Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import MarianMTModel, MarianTokenizer | |
# Define a dictionary of available languages and their corresponding Hugging Face models | |
LANGUAGE_MODELS = { | |
"French": "Helsinki-NLP/opus-mt-en-fr", | |
"German": "Helsinki-NLP/opus-mt-en-de", | |
"Spanish": "Helsinki-NLP/opus-mt-en-es", | |
"Italian": "Helsinki-NLP/opus-mt-en-it", | |
"Portuguese": "Helsinki-NLP/opus-mt-en-pt", | |
# Add more languages and their models here | |
} | |
def load_model(language): | |
model_name = LANGUAGE_MODELS.get(language) | |
if model_name is None: | |
st.error("Selected language not supported.") | |
return None, None | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
return tokenizer, model | |
def translate_text(text, tokenizer, model): | |
inputs = tokenizer(text, return_tensors="pt", padding=True) | |
translated = model.generate(**inputs) | |
translation = tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translation | |
def main(): | |
st.title("Language Translator") | |
st.write("This app translates English text into selected languages using Hugging Face models.") | |
# Select target language | |
target_language = st.selectbox("Select target language", list(LANGUAGE_MODELS.keys())) | |
# Input text | |
input_text = st.text_area("Enter text in English") | |
if st.button("Translate"): | |
if not input_text: | |
st.error("Please enter text to translate.") | |
else: | |
# Load the model and tokenizer for the selected language | |
tokenizer, model = load_model(target_language) | |
if tokenizer and model: | |
# Translate the text | |
translated_text = translate_text(input_text, tokenizer, model) | |
st.subheader("Translated Text") | |
st.write(translated_text) | |
if __name__ == "__main__": | |
main() | |
pip install streamlit transformers torch | |