|
348 |
+
vit_features=768,
|
349 |
+
use_vit_only=False,
|
350 |
+
use_readout="ignore",
|
351 |
+
start_index=1,
|
352 |
+
):
|
353 |
+
pretrained = nn.Module()
|
354 |
+
|
355 |
+
pretrained.model = model
|
356 |
+
|
357 |
+
if use_vit_only == True:
|
358 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
+
else:
|
361 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
+
get_activation("1")
|
363 |
+
)
|
364 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
+
get_activation("2")
|
366 |
+
)
|
367 |
+
|
368 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
+
|
371 |
+
pretrained.activations = activations
|
372 |
+
|
373 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
+
|
375 |
+
if use_vit_only == True:
|
376 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
+
readout_oper[0],
|
378 |
+
Transpose(1, 2),
|
379 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
+
nn.Conv2d(
|
381 |
+
in_channels=vit_features,
|
382 |
+
out_channels=features[0],
|
383 |
+
kernel_size=1,
|
384 |
+
stride=1,
|
385 |
+
padding=0,
|
386 |
+
),
|
387 |
+
nn.ConvTranspose2d(
|
388 |
+
in_channels=features[0],
|
389 |
+
out_channels=features[0],
|
390 |
+
kernel_size=4,
|
391 |
+
stride=4,
|
392 |
+
padding=0,
|
393 |
+
bias=True,
|
394 |
+
dilation=1,
|
395 |
+
groups=1,
|
396 |
+
),
|
397 |
+
)
|
398 |
+
|
399 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
+
readout_oper[1],
|
401 |
+
Transpose(1, 2),
|
402 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
+
nn.Conv2d(
|
404 |
+
in_channels=vit_features,
|
405 |
+
out_channels=features[1],
|
406 |
+
kernel_size=1,
|
407 |
+
stride=1,
|
408 |
+
padding=0,
|
409 |
+
),
|
410 |
+
nn.ConvTranspose2d(
|
411 |
+
in_channels=features[1],
|
412 |
+
out_channels=features[1],
|
413 |
+
kernel_size=2,
|
414 |
+
stride=2,
|
415 |
+
padding=0,
|
416 |
+
bias=True,
|
417 |
+
dilation=1,
|
418 |
+
groups=1,
|
419 |
+
),
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
+
)
|
425 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
+
)
|
428 |
+
|
429 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
+
readout_oper[2],
|
431 |
+
Transpose(1, 2),
|
432 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
+
nn.Conv2d(
|
434 |
+
in_channels=vit_features,
|
435 |
+
out_channels=features[2],
|
436 |
+
kernel_size=1,
|
437 |
+
stride=1,
|
438 |
+
padding=0,
|
439 |
+
),
|
440 |
+
)
|
441 |
+
|
442 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
+
readout_oper[3],
|
444 |
+
Transpose(1, 2),
|
445 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
+
nn.Conv2d(
|
447 |
+
in_channels=vit_features,
|
448 |
+
out_channels=features[3],
|
449 |
+
kernel_size=1,
|
450 |
+
stride=1,
|
451 |
+
padding=0,
|
452 |
+
),
|
453 |
+
nn.Conv2d(
|
454 |
+
in_channels=features[3],
|
455 |
+
out_channels=features[3],
|
456 |
+
kernel_size=3,
|
457 |
+
stride=2,
|
458 |
+
padding=1,
|
459 |
+
),
|
460 |
+
)
|
461 |
+
|
462 |
+
pretrained.model.start_index = start_index
|
463 |
+
pretrained.model.patch_size = [16, 16]
|
464 |
+
|
465 |
+
# We inject this function into the VisionTransformer instances so that
|
466 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
+
|
469 |
+
# We inject this function into the VisionTransformer instances so that
|
470 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
+
_resize_pos_embed, pretrained.model
|
473 |
+
)
|
474 |
+
|
475 |
+
return pretrained
|
476 |
+
|
477 |
+
|
478 |
+
def _make_pretrained_vitb_rn50_384(
|
479 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
+
):
|
481 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
+
|
483 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
+
return _make_vit_b_rn50_backbone(
|
485 |
+
model,
|
486 |
+
features=[256, 512, 768, 768],
|
487 |
+
size=[384, 384],
|
488 |
+
hooks=hooks,
|
489 |
+
use_vit_only=use_vit_only,
|
490 |
+
use_readout=use_readout,
|
491 |
+
)
|
annotator/midas/utils.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for monoDepth."""
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def read_pfm(path):
|
10 |
+
"""Read pfm file.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): path to file
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
tuple: (data, scale)
|
17 |
+
"""
|
18 |
+
with open(path, "rb") as file:
|
19 |
+
|
20 |
+
color = None
|
21 |
+
width = None
|
22 |
+
height = None
|
23 |
+
scale = None
|
24 |
+
endian = None
|
25 |
+
|
26 |
+
header = file.readline().rstrip()
|
27 |
+
if header.decode("ascii") == "PF":
|
28 |
+
color = True
|
29 |
+
elif header.decode("ascii") == "Pf":
|
30 |
+
color = False
|
31 |
+
else:
|
32 |
+
raise Exception("Not a PFM file: " + path)
|
33 |
+
|
34 |
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
+
if dim_match:
|
36 |
+
width, height = list(map(int, dim_match.groups()))
|
37 |
+
else:
|
38 |
+
raise Exception("Malformed PFM header.")
|
39 |
+
|
40 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
+
if scale < 0:
|
42 |
+
# little-endian
|
43 |
+
endian = "<"
|
44 |
+
scale = -scale
|
45 |
+
else:
|
46 |
+
# big-endian
|
47 |
+
endian = ">"
|
48 |
+
|
49 |
+
data = np.fromfile(file, endian + "f")
|
50 |
+
shape = (height, width, 3) if color else (height, width)
|
51 |
+
|
52 |
+
data = np.reshape(data, shape)
|
53 |
+
data = np.flipud(data)
|
54 |
+
|
55 |
+
return data, scale
|
56 |
+
|
57 |
+
|
58 |
+
def write_pfm(path, image, scale=1):
|
59 |
+
"""Write pfm file.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
path (str): pathto file
|
63 |
+
image (array): data
|
64 |
+
scale (int, optional): Scale. Defaults to 1.
|
65 |
+
"""
|
66 |
+
|
67 |
+
with open(path, "wb") as file:
|
68 |
+
color = None
|
69 |
+
|
70 |
+
if image.dtype.name != "float32":
|
71 |
+
raise Exception("Image dtype must be float32.")
|
72 |
+
|
73 |
+
image = np.flipud(image)
|
74 |
+
|
75 |
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
+
color = True
|
77 |
+
elif (
|
78 |
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
+
): # greyscale
|
80 |
+
color = False
|
81 |
+
else:
|
82 |
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
+
|
84 |
+
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
+
|
87 |
+
endian = image.dtype.byteorder
|
88 |
+
|
89 |
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
+
scale = -scale
|
91 |
+
|
92 |
+
file.write("%f\n".encode() % scale)
|
93 |
+
|
94 |
+
image.tofile(file)
|
95 |
+
|
96 |
+
|
97 |
+
def read_image(path):
|
98 |
+
"""Read image and output RGB image (0-1).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
path (str): path to file
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
array: RGB image (0-1)
|
105 |
+
"""
|
106 |
+
img = cv2.imread(path)
|
107 |
+
|
108 |
+
if img.ndim == 2:
|
109 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
+
|
111 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
+
|
113 |
+
return img
|
114 |
+
|
115 |
+
|
116 |
+
def resize_image(img):
|
117 |
+
"""Resize image and make it fit for network.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
img (array): image
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
tensor: data ready for network
|
124 |
+
"""
|
125 |
+
height_orig = img.shape[0]
|
126 |
+
width_orig = img.shape[1]
|
127 |
+
|
128 |
+
if width_orig > height_orig:
|
129 |
+
scale = width_orig / 384
|
130 |
+
else:
|
131 |
+
scale = height_orig / 384
|
132 |
+
|
133 |
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
+
|
136 |
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
+
|
138 |
+
img_resized = (
|
139 |
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
+
)
|
141 |
+
img_resized = img_resized.unsqueeze(0)
|
142 |
+
|
143 |
+
return img_resized
|
144 |
+
|
145 |
+
|
146 |
+
def resize_depth(depth, width, height):
|
147 |
+
"""Resize depth map and bring to CPU (numpy).
|
148 |
+
|
149 |
+
Args:
|
150 |
+
depth (tensor): depth
|
151 |
+
width (int): image width
|
152 |
+
height (int): image height
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
array: processed depth
|
156 |
+
"""
|
157 |
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
+
|
159 |
+
depth_resized = cv2.resize(
|
160 |
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
+
)
|
162 |
+
|
163 |
+
return depth_resized
|
164 |
+
|
165 |
+
|
166 |
+
def write_depth(path, depth, bits=1):
|
167 |
+
"""Write depth map to pfm and png file.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
path (str): filepath without extension
|
171 |
+
depth (array): depth
|
172 |
+
"""
|
173 |
+
write_pfm(path + ".pfm", depth.astype(np.float32))
|
174 |
+
|
175 |
+
depth_min = depth.min()
|
176 |
+
depth_max = depth.max()
|
177 |
+
|
178 |
+
max_val = (2 ** (8 * bits)) - 1
|
179 |
+
|
180 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
181 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
182 |
+
else:
|
183 |
+
out = np.zeros(depth.shape, dtype=depth.type)
|
184 |
+
|
185 |
+
if bits == 1:
|
186 |
+
cv2.imwrite(path + ".png", out.astype("uint8"))
|
187 |
+
elif bits == 2:
|
188 |
+
cv2.imwrite(path + ".png", out.astype("uint16"))
|
189 |
+
|
190 |
+
return
|
annotator/mlsd/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "{}"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2021-present NAVER Corp.
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
annotator/mlsd/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
from einops import rearrange
|
7 |
+
from annotator.base_annotator import BaseProcessor
|
8 |
+
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
|
9 |
+
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
|
10 |
+
from .utils import pred_lines
|
11 |
+
|
12 |
+
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth"
|
13 |
+
old_modeldir = os.path.dirname(os.path.realpath(__file__))
|
14 |
+
|
15 |
+
|
16 |
+
class MLSDProcessor(BaseProcessor):
|
17 |
+
|
18 |
+
def __init__(self, **kwargs):
|
19 |
+
super().__init__(**kwargs)
|
20 |
+
self.model = None
|
21 |
+
self.model_dir = os.path.join(self.models_path, "mlsd")
|
22 |
+
|
23 |
+
def unload_model(self):
|
24 |
+
if self.model is not None:
|
25 |
+
self.model = self.model.cpu()
|
26 |
+
|
27 |
+
def load_model(self):
|
28 |
+
model_path = os.path.join(self.model_dir, "mlsd_large_512_fp32.pth")
|
29 |
+
# old_modelpath = os.path.join(old_modeldir, "mlsd_large_512_fp32.pth")
|
30 |
+
# if os.path.exists(old_modelpath):
|
31 |
+
# modelpath = old_modelpath
|
32 |
+
if not os.path.exists(model_path):
|
33 |
+
from basicsr.utils.download_util import load_file_from_url
|
34 |
+
load_file_from_url(remote_model_path, model_dir=self.model_dir)
|
35 |
+
mlsdmodel = MobileV2_MLSD_Large()
|
36 |
+
mlsdmodel.load_state_dict(torch.load(model_path), strict=True)
|
37 |
+
|
38 |
+
mlsdmodel = mlsdmodel.to(self.device).eval()
|
39 |
+
self.model = mlsdmodel
|
40 |
+
|
41 |
+
def __call__(self, input_image, thr_v= 0.1, thr_d= 0.1, **kwargs):
|
42 |
+
# global modelpath, mlsdmodel
|
43 |
+
if self.model is None:
|
44 |
+
self.load_model()
|
45 |
+
assert input_image.ndim == 3
|
46 |
+
img = input_image
|
47 |
+
img_output = np.zeros_like(img)
|
48 |
+
try:
|
49 |
+
with torch.no_grad():
|
50 |
+
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d, self.device)
|
51 |
+
for line in lines:
|
52 |
+
x_start, y_start, x_end, y_end = [int(val) for val in line]
|
53 |
+
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
|
54 |
+
except Exception as e:
|
55 |
+
pass
|
56 |
+
return img_output[:, :, 0]
|
annotator/mlsd/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (2.56 kB). View file
|
|
annotator/mlsd/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (12.2 kB). View file
|
|
annotator/mlsd/models/__pycache__/mbv2_mlsd_large.cpython-39.pyc
ADDED
Binary file (8.54 kB). View file
|
|
annotator/mlsd/models/__pycache__/mbv2_mlsd_tiny.cpython-39.pyc
ADDED
Binary file (8.25 kB). View file
|
|
annotator/mlsd/models/mbv2_mlsd_large.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class BlockTypeA(nn.Module):
|
10 |
+
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
+
super(BlockTypeA, self).__init__()
|
12 |
+
self.conv1 = nn.Sequential(
|
13 |
+
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
+
nn.BatchNorm2d(out_c2),
|
15 |
+
nn.ReLU(inplace=True)
|
16 |
+
)
|
17 |
+
self.conv2 = nn.Sequential(
|
18 |
+
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
+
nn.BatchNorm2d(out_c1),
|
20 |
+
nn.ReLU(inplace=True)
|
21 |
+
)
|
22 |
+
self.upscale = upscale
|
23 |
+
|
24 |
+
def forward(self, a, b):
|
25 |
+
b = self.conv1(b)
|
26 |
+
a = self.conv2(a)
|
27 |
+
if self.upscale:
|
28 |
+
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
29 |
+
return torch.cat((a, b), dim=1)
|
30 |
+
|
31 |
+
|
32 |
+
class BlockTypeB(nn.Module):
|
33 |
+
def __init__(self, in_c, out_c):
|
34 |
+
super(BlockTypeB, self).__init__()
|
35 |
+
self.conv1 = nn.Sequential(
|
36 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
37 |
+
nn.BatchNorm2d(in_c),
|
38 |
+
nn.ReLU()
|
39 |
+
)
|
40 |
+
self.conv2 = nn.Sequential(
|
41 |
+
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
42 |
+
nn.BatchNorm2d(out_c),
|
43 |
+
nn.ReLU()
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
x = self.conv1(x) + x
|
48 |
+
x = self.conv2(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
class BlockTypeC(nn.Module):
|
52 |
+
def __init__(self, in_c, out_c):
|
53 |
+
super(BlockTypeC, self).__init__()
|
54 |
+
self.conv1 = nn.Sequential(
|
55 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
56 |
+
nn.BatchNorm2d(in_c),
|
57 |
+
nn.ReLU()
|
58 |
+
)
|
59 |
+
self.conv2 = nn.Sequential(
|
60 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
61 |
+
nn.BatchNorm2d(in_c),
|
62 |
+
nn.ReLU()
|
63 |
+
)
|
64 |
+
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x = self.conv1(x)
|
68 |
+
x = self.conv2(x)
|
69 |
+
x = self.conv3(x)
|
70 |
+
return x
|
71 |
+
|
72 |
+
def _make_divisible(v, divisor, min_value=None):
|
73 |
+
"""
|
74 |
+
This function is taken from the original tf repo.
|
75 |
+
It ensures that all layers have a channel number that is divisible by 8
|
76 |
+
It can be seen here:
|
77 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
78 |
+
:param v:
|
79 |
+
:param divisor:
|
80 |
+
:param min_value:
|
81 |
+
:return:
|
82 |
+
"""
|
83 |
+
if min_value is None:
|
84 |
+
min_value = divisor
|
85 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
86 |
+
# Make sure that round down does not go down by more than 10%.
|
87 |
+
if new_v < 0.9 * v:
|
88 |
+
new_v += divisor
|
89 |
+
return new_v
|
90 |
+
|
91 |
+
|
92 |
+
class ConvBNReLU(nn.Sequential):
|
93 |
+
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
94 |
+
self.channel_pad = out_planes - in_planes
|
95 |
+
self.stride = stride
|
96 |
+
#padding = (kernel_size - 1) // 2
|
97 |
+
|
98 |
+
# TFLite uses slightly different padding than PyTorch
|
99 |
+
if stride == 2:
|
100 |
+
padding = 0
|
101 |
+
else:
|
102 |
+
padding = (kernel_size - 1) // 2
|
103 |
+
|
104 |
+
super(ConvBNReLU, self).__init__(
|
105 |
+
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
106 |
+
nn.BatchNorm2d(out_planes),
|
107 |
+
nn.ReLU6(inplace=True)
|
108 |
+
)
|
109 |
+
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
110 |
+
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
# TFLite uses different padding
|
114 |
+
if self.stride == 2:
|
115 |
+
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
116 |
+
#print(x.shape)
|
117 |
+
|
118 |
+
for module in self:
|
119 |
+
if not isinstance(module, nn.MaxPool2d):
|
120 |
+
x = module(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
class InvertedResidual(nn.Module):
|
125 |
+
def __init__(self, inp, oup, stride, expand_ratio):
|
126 |
+
super(InvertedResidual, self).__init__()
|
127 |
+
self.stride = stride
|
128 |
+
assert stride in [1, 2]
|
129 |
+
|
130 |
+
hidden_dim = int(round(inp * expand_ratio))
|
131 |
+
self.use_res_connect = self.stride == 1 and inp == oup
|
132 |
+
|
133 |
+
layers = []
|
134 |
+
if expand_ratio != 1:
|
135 |
+
# pw
|
136 |
+
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
137 |
+
layers.extend([
|
138 |
+
# dw
|
139 |
+
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
140 |
+
# pw-linear
|
141 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
142 |
+
nn.BatchNorm2d(oup),
|
143 |
+
])
|
144 |
+
self.conv = nn.Sequential(*layers)
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
if self.use_res_connect:
|
148 |
+
return x + self.conv(x)
|
149 |
+
else:
|
150 |
+
return self.conv(x)
|
151 |
+
|
152 |
+
|
153 |
+
class MobileNetV2(nn.Module):
|
154 |
+
def __init__(self, pretrained=True):
|
155 |
+
"""
|
156 |
+
MobileNet V2 main class
|
157 |
+
Args:
|
158 |
+
num_classes (int): Number of classes
|
159 |
+
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
160 |
+
inverted_residual_setting: Network structure
|
161 |
+
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
162 |
+
Set to 1 to turn off rounding
|
163 |
+
block: Module specifying inverted residual building block for mobilenet
|
164 |
+
"""
|
165 |
+
super(MobileNetV2, self).__init__()
|
166 |
+
|
167 |
+
block = InvertedResidual
|
168 |
+
input_channel = 32
|
169 |
+
last_channel = 1280
|
170 |
+
width_mult = 1.0
|
171 |
+
round_nearest = 8
|
172 |
+
|
173 |
+
inverted_residual_setting = [
|
174 |
+
# t, c, n, s
|
175 |
+
[1, 16, 1, 1],
|
176 |
+
[6, 24, 2, 2],
|
177 |
+
[6, 32, 3, 2],
|
178 |
+
[6, 64, 4, 2],
|
179 |
+
[6, 96, 3, 1],
|
180 |
+
#[6, 160, 3, 2],
|
181 |
+
#[6, 320, 1, 1],
|
182 |
+
]
|
183 |
+
|
184 |
+
# only check the first element, assuming user knows t,c,n,s are required
|
185 |
+
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
186 |
+
raise ValueError("inverted_residual_setting should be non-empty "
|
187 |
+
"or a 4-element list, got {}".format(inverted_residual_setting))
|
188 |
+
|
189 |
+
# building first layer
|
190 |
+
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
191 |
+
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
192 |
+
features = [ConvBNReLU(4, input_channel, stride=2)]
|
193 |
+
# building inverted residual blocks
|
194 |
+
for t, c, n, s in inverted_residual_setting:
|
195 |
+
output_channel = _make_divisible(c * width_mult, round_nearest)
|
196 |
+
for i in range(n):
|
197 |
+
stride = s if i == 0 else 1
|
198 |
+
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
199 |
+
input_channel = output_channel
|
200 |
+
|
201 |
+
self.features = nn.Sequential(*features)
|
202 |
+
self.fpn_selected = [1, 3, 6, 10, 13]
|
203 |
+
# weight initialization
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv2d):
|
206 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
207 |
+
if m.bias is not None:
|
208 |
+
nn.init.zeros_(m.bias)
|
209 |
+
elif isinstance(m, nn.BatchNorm2d):
|
210 |
+
nn.init.ones_(m.weight)
|
211 |
+
nn.init.zeros_(m.bias)
|
212 |
+
elif isinstance(m, nn.Linear):
|
213 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
214 |
+
nn.init.zeros_(m.bias)
|
215 |
+
if pretrained:
|
216 |
+
self._load_pretrained_model()
|
217 |
+
|
218 |
+
def _forward_impl(self, x):
|
219 |
+
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
+
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
+
fpn_features = []
|
222 |
+
for i, f in enumerate(self.features):
|
223 |
+
if i > self.fpn_selected[-1]:
|
224 |
+
break
|
225 |
+
x = f(x)
|
226 |
+
if i in self.fpn_selected:
|
227 |
+
fpn_features.append(x)
|
228 |
+
|
229 |
+
c1, c2, c3, c4, c5 = fpn_features
|
230 |
+
return c1, c2, c3, c4, c5
|
231 |
+
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
return self._forward_impl(x)
|
235 |
+
|
236 |
+
def _load_pretrained_model(self):
|
237 |
+
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
+
model_dict = {}
|
239 |
+
state_dict = self.state_dict()
|
240 |
+
for k, v in pretrain_dict.items():
|
241 |
+
if k in state_dict:
|
242 |
+
model_dict[k] = v
|
243 |
+
state_dict.update(model_dict)
|
244 |
+
self.load_state_dict(state_dict)
|
245 |
+
|
246 |
+
|
247 |
+
class MobileV2_MLSD_Large(nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super(MobileV2_MLSD_Large, self).__init__()
|
250 |
+
|
251 |
+
self.backbone = MobileNetV2(pretrained=False)
|
252 |
+
## A, B
|
253 |
+
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
|
254 |
+
out_c1= 64, out_c2=64,
|
255 |
+
upscale=False)
|
256 |
+
self.block16 = BlockTypeB(128, 64)
|
257 |
+
|
258 |
+
## A, B
|
259 |
+
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
|
260 |
+
out_c1= 64, out_c2= 64)
|
261 |
+
self.block18 = BlockTypeB(128, 64)
|
262 |
+
|
263 |
+
## A, B
|
264 |
+
self.block19 = BlockTypeA(in_c1=24, in_c2=64,
|
265 |
+
out_c1=64, out_c2=64)
|
266 |
+
self.block20 = BlockTypeB(128, 64)
|
267 |
+
|
268 |
+
## A, B, C
|
269 |
+
self.block21 = BlockTypeA(in_c1=16, in_c2=64,
|
270 |
+
out_c1=64, out_c2=64)
|
271 |
+
self.block22 = BlockTypeB(128, 64)
|
272 |
+
|
273 |
+
self.block23 = BlockTypeC(64, 16)
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
c1, c2, c3, c4, c5 = self.backbone(x)
|
277 |
+
|
278 |
+
x = self.block15(c4, c5)
|
279 |
+
x = self.block16(x)
|
280 |
+
|
281 |
+
x = self.block17(c3, x)
|
282 |
+
x = self.block18(x)
|
283 |
+
|
284 |
+
x = self.block19(c2, x)
|
285 |
+
x = self.block20(x)
|
286 |
+
|
287 |
+
x = self.block21(c1, x)
|
288 |
+
x = self.block22(x)
|
289 |
+
x = self.block23(x)
|
290 |
+
x = x[:, 7:, :, :]
|
291 |
+
|
292 |
+
return x
|
annotator/mlsd/models/mbv2_mlsd_tiny.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class BlockTypeA(nn.Module):
|
10 |
+
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
+
super(BlockTypeA, self).__init__()
|
12 |
+
self.conv1 = nn.Sequential(
|
13 |
+
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
+
nn.BatchNorm2d(out_c2),
|
15 |
+
nn.ReLU(inplace=True)
|
16 |
+
)
|
17 |
+
self.conv2 = nn.Sequential(
|
18 |
+
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
+
nn.BatchNorm2d(out_c1),
|
20 |
+
nn.ReLU(inplace=True)
|
21 |
+
)
|
22 |
+
self.upscale = upscale
|
23 |
+
|
24 |
+
def forward(self, a, b):
|
25 |
+
b = self.conv1(b)
|
26 |
+
a = self.conv2(a)
|
27 |
+
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
28 |
+
return torch.cat((a, b), dim=1)
|
29 |
+
|
30 |
+
|
31 |
+
class BlockTypeB(nn.Module):
|
32 |
+
def __init__(self, in_c, out_c):
|
33 |
+
super(BlockTypeB, self).__init__()
|
34 |
+
self.conv1 = nn.Sequential(
|
35 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
36 |
+
nn.BatchNorm2d(in_c),
|
37 |
+
nn.ReLU()
|
38 |
+
)
|
39 |
+
self.conv2 = nn.Sequential(
|
40 |
+
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
41 |
+
nn.BatchNorm2d(out_c),
|
42 |
+
nn.ReLU()
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
x = self.conv1(x) + x
|
47 |
+
x = self.conv2(x)
|
48 |
+
return x
|
49 |
+
|
50 |
+
class BlockTypeC(nn.Module):
|
51 |
+
def __init__(self, in_c, out_c):
|
52 |
+
super(BlockTypeC, self).__init__()
|
53 |
+
self.conv1 = nn.Sequential(
|
54 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
55 |
+
nn.BatchNorm2d(in_c),
|
56 |
+
nn.ReLU()
|
57 |
+
)
|
58 |
+
self.conv2 = nn.Sequential(
|
59 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
60 |
+
nn.BatchNorm2d(in_c),
|
61 |
+
nn.ReLU()
|
62 |
+
)
|
63 |
+
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.conv1(x)
|
67 |
+
x = self.conv2(x)
|
68 |
+
x = self.conv3(x)
|
69 |
+
return x
|
70 |
+
|
71 |
+
def _make_divisible(v, divisor, min_value=None):
|
72 |
+
"""
|
73 |
+
This function is taken from the original tf repo.
|
74 |
+
It ensures that all layers have a channel number that is divisible by 8
|
75 |
+
It can be seen here:
|
76 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
77 |
+
:param v:
|
78 |
+
:param divisor:
|
79 |
+
:param min_value:
|
80 |
+
:return:
|
81 |
+
"""
|
82 |
+
if min_value is None:
|
83 |
+
min_value = divisor
|
84 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
85 |
+
# Make sure that round down does not go down by more than 10%.
|
86 |
+
if new_v < 0.9 * v:
|
87 |
+
new_v += divisor
|
88 |
+
return new_v
|
89 |
+
|
90 |
+
|
91 |
+
class ConvBNReLU(nn.Sequential):
|
92 |
+
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
93 |
+
self.channel_pad = out_planes - in_planes
|
94 |
+
self.stride = stride
|
95 |
+
#padding = (kernel_size - 1) // 2
|
96 |
+
|
97 |
+
# TFLite uses slightly different padding than PyTorch
|
98 |
+
if stride == 2:
|
99 |
+
padding = 0
|
100 |
+
else:
|
101 |
+
padding = (kernel_size - 1) // 2
|
102 |
+
|
103 |
+
super(ConvBNReLU, self).__init__(
|
104 |
+
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
105 |
+
nn.BatchNorm2d(out_planes),
|
106 |
+
nn.ReLU6(inplace=True)
|
107 |
+
)
|
108 |
+
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
109 |
+
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
# TFLite uses different padding
|
113 |
+
if self.stride == 2:
|
114 |
+
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
115 |
+
#print(x.shape)
|
116 |
+
|
117 |
+
for module in self:
|
118 |
+
if not isinstance(module, nn.MaxPool2d):
|
119 |
+
x = module(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class InvertedResidual(nn.Module):
|
124 |
+
def __init__(self, inp, oup, stride, expand_ratio):
|
125 |
+
super(InvertedResidual, self).__init__()
|
126 |
+
self.stride = stride
|
127 |
+
assert stride in [1, 2]
|
128 |
+
|
129 |
+
hidden_dim = int(round(inp * expand_ratio))
|
130 |
+
self.use_res_connect = self.stride == 1 and inp == oup
|
131 |
+
|
132 |
+
layers = []
|
133 |
+
if expand_ratio != 1:
|
134 |
+
# pw
|
135 |
+
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
136 |
+
layers.extend([
|
137 |
+
# dw
|
138 |
+
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
139 |
+
# pw-linear
|
140 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
141 |
+
nn.BatchNorm2d(oup),
|
142 |
+
])
|
143 |
+
self.conv = nn.Sequential(*layers)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
if self.use_res_connect:
|
147 |
+
return x + self.conv(x)
|
148 |
+
else:
|
149 |
+
return self.conv(x)
|
150 |
+
|
151 |
+
|
152 |
+
class MobileNetV2(nn.Module):
|
153 |
+
def __init__(self, pretrained=True):
|
154 |
+
"""
|
155 |
+
MobileNet V2 main class
|
156 |
+
Args:
|
157 |
+
num_classes (int): Number of classes
|
158 |
+
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
159 |
+
inverted_residual_setting: Network structure
|
160 |
+
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
161 |
+
Set to 1 to turn off rounding
|
162 |
+
block: Module specifying inverted residual building block for mobilenet
|
163 |
+
"""
|
164 |
+
super(MobileNetV2, self).__init__()
|
165 |
+
|
166 |
+
block = InvertedResidual
|
167 |
+
input_channel = 32
|
168 |
+
last_channel = 1280
|
169 |
+
width_mult = 1.0
|
170 |
+
round_nearest = 8
|
171 |
+
|
172 |
+
inverted_residual_setting = [
|
173 |
+
# t, c, n, s
|
174 |
+
[1, 16, 1, 1],
|
175 |
+
[6, 24, 2, 2],
|
176 |
+
[6, 32, 3, 2],
|
177 |
+
[6, 64, 4, 2],
|
178 |
+
#[6, 96, 3, 1],
|
179 |
+
#[6, 160, 3, 2],
|
180 |
+
#[6, 320, 1, 1],
|
181 |
+
]
|
182 |
+
|
183 |
+
# only check the first element, assuming user knows t,c,n,s are required
|
184 |
+
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
185 |
+
raise ValueError("inverted_residual_setting should be non-empty "
|
186 |
+
"or a 4-element list, got {}".format(inverted_residual_setting))
|
187 |
+
|
188 |
+
# building first layer
|
189 |
+
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
190 |
+
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
191 |
+
features = [ConvBNReLU(4, input_channel, stride=2)]
|
192 |
+
# building inverted residual blocks
|
193 |
+
for t, c, n, s in inverted_residual_setting:
|
194 |
+
output_channel = _make_divisible(c * width_mult, round_nearest)
|
195 |
+
for i in range(n):
|
196 |
+
stride = s if i == 0 else 1
|
197 |
+
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
198 |
+
input_channel = output_channel
|
199 |
+
self.features = nn.Sequential(*features)
|
200 |
+
|
201 |
+
self.fpn_selected = [3, 6, 10]
|
202 |
+
# weight initialization
|
203 |
+
for m in self.modules():
|
204 |
+
if isinstance(m, nn.Conv2d):
|
205 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
206 |
+
if m.bias is not None:
|
207 |
+
nn.init.zeros_(m.bias)
|
208 |
+
elif isinstance(m, nn.BatchNorm2d):
|
209 |
+
nn.init.ones_(m.weight)
|
210 |
+
nn.init.zeros_(m.bias)
|
211 |
+
elif isinstance(m, nn.Linear):
|
212 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
213 |
+
nn.init.zeros_(m.bias)
|
214 |
+
|
215 |
+
#if pretrained:
|
216 |
+
# self._load_pretrained_model()
|
217 |
+
|
218 |
+
def _forward_impl(self, x):
|
219 |
+
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
+
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
+
fpn_features = []
|
222 |
+
for i, f in enumerate(self.features):
|
223 |
+
if i > self.fpn_selected[-1]:
|
224 |
+
break
|
225 |
+
x = f(x)
|
226 |
+
if i in self.fpn_selected:
|
227 |
+
fpn_features.append(x)
|
228 |
+
|
229 |
+
c2, c3, c4 = fpn_features
|
230 |
+
return c2, c3, c4
|
231 |
+
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
return self._forward_impl(x)
|
235 |
+
|
236 |
+
def _load_pretrained_model(self):
|
237 |
+
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
+
model_dict = {}
|
239 |
+
state_dict = self.state_dict()
|
240 |
+
for k, v in pretrain_dict.items():
|
241 |
+
if k in state_dict:
|
242 |
+
model_dict[k] = v
|
243 |
+
state_dict.update(model_dict)
|
244 |
+
self.load_state_dict(state_dict)
|
245 |
+
|
246 |
+
|
247 |
+
class MobileV2_MLSD_Tiny(nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super(MobileV2_MLSD_Tiny, self).__init__()
|
250 |
+
|
251 |
+
self.backbone = MobileNetV2(pretrained=True)
|
252 |
+
|
253 |
+
self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
|
254 |
+
out_c1= 64, out_c2=64)
|
255 |
+
self.block13 = BlockTypeB(128, 64)
|
256 |
+
|
257 |
+
self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
|
258 |
+
out_c1= 32, out_c2= 32)
|
259 |
+
self.block15 = BlockTypeB(64, 64)
|
260 |
+
|
261 |
+
self.block16 = BlockTypeC(64, 16)
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
c2, c3, c4 = self.backbone(x)
|
265 |
+
|
266 |
+
x = self.block12(c3, c4)
|
267 |
+
x = self.block13(x)
|
268 |
+
x = self.block14(c2, x)
|
269 |
+
x = self.block15(x)
|
270 |
+
x = self.block16(x)
|
271 |
+
x = x[:, 7:, :, :]
|
272 |
+
#print(x.shape)
|
273 |
+
x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
|
274 |
+
|
275 |
+
return x
|
annotator/mlsd/utils.py
ADDED
@@ -0,0 +1,582 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
modified by lihaoweicv
|
3 |
+
pytorch version
|
4 |
+
'''
|
5 |
+
|
6 |
+
'''
|
7 |
+
M-LSD
|
8 |
+
Copyright 2021-present NAVER Corp.
|
9 |
+
Apache License v2.0
|
10 |
+
'''
|
11 |
+
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
|
19 |
+
def deccode_output_score_and_ptss(tpMap, topk_n=200, ksize=5):
|
20 |
+
'''
|
21 |
+
tpMap:
|
22 |
+
center: tpMap[1, 0, :, :]
|
23 |
+
displacement: tpMap[1, 1:5, :, :]
|
24 |
+
'''
|
25 |
+
b, c, h, w = tpMap.shape
|
26 |
+
assert b == 1, 'only support bsize==1'
|
27 |
+
displacement = tpMap[:, 1:5, :, :][0]
|
28 |
+
center = tpMap[:, 0, :, :]
|
29 |
+
heat = torch.sigmoid(center)
|
30 |
+
hmax = F.max_pool2d(heat, (ksize, ksize), stride=1, padding=(ksize - 1) // 2)
|
31 |
+
keep = (hmax == heat).float()
|
32 |
+
heat = heat * keep
|
33 |
+
heat = heat.reshape(-1, )
|
34 |
+
|
35 |
+
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
|
36 |
+
yy = torch.floor_divide(indices, w).unsqueeze(-1)
|
37 |
+
xx = torch.fmod(indices, w).unsqueeze(-1)
|
38 |
+
ptss = torch.cat((yy, xx), dim=-1)
|
39 |
+
|
40 |
+
ptss = ptss.detach().cpu().numpy()
|
41 |
+
scores = scores.detach().cpu().numpy()
|
42 |
+
displacement = displacement.detach().cpu().numpy()
|
43 |
+
displacement = displacement.transpose((1, 2, 0))
|
44 |
+
return ptss, scores, displacement
|
45 |
+
|
46 |
+
|
47 |
+
def pred_lines(image, model,
|
48 |
+
input_shape=[512, 512],
|
49 |
+
score_thr=0.10,
|
50 |
+
dist_thr=20.0,
|
51 |
+
device="cpu"):
|
52 |
+
h, w, _ = image.shape
|
53 |
+
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
|
54 |
+
|
55 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
|
56 |
+
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
57 |
+
|
58 |
+
resized_image = resized_image.transpose((2, 0, 1))
|
59 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
60 |
+
batch_image = (batch_image / 127.5) - 1.0
|
61 |
+
|
62 |
+
batch_image = torch.from_numpy(batch_image).float().to(device)
|
63 |
+
outputs = model(batch_image)
|
64 |
+
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
65 |
+
start = vmap[:, :, :2]
|
66 |
+
end = vmap[:, :, 2:]
|
67 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
68 |
+
|
69 |
+
segments_list = []
|
70 |
+
for center, score in zip(pts, pts_score):
|
71 |
+
y, x = center
|
72 |
+
distance = dist_map[y, x]
|
73 |
+
if score > score_thr and distance > dist_thr:
|
74 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
75 |
+
x_start = x + disp_x_start
|
76 |
+
y_start = y + disp_y_start
|
77 |
+
x_end = x + disp_x_end
|
78 |
+
y_end = y + disp_y_end
|
79 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
80 |
+
|
81 |
+
lines = 2 * np.array(segments_list) # 256 > 512
|
82 |
+
lines[:, 0] = lines[:, 0] * w_ratio
|
83 |
+
lines[:, 1] = lines[:, 1] * h_ratio
|
84 |
+
lines[:, 2] = lines[:, 2] * w_ratio
|
85 |
+
lines[:, 3] = lines[:, 3] * h_ratio
|
86 |
+
|
87 |
+
return lines
|
88 |
+
|
89 |
+
|
90 |
+
def pred_squares(image,
|
91 |
+
model,
|
92 |
+
input_shape=[512, 512],
|
93 |
+
params={'score': 0.06,
|
94 |
+
'outside_ratio': 0.28,
|
95 |
+
'inside_ratio': 0.45,
|
96 |
+
'w_overlap': 0.0,
|
97 |
+
'w_degree': 1.95,
|
98 |
+
'w_length': 0.0,
|
99 |
+
'w_area': 1.86,
|
100 |
+
'w_center': 0.14}
|
101 |
+
,device="cpu"):
|
102 |
+
'''
|
103 |
+
shape = [height, width]
|
104 |
+
'''
|
105 |
+
h, w, _ = image.shape
|
106 |
+
original_shape = [h, w]
|
107 |
+
|
108 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
|
109 |
+
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
110 |
+
resized_image = resized_image.transpose((2, 0, 1))
|
111 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
112 |
+
batch_image = (batch_image / 127.5) - 1.0
|
113 |
+
|
114 |
+
batch_image = torch.from_numpy(batch_image).float().to(device)
|
115 |
+
outputs = model(batch_image)
|
116 |
+
|
117 |
+
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
118 |
+
start = vmap[:, :, :2] # (x, y)
|
119 |
+
end = vmap[:, :, 2:] # (x, y)
|
120 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
121 |
+
|
122 |
+
junc_list = []
|
123 |
+
segments_list = []
|
124 |
+
for junc, score in zip(pts, pts_score):
|
125 |
+
y, x = junc
|
126 |
+
distance = dist_map[y, x]
|
127 |
+
if score > params['score'] and distance > 20.0:
|
128 |
+
junc_list.append([x, y])
|
129 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
130 |
+
d_arrow = 1.0
|
131 |
+
x_start = x + d_arrow * disp_x_start
|
132 |
+
y_start = y + d_arrow * disp_y_start
|
133 |
+
x_end = x + d_arrow * disp_x_end
|
134 |
+
y_end = y + d_arrow * disp_y_end
|
135 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
136 |
+
|
137 |
+
segments = np.array(segments_list)
|
138 |
+
|
139 |
+
####### post processing for squares
|
140 |
+
# 1. get unique lines
|
141 |
+
point = np.array([[0, 0]])
|
142 |
+
point = point[0]
|
143 |
+
start = segments[:, :2]
|
144 |
+
end = segments[:, 2:]
|
145 |
+
diff = start - end
|
146 |
+
a = diff[:, 1]
|
147 |
+
b = -diff[:, 0]
|
148 |
+
c = a * start[:, 0] + b * start[:, 1]
|
149 |
+
|
150 |
+
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
|
151 |
+
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
|
152 |
+
theta[theta < 0.0] += 180
|
153 |
+
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
|
154 |
+
|
155 |
+
d_quant = 1
|
156 |
+
theta_quant = 2
|
157 |
+
hough[:, 0] //= d_quant
|
158 |
+
hough[:, 1] //= theta_quant
|
159 |
+
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
|
160 |
+
|
161 |
+
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
|
162 |
+
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
|
163 |
+
yx_indices = hough[indices, :].astype('int32')
|
164 |
+
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
|
165 |
+
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
|
166 |
+
|
167 |
+
acc_map_np = acc_map
|
168 |
+
# acc_map = acc_map[None, :, :, None]
|
169 |
+
#
|
170 |
+
# ### fast suppression using tensorflow op
|
171 |
+
# acc_map = tf.constant(acc_map, dtype=tf.float32)
|
172 |
+
# max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
|
173 |
+
# acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
|
174 |
+
# flatten_acc_map = tf.reshape(acc_map, [1, -1])
|
175 |
+
# topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
|
176 |
+
# _, h, w, _ = acc_map.shape
|
177 |
+
# y = tf.expand_dims(topk_indices // w, axis=-1)
|
178 |
+
# x = tf.expand_dims(topk_indices % w, axis=-1)
|
179 |
+
# yx = tf.concat([y, x], axis=-1)
|
180 |
+
|
181 |
+
### fast suppression using pytorch op
|
182 |
+
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
|
183 |
+
_, _, h, w = acc_map.shape
|
184 |
+
max_acc_map = F.max_pool2d(acc_map, kernel_size=5, stride=1, padding=2)
|
185 |
+
acc_map = acc_map * ((acc_map == max_acc_map).float())
|
186 |
+
flatten_acc_map = acc_map.reshape([-1, ])
|
187 |
+
|
188 |
+
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
|
189 |
+
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
|
190 |
+
xx = torch.fmod(indices, w).unsqueeze(-1)
|
191 |
+
yx = torch.cat((yy, xx), dim=-1)
|
192 |
+
|
193 |
+
yx = yx.detach().cpu().numpy()
|
194 |
+
|
195 |
+
topk_values = scores.detach().cpu().numpy()
|
196 |
+
indices = idx_map[yx[:, 0], yx[:, 1]]
|
197 |
+
basis = 5 // 2
|
198 |
+
|
199 |
+
merged_segments = []
|
200 |
+
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
|
201 |
+
y, x = yx_pt
|
202 |
+
if max_indice == -1 or value == 0:
|
203 |
+
continue
|
204 |
+
segment_list = []
|
205 |
+
for y_offset in range(-basis, basis + 1):
|
206 |
+
for x_offset in range(-basis, basis + 1):
|
207 |
+
indice = idx_map[y + y_offset, x + x_offset]
|
208 |
+
cnt = int(acc_map_np[y + y_offset, x + x_offset])
|
209 |
+
if indice != -1:
|
210 |
+
segment_list.append(segments[indice])
|
211 |
+
if cnt > 1:
|
212 |
+
check_cnt = 1
|
213 |
+
current_hough = hough[indice]
|
214 |
+
for new_indice, new_hough in enumerate(hough):
|
215 |
+
if (current_hough == new_hough).all() and indice != new_indice:
|
216 |
+
segment_list.append(segments[new_indice])
|
217 |
+
check_cnt += 1
|
218 |
+
if check_cnt == cnt:
|
219 |
+
break
|
220 |
+
group_segments = np.array(segment_list).reshape([-1, 2])
|
221 |
+
sorted_group_segments = np.sort(group_segments, axis=0)
|
222 |
+
x_min, y_min = sorted_group_segments[0, :]
|
223 |
+
x_max, y_max = sorted_group_segments[-1, :]
|
224 |
+
|
225 |
+
deg = theta[max_indice]
|
226 |
+
if deg >= 90:
|
227 |
+
merged_segments.append([x_min, y_max, x_max, y_min])
|
228 |
+
else:
|
229 |
+
merged_segments.append([x_min, y_min, x_max, y_max])
|
230 |
+
|
231 |
+
# 2. get intersections
|
232 |
+
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
|
233 |
+
start = new_segments[:, :2] # (x1, y1)
|
234 |
+
end = new_segments[:, 2:] # (x2, y2)
|
235 |
+
new_centers = (start + end) / 2.0
|
236 |
+
diff = start - end
|
237 |
+
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
|
238 |
+
|
239 |
+
# ax + by = c
|
240 |
+
a = diff[:, 1]
|
241 |
+
b = -diff[:, 0]
|
242 |
+
c = a * start[:, 0] + b * start[:, 1]
|
243 |
+
pre_det = a[:, None] * b[None, :]
|
244 |
+
det = pre_det - np.transpose(pre_det)
|
245 |
+
|
246 |
+
pre_inter_y = a[:, None] * c[None, :]
|
247 |
+
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
|
248 |
+
pre_inter_x = c[:, None] * b[None, :]
|
249 |
+
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
|
250 |
+
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
|
251 |
+
|
252 |
+
# 3. get corner information
|
253 |
+
# 3.1 get distance
|
254 |
+
'''
|
255 |
+
dist_segments:
|
256 |
+
| dist(0), dist(1), dist(2), ...|
|
257 |
+
dist_inter_to_segment1:
|
258 |
+
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
|
259 |
+
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
|
260 |
+
...
|
261 |
+
dist_inter_to_semgnet2:
|
262 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
263 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
264 |
+
...
|
265 |
+
'''
|
266 |
+
|
267 |
+
dist_inter_to_segment1_start = np.sqrt(
|
268 |
+
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
269 |
+
dist_inter_to_segment1_end = np.sqrt(
|
270 |
+
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
271 |
+
dist_inter_to_segment2_start = np.sqrt(
|
272 |
+
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
273 |
+
dist_inter_to_segment2_end = np.sqrt(
|
274 |
+
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
275 |
+
|
276 |
+
# sort ascending
|
277 |
+
dist_inter_to_segment1 = np.sort(
|
278 |
+
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
|
279 |
+
axis=-1) # [n_batch, n_batch, 2]
|
280 |
+
dist_inter_to_segment2 = np.sort(
|
281 |
+
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
|
282 |
+
axis=-1) # [n_batch, n_batch, 2]
|
283 |
+
|
284 |
+
# 3.2 get degree
|
285 |
+
inter_to_start = new_centers[:, None, :] - inter_pts
|
286 |
+
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
|
287 |
+
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
|
288 |
+
inter_to_end = new_centers[None, :, :] - inter_pts
|
289 |
+
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
|
290 |
+
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
|
291 |
+
|
292 |
+
'''
|
293 |
+
B -- G
|
294 |
+
| |
|
295 |
+
C -- R
|
296 |
+
B : blue / G: green / C: cyan / R: red
|
297 |
+
|
298 |
+
0 -- 1
|
299 |
+
| |
|
300 |
+
3 -- 2
|
301 |
+
'''
|
302 |
+
# rename variables
|
303 |
+
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
|
304 |
+
# sort deg ascending
|
305 |
+
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
|
306 |
+
|
307 |
+
deg_diff_map = np.abs(deg1_map - deg2_map)
|
308 |
+
# we only consider the smallest degree of intersect
|
309 |
+
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
|
310 |
+
|
311 |
+
# define available degree range
|
312 |
+
deg_range = [60, 120]
|
313 |
+
|
314 |
+
corner_dict = {corner_info: [] for corner_info in range(4)}
|
315 |
+
inter_points = []
|
316 |
+
for i in range(inter_pts.shape[0]):
|
317 |
+
for j in range(i + 1, inter_pts.shape[1]):
|
318 |
+
# i, j > line index, always i < j
|
319 |
+
x, y = inter_pts[i, j, :]
|
320 |
+
deg1, deg2 = deg_sort[i, j, :]
|
321 |
+
deg_diff = deg_diff_map[i, j]
|
322 |
+
|
323 |
+
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
|
324 |
+
|
325 |
+
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
|
326 |
+
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
|
327 |
+
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
|
328 |
+
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
|
329 |
+
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
|
330 |
+
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
|
331 |
+
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
|
332 |
+
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
|
333 |
+
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
|
334 |
+
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
|
335 |
+
|
336 |
+
if check_degree and check_distance:
|
337 |
+
corner_info = None
|
338 |
+
|
339 |
+
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
|
340 |
+
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
|
341 |
+
corner_info, color_info = 0, 'blue'
|
342 |
+
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
|
343 |
+
corner_info, color_info = 1, 'green'
|
344 |
+
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
|
345 |
+
corner_info, color_info = 2, 'black'
|
346 |
+
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
|
347 |
+
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
|
348 |
+
corner_info, color_info = 3, 'cyan'
|
349 |
+
else:
|
350 |
+
corner_info, color_info = 4, 'red' # we don't use it
|
351 |
+
continue
|
352 |
+
|
353 |
+
corner_dict[corner_info].append([x, y, i, j])
|
354 |
+
inter_points.append([x, y])
|
355 |
+
|
356 |
+
square_list = []
|
357 |
+
connect_list = []
|
358 |
+
segments_list = []
|
359 |
+
for corner0 in corner_dict[0]:
|
360 |
+
for corner1 in corner_dict[1]:
|
361 |
+
connect01 = False
|
362 |
+
for corner0_line in corner0[2:]:
|
363 |
+
if corner0_line in corner1[2:]:
|
364 |
+
connect01 = True
|
365 |
+
break
|
366 |
+
if connect01:
|
367 |
+
for corner2 in corner_dict[2]:
|
368 |
+
connect12 = False
|
369 |
+
for corner1_line in corner1[2:]:
|
370 |
+
if corner1_line in corner2[2:]:
|
371 |
+
connect12 = True
|
372 |
+
break
|
373 |
+
if connect12:
|
374 |
+
for corner3 in corner_dict[3]:
|
375 |
+
connect23 = False
|
376 |
+
for corner2_line in corner2[2:]:
|
377 |
+
if corner2_line in corner3[2:]:
|
378 |
+
connect23 = True
|
379 |
+
break
|
380 |
+
if connect23:
|
381 |
+
for corner3_line in corner3[2:]:
|
382 |
+
if corner3_line in corner0[2:]:
|
383 |
+
# SQUARE!!!
|
384 |
+
'''
|
385 |
+
0 -- 1
|
386 |
+
| |
|
387 |
+
3 -- 2
|
388 |
+
square_list:
|
389 |
+
order: 0 > 1 > 2 > 3
|
390 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
391 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
392 |
+
...
|
393 |
+
connect_list:
|
394 |
+
order: 01 > 12 > 23 > 30
|
395 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
396 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
397 |
+
...
|
398 |
+
segments_list:
|
399 |
+
order: 0 > 1 > 2 > 3
|
400 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
401 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
402 |
+
...
|
403 |
+
'''
|
404 |
+
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
|
405 |
+
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
|
406 |
+
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
|
407 |
+
|
408 |
+
def check_outside_inside(segments_info, connect_idx):
|
409 |
+
# return 'outside or inside', min distance, cover_param, peri_param
|
410 |
+
if connect_idx == segments_info[0]:
|
411 |
+
check_dist_mat = dist_inter_to_segment1
|
412 |
+
else:
|
413 |
+
check_dist_mat = dist_inter_to_segment2
|
414 |
+
|
415 |
+
i, j = segments_info
|
416 |
+
min_dist, max_dist = check_dist_mat[i, j, :]
|
417 |
+
connect_dist = dist_segments[connect_idx]
|
418 |
+
if max_dist > connect_dist:
|
419 |
+
return 'outside', min_dist, 0, 1
|
420 |
+
else:
|
421 |
+
return 'inside', min_dist, -1, -1
|
422 |
+
|
423 |
+
top_square = None
|
424 |
+
|
425 |
+
try:
|
426 |
+
map_size = input_shape[0] / 2
|
427 |
+
squares = np.array(square_list).reshape([-1, 4, 2])
|
428 |
+
score_array = []
|
429 |
+
connect_array = np.array(connect_list)
|
430 |
+
segments_array = np.array(segments_list).reshape([-1, 4, 2])
|
431 |
+
|
432 |
+
# get degree of corners:
|
433 |
+
squares_rollup = np.roll(squares, 1, axis=1)
|
434 |
+
squares_rolldown = np.roll(squares, -1, axis=1)
|
435 |
+
vec1 = squares_rollup - squares
|
436 |
+
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
|
437 |
+
vec2 = squares_rolldown - squares
|
438 |
+
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
|
439 |
+
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
|
440 |
+
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
|
441 |
+
|
442 |
+
# get square score
|
443 |
+
overlap_scores = []
|
444 |
+
degree_scores = []
|
445 |
+
length_scores = []
|
446 |
+
|
447 |
+
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
|
448 |
+
'''
|
449 |
+
0 -- 1
|
450 |
+
| |
|
451 |
+
3 -- 2
|
452 |
+
|
453 |
+
# segments: [4, 2]
|
454 |
+
# connects: [4]
|
455 |
+
'''
|
456 |
+
|
457 |
+
###################################### OVERLAP SCORES
|
458 |
+
cover = 0
|
459 |
+
perimeter = 0
|
460 |
+
# check 0 > 1 > 2 > 3
|
461 |
+
square_length = []
|
462 |
+
|
463 |
+
for start_idx in range(4):
|
464 |
+
end_idx = (start_idx + 1) % 4
|
465 |
+
|
466 |
+
connect_idx = connects[start_idx] # segment idx of segment01
|
467 |
+
start_segments = segments[start_idx]
|
468 |
+
end_segments = segments[end_idx]
|
469 |
+
|
470 |
+
start_point = square[start_idx]
|
471 |
+
end_point = square[end_idx]
|
472 |
+
|
473 |
+
# check whether outside or inside
|
474 |
+
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
|
475 |
+
connect_idx)
|
476 |
+
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
|
477 |
+
|
478 |
+
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
|
479 |
+
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
|
480 |
+
|
481 |
+
square_length.append(
|
482 |
+
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
|
483 |
+
|
484 |
+
overlap_scores.append(cover / perimeter)
|
485 |
+
######################################
|
486 |
+
###################################### DEGREE SCORES
|
487 |
+
'''
|
488 |
+
deg0 vs deg2
|
489 |
+
deg1 vs deg3
|
490 |
+
'''
|
491 |
+
deg0, deg1, deg2, deg3 = degree
|
492 |
+
deg_ratio1 = deg0 / deg2
|
493 |
+
if deg_ratio1 > 1.0:
|
494 |
+
deg_ratio1 = 1 / deg_ratio1
|
495 |
+
deg_ratio2 = deg1 / deg3
|
496 |
+
if deg_ratio2 > 1.0:
|
497 |
+
deg_ratio2 = 1 / deg_ratio2
|
498 |
+
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
|
499 |
+
######################################
|
500 |
+
###################################### LENGTH SCORES
|
501 |
+
'''
|
502 |
+
len0 vs len2
|
503 |
+
len1 vs len3
|
504 |
+
'''
|
505 |
+
len0, len1, len2, len3 = square_length
|
506 |
+
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
|
507 |
+
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
|
508 |
+
length_scores.append((len_ratio1 + len_ratio2) / 2)
|
509 |
+
|
510 |
+
######################################
|
511 |
+
|
512 |
+
overlap_scores = np.array(overlap_scores)
|
513 |
+
overlap_scores /= np.max(overlap_scores)
|
514 |
+
|
515 |
+
degree_scores = np.array(degree_scores)
|
516 |
+
# degree_scores /= np.max(degree_scores)
|
517 |
+
|
518 |
+
length_scores = np.array(length_scores)
|
519 |
+
|
520 |
+
###################################### AREA SCORES
|
521 |
+
area_scores = np.reshape(squares, [-1, 4, 2])
|
522 |
+
area_x = area_scores[:, :, 0]
|
523 |
+
area_y = area_scores[:, :, 1]
|
524 |
+
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
|
525 |
+
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
|
526 |
+
area_scores = 0.5 * np.abs(area_scores + correction)
|
527 |
+
area_scores /= (map_size * map_size) # np.max(area_scores)
|
528 |
+
######################################
|
529 |
+
|
530 |
+
###################################### CENTER SCORES
|
531 |
+
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
|
532 |
+
# squares: [n, 4, 2]
|
533 |
+
square_centers = np.mean(squares, axis=1) # [n, 2]
|
534 |
+
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
|
535 |
+
center_scores = center2center / (map_size / np.sqrt(2.0))
|
536 |
+
|
537 |
+
'''
|
538 |
+
score_w = [overlap, degree, area, center, length]
|
539 |
+
'''
|
540 |
+
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
|
541 |
+
score_array = params['w_overlap'] * overlap_scores \
|
542 |
+
+ params['w_degree'] * degree_scores \
|
543 |
+
+ params['w_area'] * area_scores \
|
544 |
+
- params['w_center'] * center_scores \
|
545 |
+
+ params['w_length'] * length_scores
|
546 |
+
|
547 |
+
best_square = []
|
548 |
+
|
549 |
+
sorted_idx = np.argsort(score_array)[::-1]
|
550 |
+
score_array = score_array[sorted_idx]
|
551 |
+
squares = squares[sorted_idx]
|
552 |
+
|
553 |
+
except Exception as e:
|
554 |
+
pass
|
555 |
+
|
556 |
+
'''return list
|
557 |
+
merged_lines, squares, scores
|
558 |
+
'''
|
559 |
+
|
560 |
+
try:
|
561 |
+
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
|
562 |
+
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
|
563 |
+
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
|
564 |
+
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
|
565 |
+
except:
|
566 |
+
new_segments = []
|
567 |
+
|
568 |
+
try:
|
569 |
+
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
|
570 |
+
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
|
571 |
+
except:
|
572 |
+
squares = []
|
573 |
+
score_array = []
|
574 |
+
|
575 |
+
try:
|
576 |
+
inter_points = np.array(inter_points)
|
577 |
+
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
|
578 |
+
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
|
579 |
+
except:
|
580 |
+
inter_points = []
|
581 |
+
|
582 |
+
return new_segments, squares, score_array, inter_points
|
annotator/openpose/LICENSE
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OPENPOSE: MULTIPERSON KEYPOINT DETECTION
|
2 |
+
SOFTWARE LICENSE AGREEMENT
|
3 |
+
ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
4 |
+
|
5 |
+
BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
6 |
+
|
7 |
+
This is a license agreement ("Agreement") between your academic institution or non-profit organization or self (called "Licensee" or "You" in this Agreement) and Carnegie Mellon University (called "Licensor" in this Agreement). All rights not specifically granted to you in this Agreement are reserved for Licensor.
|
8 |
+
|
9 |
+
RESERVATION OF OWNERSHIP AND GRANT OF LICENSE:
|
10 |
+
Licensor retains exclusive ownership of any copy of the Software (as defined below) licensed under this Agreement and hereby grants to Licensee a personal, non-exclusive,
|
11 |
+
non-transferable license to use the Software for noncommercial research purposes, without the right to sublicense, pursuant to the terms and conditions of this Agreement. As used in this Agreement, the term "Software" means (i) the actual copy of all or any portion of code for program routines made accessible to Licensee by Licensor pursuant to this Agreement, inclusive of backups, updates, and/or merged copies permitted hereunder or subsequently supplied by Licensor, including all or any file structures, programming instructions, user interfaces and screen formats and sequences as well as any and all documentation and instructions related to it, and (ii) all or any derivatives and/or modifications created or made by You to any of the items specified in (i).
|
12 |
+
|
13 |
+
CONFIDENTIALITY: Licensee acknowledges that the Software is proprietary to Licensor, and as such, Licensee agrees to receive all such materials in confidence and use the Software only in accordance with the terms of this Agreement. Licensee agrees to use reasonable effort to protect the Software from unauthorized use, reproduction, distribution, or publication.
|
14 |
+
|
15 |
+
COPYRIGHT: The Software is owned by Licensor and is protected by United
|
16 |
+
States copyright laws and applicable international treaties and/or conventions.
|
17 |
+
|
18 |
+
PERMITTED USES: The Software may be used for your own noncommercial internal research purposes. You understand and agree that Licensor is not obligated to implement any suggestions and/or feedback you might provide regarding the Software, but to the extent Licensor does so, you are not entitled to any compensation related thereto.
|
19 |
+
|
20 |
+
DERIVATIVES: You may create derivatives of or make modifications to the Software, however, You agree that all and any such derivatives and modifications will be owned by Licensor and become a part of the Software licensed to You under this Agreement. You may only use such derivatives and modifications for your own noncommercial internal research purposes, and you may not otherwise use, distribute or copy such derivatives and modifications in violation of this Agreement.
|
21 |
+
|
22 |
+
BACKUPS: If Licensee is an organization, it may make that number of copies of the Software necessary for internal noncommercial use at a single site within its organization provided that all information appearing in or on the original labels, including the copyright and trademark notices are copied onto the labels of the copies.
|
23 |
+
|
24 |
+
USES NOT PERMITTED: You may not distribute, copy or use the Software except as explicitly permitted herein. Licensee has not been granted any trademark license as part of this Agreement and may not use the name or mark “OpenPose", "Carnegie Mellon" or any renditions thereof without the prior written permission of Licensor.
|
25 |
+
|
26 |
+
You may not sell, rent, lease, sublicense, lend, time-share or transfer, in whole or in part, or provide third parties access to prior or present versions (or any parts thereof) of the Software.
|
27 |
+
|
28 |
+
ASSIGNMENT: You may not assign this Agreement or your rights hereunder without the prior written consent of Licensor. Any attempted assignment without such consent shall be null and void.
|
29 |
+
|
30 |
+
TERM: The term of the license granted by this Agreement is from Licensee's acceptance of this Agreement by downloading the Software or by using the Software until terminated as provided below.
|
31 |
+
|
32 |
+
The Agreement automatically terminates without notice if you fail to comply with any provision of this Agreement. Licensee may terminate this Agreement by ceasing using the Software. Upon any termination of this Agreement, Licensee will delete any and all copies of the Software. You agree that all provisions which operate to protect the proprietary rights of Licensor shall remain in force should breach occur and that the obligation of confidentiality described in this Agreement is binding in perpetuity and, as such, survives the term of the Agreement.
|
33 |
+
|
34 |
+
FEE: Provided Licensee abides completely by the terms and conditions of this Agreement, there is no fee due to Licensor for Licensee's use of the Software in accordance with this Agreement.
|
35 |
+
|
36 |
+
DISCLAIMER OF WARRANTIES: THE SOFTWARE IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND INCLUDING ANY WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE OR OF NON-INFRINGEMENT. LICENSEE BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE SOFTWARE AND RELATED MATERIALS.
|
37 |
+
|
38 |
+
SUPPORT AND MAINTENANCE: No Software support or training by the Licensor is provided as part of this Agreement.
|
39 |
+
|
40 |
+
EXCLUSIVE REMEDY AND LIMITATION OF LIABILITY: To the maximum extent permitted under applicable law, Licensor shall not be liable for direct, indirect, special, incidental, or consequential damages or lost profits related to Licensee's use of and/or inability to use the Software, even if Licensor is advised of the possibility of such damage.
|
41 |
+
|
42 |
+
EXPORT REGULATION: Licensee agrees to comply with any and all applicable
|
43 |
+
U.S. export control laws, regulations, and/or other laws related to embargoes and sanction programs administered by the Office of Foreign Assets Control.
|
44 |
+
|
45 |
+
SEVERABILITY: If any provision(s) of this Agreement shall be held to be invalid, illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the validity, legality and enforceability of the remaining provisions shall not in any way be affected or impaired thereby.
|
46 |
+
|
47 |
+
NO IMPLIED WAIVERS: No failure or delay by Licensor in enforcing any right or remedy under this Agreement shall be construed as a waiver of any future or other exercise of such right or remedy by Licensor.
|
48 |
+
|
49 |
+
GOVERNING LAW: This Agreement shall be construed and enforced in accordance with the laws of the Commonwealth of Pennsylvania without reference to conflict of laws principles. You consent to the personal jurisdiction of the courts of this County and waive their rights to venue outside of Allegheny County, Pennsylvania.
|
50 |
+
|
51 |
+
ENTIRE AGREEMENT AND AMENDMENTS: This Agreement constitutes the sole and entire agreement between Licensee and Licensor as to the matter set forth herein and supersedes any previous agreements, understandings, and arrangements between the parties relating hereto.
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
************************************************************************
|
56 |
+
|
57 |
+
THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
|
58 |
+
|
59 |
+
This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise.
|
60 |
+
|
61 |
+
1. Caffe, version 1.0.0, (https://github.com/BVLC/caffe/)
|
62 |
+
|
63 |
+
COPYRIGHT
|
64 |
+
|
65 |
+
All contributions by the University of California:
|
66 |
+
Copyright (c) 2014-2017 The Regents of the University of California (Regents)
|
67 |
+
All rights reserved.
|
68 |
+
|
69 |
+
All other contributions:
|
70 |
+
Copyright (c) 2014-2017, the respective contributors
|
71 |
+
All rights reserved.
|
72 |
+
|
73 |
+
Caffe uses a shared copyright model: each contributor holds copyright over
|
74 |
+
their contributions to Caffe. The project versioning records all such
|
75 |
+
contribution and copyright details. If a contributor wants to further mark
|
76 |
+
their specific copyright on a particular contribution, they should indicate
|
77 |
+
their copyright solely in the commit message of the change when it is
|
78 |
+
committed.
|
79 |
+
|
80 |
+
LICENSE
|
81 |
+
|
82 |
+
Redistribution and use in source and binary forms, with or without
|
83 |
+
modification, are permitted provided that the following conditions are met:
|
84 |
+
|
85 |
+
1. Redistributions of source code must retain the above copyright notice, this
|
86 |
+
list of conditions and the following disclaimer.
|
87 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
88 |
+
this list of conditions and the following disclaimer in the documentation
|
89 |
+
and/or other materials provided with the distribution.
|
90 |
+
|
91 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
92 |
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
93 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
94 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
95 |
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
96 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
97 |
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
98 |
+
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
99 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
100 |
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
101 |
+
|
102 |
+
CONTRIBUTION AGREEMENT
|
103 |
+
|
104 |
+
By contributing to the BVLC/caffe repository through pull-request, comment,
|
105 |
+
or otherwise, the contributor releases their content to the
|
106 |
+
license and copyright terms herein.
|
107 |
+
|
108 |
+
************END OF THIRD-PARTY SOFTWARE NOTICES AND INFORMATION**********
|
annotator/openpose/__init__.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Openpose
|
2 |
+
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
3 |
+
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
4 |
+
# 3rd Edited by ControlNet
|
5 |
+
# 4th Edited by ControlNet (added face and correct hands)
|
6 |
+
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs)
|
7 |
+
# This preprocessor is licensed by CMU for non-commercial use only.
|
8 |
+
|
9 |
+
|
10 |
+
import os
|
11 |
+
|
12 |
+
from annotator.base_annotator import BaseProcessor
|
13 |
+
|
14 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
15 |
+
|
16 |
+
import json
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
from . import util
|
20 |
+
from .body import Body, BodyResult, Keypoint
|
21 |
+
from .hand import Hand
|
22 |
+
from .face import Face
|
23 |
+
|
24 |
+
from typing import NamedTuple, Tuple, List, Callable, Union
|
25 |
+
|
26 |
+
body_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth"
|
27 |
+
hand_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth"
|
28 |
+
face_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth"
|
29 |
+
|
30 |
+
HandResult = List[Keypoint]
|
31 |
+
FaceResult = List[Keypoint]
|
32 |
+
|
33 |
+
|
34 |
+
class PoseResult(NamedTuple):
|
35 |
+
body: BodyResult
|
36 |
+
left_hand: Union[HandResult, None]
|
37 |
+
right_hand: Union[HandResult, None]
|
38 |
+
face: Union[FaceResult, None]
|
39 |
+
|
40 |
+
|
41 |
+
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True):
|
42 |
+
"""
|
43 |
+
Draw the detected poses on an empty canvas.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses.
|
47 |
+
H (int): The height of the canvas.
|
48 |
+
W (int): The width of the canvas.
|
49 |
+
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True.
|
50 |
+
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True.
|
51 |
+
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses.
|
55 |
+
"""
|
56 |
+
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
57 |
+
|
58 |
+
for pose in poses:
|
59 |
+
if draw_body:
|
60 |
+
canvas = util.draw_bodypose(canvas, pose.body.keypoints)
|
61 |
+
|
62 |
+
if draw_hand:
|
63 |
+
canvas = util.draw_handpose(canvas, pose.left_hand)
|
64 |
+
canvas = util.draw_handpose(canvas, pose.right_hand)
|
65 |
+
|
66 |
+
if draw_face:
|
67 |
+
canvas = util.draw_facepose(canvas, pose.face)
|
68 |
+
|
69 |
+
return canvas
|
70 |
+
|
71 |
+
|
72 |
+
def encode_poses_as_json(poses: List[PoseResult], canvas_height: int, canvas_width: int) -> str:
|
73 |
+
""" Encode the pose as a JSON string following openpose JSON output format:
|
74 |
+
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md
|
75 |
+
"""
|
76 |
+
|
77 |
+
def compress_keypoints(keypoints: Union[List[Keypoint], None]) -> Union[List[float], None]:
|
78 |
+
if not keypoints:
|
79 |
+
return None
|
80 |
+
|
81 |
+
return [
|
82 |
+
value
|
83 |
+
for keypoint in keypoints
|
84 |
+
for value in (
|
85 |
+
[float(keypoint.x), float(keypoint.y), 1.0]
|
86 |
+
if keypoint is not None
|
87 |
+
else [0.0, 0.0, 0.0]
|
88 |
+
)
|
89 |
+
]
|
90 |
+
|
91 |
+
return json.dumps({
|
92 |
+
'people': [
|
93 |
+
{
|
94 |
+
'pose_keypoints_2d': compress_keypoints(pose.body.keypoints),
|
95 |
+
"face_keypoints_2d": compress_keypoints(pose.face),
|
96 |
+
"hand_left_keypoints_2d": compress_keypoints(pose.left_hand),
|
97 |
+
"hand_right_keypoints_2d": compress_keypoints(pose.right_hand),
|
98 |
+
}
|
99 |
+
for pose in poses
|
100 |
+
],
|
101 |
+
'canvas_height': canvas_height,
|
102 |
+
'canvas_width': canvas_width,
|
103 |
+
}, indent=4)
|
104 |
+
|
105 |
+
|
106 |
+
class OpenposeDetector(BaseProcessor):
|
107 |
+
"""
|
108 |
+
A class for detecting human poses in images using the Openpose model.
|
109 |
+
|
110 |
+
Attributes:
|
111 |
+
model_dir (str): Path to the directory where the pose models are stored.
|
112 |
+
"""
|
113 |
+
|
114 |
+
def __init__(self, **kwargs):
|
115 |
+
"""
|
116 |
+
初始化device 默认CPU
|
117 |
+
初始化模型路径
|
118 |
+
"""
|
119 |
+
super().__init__(**kwargs)
|
120 |
+
self.model_dir = os.path.join(self.models_path, "openpose")
|
121 |
+
self.body_estimation = None
|
122 |
+
self.hand_estimation = None
|
123 |
+
self.face_estimation = None
|
124 |
+
|
125 |
+
def load_model(self):
|
126 |
+
"""
|
127 |
+
Load the Openpose body, hand, and face models.
|
128 |
+
"""
|
129 |
+
body_modelpath = os.path.join(self.model_dir, "body_pose_model.pth")
|
130 |
+
hand_modelpath = os.path.join(self.model_dir, "hand_pose_model.pth")
|
131 |
+
face_modelpath = os.path.join(self.model_dir, "facenet.pth")
|
132 |
+
|
133 |
+
if not os.path.exists(body_modelpath):
|
134 |
+
from basicsr.utils.download_util import load_file_from_url
|
135 |
+
load_file_from_url(body_model_path, model_dir=self.model_dir)
|
136 |
+
|
137 |
+
if not os.path.exists(hand_modelpath):
|
138 |
+
from basicsr.utils.download_util import load_file_from_url
|
139 |
+
load_file_from_url(hand_model_path, model_dir=self.model_dir)
|
140 |
+
|
141 |
+
if not os.path.exists(face_modelpath):
|
142 |
+
from basicsr.utils.download_util import load_file_from_url
|
143 |
+
load_file_from_url(face_model_path, model_dir=self.model_dir)
|
144 |
+
|
145 |
+
self.body_estimation = Body(body_modelpath)
|
146 |
+
self.hand_estimation = Hand(hand_modelpath)
|
147 |
+
self.face_estimation = Face(face_modelpath)
|
148 |
+
|
149 |
+
def unload_model(self):
|
150 |
+
"""
|
151 |
+
Unload the Openpose models by moving them to the CPU.
|
152 |
+
"""
|
153 |
+
if self.body_estimation is not None:
|
154 |
+
self.body_estimation.model.to("cpu")
|
155 |
+
self.hand_estimation.model.to("cpu")
|
156 |
+
self.face_estimation.model.to("cpu")
|
157 |
+
|
158 |
+
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]:
|
159 |
+
left_hand = None
|
160 |
+
right_hand = None
|
161 |
+
H, W, _ = oriImg.shape
|
162 |
+
for x, y, w, is_left in util.handDetect(body, oriImg):
|
163 |
+
peaks = self.hand_estimation(oriImg[y:y + w, x:x + w, :]).astype(np.float32)
|
164 |
+
if peaks.ndim == 2 and peaks.shape[1] == 2:
|
165 |
+
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
|
166 |
+
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
|
167 |
+
|
168 |
+
hand_result = [
|
169 |
+
Keypoint(x=peak[0], y=peak[1])
|
170 |
+
for peak in peaks
|
171 |
+
]
|
172 |
+
|
173 |
+
if is_left:
|
174 |
+
left_hand = hand_result
|
175 |
+
else:
|
176 |
+
right_hand = hand_result
|
177 |
+
|
178 |
+
return left_hand, right_hand
|
179 |
+
|
180 |
+
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]:
|
181 |
+
face = util.faceDetect(body, oriImg)
|
182 |
+
if face is None:
|
183 |
+
return None
|
184 |
+
|
185 |
+
x, y, w = face
|
186 |
+
H, W, _ = oriImg.shape
|
187 |
+
heatmaps = self.face_estimation(oriImg[y:y + w, x:x + w, :])
|
188 |
+
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32)
|
189 |
+
if peaks.ndim == 2 and peaks.shape[1] == 2:
|
190 |
+
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
|
191 |
+
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
|
192 |
+
return [
|
193 |
+
Keypoint(x=peak[0], y=peak[1])
|
194 |
+
for peak in peaks
|
195 |
+
]
|
196 |
+
|
197 |
+
return None
|
198 |
+
|
199 |
+
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]:
|
200 |
+
"""
|
201 |
+
Detect poses in the given image.
|
202 |
+
Args:
|
203 |
+
oriImg (numpy.ndarray): The input image for pose detection.
|
204 |
+
include_hand (bool, optional): Whether to include hand detection. Defaults to False.
|
205 |
+
include_face (bool, optional): Whether to include face detection. Defaults to False.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
List[PoseResult]: A list of PoseResult objects containing the detected poses.
|
209 |
+
"""
|
210 |
+
if self.body_estimation is None:
|
211 |
+
self.load_model()
|
212 |
+
|
213 |
+
self.body_estimation.model.to(self.device)
|
214 |
+
self.hand_estimation.model.to(self.device)
|
215 |
+
self.face_estimation.model.to(self.device)
|
216 |
+
|
217 |
+
self.body_estimation.cn_device = self.device
|
218 |
+
self.hand_estimation.cn_device = self.device
|
219 |
+
self.face_estimation.cn_device = self.device
|
220 |
+
|
221 |
+
oriImg = oriImg[:, :, ::-1].copy()
|
222 |
+
H, W, C = oriImg.shape
|
223 |
+
with torch.no_grad():
|
224 |
+
candidate, subset = self.body_estimation(oriImg)
|
225 |
+
bodies = self.body_estimation.format_body_result(candidate, subset)
|
226 |
+
|
227 |
+
results = []
|
228 |
+
for body in bodies:
|
229 |
+
left_hand, right_hand, face = (None,) * 3
|
230 |
+
if include_hand:
|
231 |
+
left_hand, right_hand = self.detect_hands(body, oriImg)
|
232 |
+
if include_face:
|
233 |
+
face = self.detect_face(body, oriImg)
|
234 |
+
|
235 |
+
results.append(PoseResult(BodyResult(
|
236 |
+
keypoints=[
|
237 |
+
Keypoint(
|
238 |
+
x=keypoint.x / float(W),
|
239 |
+
y=keypoint.y / float(H)
|
240 |
+
) if keypoint is not None else None
|
241 |
+
for keypoint in body.keypoints
|
242 |
+
],
|
243 |
+
total_score=body.total_score,
|
244 |
+
total_parts=body.total_parts
|
245 |
+
), left_hand, right_hand, face))
|
246 |
+
|
247 |
+
return results
|
248 |
+
|
249 |
+
def __call__(
|
250 |
+
self, oriImg, include_body=True, include_hand=False, include_face=False,
|
251 |
+
json_pose_callback: Callable[[str], None] = None,
|
252 |
+
):
|
253 |
+
"""
|
254 |
+
Detect and draw poses in the given image.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
oriImg (numpy.ndarray): The input image for pose detection and drawing.
|
258 |
+
include_body (bool, optional): Whether to include body keypoints. Defaults to True.
|
259 |
+
include_hand (bool, optional): Whether to include hand keypoints. Defaults to False.
|
260 |
+
include_face (bool, optional): Whether to include face keypoints. Defaults to False.
|
261 |
+
json_pose_callback (Callable, optional): A callback that accepts the pose JSON string.
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
numpy.ndarray: The image with detected and drawn poses.
|
265 |
+
"""
|
266 |
+
H, W, _ = oriImg.shape
|
267 |
+
poses = self.detect_poses(oriImg, include_hand, include_face)
|
268 |
+
if json_pose_callback:
|
269 |
+
json_pose_callback(encode_poses_as_json(poses, H, W))
|
270 |
+
return draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face)
|
annotator/openpose/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (9.47 kB). View file
|
|