File size: 3,293 Bytes
eb144e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import datetime
import random
from argparse import ArgumentParser
from pathlib import Path

import numpy as np
import torch
import yaml
from tqdm import tqdm

from datasets.video_dataset import AtlasDataset
from models.video_model import VideoModel
from util.atlas_loss import AtlasLoss
from util.util import get_optimizer
from util.video_logger import DataLogger


def train_model(config):
    # set seed
    seed = config["seed"]
    if seed == -1:
        seed = np.random.randint(2 ** 32)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    print(f"running with seed: {seed}.")

    dataset = AtlasDataset(config)
    model = VideoModel(config)
    criterion = AtlasLoss(config)
    optimizer = get_optimizer(config, model.parameters())

    logger = DataLogger(config, dataset)
    with tqdm(range(1, config["n_epochs"] + 1)) as tepoch:
        for epoch in tepoch:
            inputs = dataset[0]
            optimizer.zero_grad()
            outputs = model(inputs)
            losses = criterion(outputs, inputs)

            loss = 0.
            if config["finetune_foreground"]:
                loss += losses["foreground"]["loss"]
            elif config["finetune_background"]:
                loss += losses["background"]["loss"]

            lr = optimizer.param_groups[0]["lr"]
            log_data = logger.log_data(epoch, lr, losses, model, dataset)

            loss.backward()
            optimizer.step()
            optimizer.param_groups[0]["lr"] = max(config["min_lr"], config["gamma"] * optimizer.param_groups[0]["lr"])

            if config["use_wandb"]:
                wandb.log(log_data)
            else:
                if epoch % config["log_images_freq"] == 0:
                    logger.save_locally(log_data)

            tepoch.set_description(f"Epoch {epoch}")
            tepoch.set_postfix(loss=loss.item())


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument(
        "--config",
        default="./configs/video_config.yaml",
        help="Config path",
    )
    parser.add_argument(
        "--example_config",
        default="car-turn_winter.yaml",
        help="Example config name",
    )
    args = parser.parse_args()
    config_path = args.config

    with open(config_path, "r") as f:
        config = yaml.safe_load(f)
    with open(f"./configs/video_example_configs/{args.example_config}", "r") as f:
        example_config = yaml.safe_load(f)
    config["example_config"] = args.example_config
    config.update(example_config)

    run_name = f"-{config['checkpoint_path'].split('/')[-2]}"
    if config["use_wandb"]:
        import wandb

        wandb.init(project=config["wandb_project"], entity=config["wandb_entity"], config=config, name=run_name)
        wandb.run.name = str(wandb.run.id) + wandb.run.name
        config = dict(wandb.config)
    else:
        now = datetime.datetime.now()
        run_name = f"{now.strftime('%Y-%m-%d_%H-%M-%S')}{run_name}"
        path = Path(f"{config['results_folder']}/{run_name}")
        path.mkdir(parents=True, exist_ok=True)
        with open(path / "config.yaml", "w") as f:
            yaml.dump(config, f)
        config["results_folder"] = str(path)

    train_model(config)
    if config["use_wandb"]:
        wandb.finish()