diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..ed8ebf583f771da9150c35db3955987b7d757904
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+__pycache__
\ No newline at end of file
diff --git a/README.md b/README.md
index 7662aba1723ba588f4c4d06076ca18d10eaba4aa..651b4b00fb8fe39860c309736e620ba97d6b39f0 100644
--- a/README.md
+++ b/README.md
@@ -7,7 +7,7 @@ sdk: gradio
sdk_version: 4.25.0
app_file: app.py
pinned: false
-license: mit
+license: apache-2.0
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/app.py b/app.py
new file mode 100755
index 0000000000000000000000000000000000000000..5fd9db8da9c246dd5e56134130225e8df95f702b
--- /dev/null
+++ b/app.py
@@ -0,0 +1,349 @@
+import os
+import imageio
+import numpy as np
+import torch
+import rembg
+from PIL import Image
+from torchvision.transforms import v2
+from pytorch_lightning import seed_everything
+from omegaconf import OmegaConf
+from einops import rearrange, repeat
+from tqdm import tqdm
+from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
+
+from src.utils.train_util import instantiate_from_config
+from src.utils.camera_util import (
+ FOV_to_intrinsics,
+ get_zero123plus_input_cameras,
+ get_circular_camera_poses,
+)
+from src.utils.mesh_util import save_obj
+from src.utils.infer_util import remove_background, resize_foreground, images_to_video
+
+import tempfile
+from functools import partial
+
+from huggingface_hub import hf_hub_download
+import spaces
+
+
+def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
+ """
+ Get the rendering camera parameters.
+ """
+ c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
+ if is_flexicubes:
+ cameras = torch.linalg.inv(c2ws)
+ cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
+ else:
+ extrinsics = c2ws.flatten(-2)
+ intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
+ cameras = torch.cat([extrinsics, intrinsics], dim=-1)
+ cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
+ return cameras
+
+
+def images_to_video(images, output_path, fps=30):
+ # images: (N, C, H, W)
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
+ frames = []
+ for i in range(images.shape[0]):
+ frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
+ assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
+ f"Frame shape mismatch: {frame.shape} vs {images.shape}"
+ assert frame.min() >= 0 and frame.max() <= 255, \
+ f"Frame value out of range: {frame.min()} ~ {frame.max()}"
+ frames.append(frame)
+ imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
+
+
+###############################################################################
+# Configuration.
+###############################################################################
+
+config_path = 'configs/instant-mesh-large-eval.yaml'
+config = OmegaConf.load(config_path)
+config_name = os.path.basename(config_path).replace('.yaml', '')
+model_config = config.model_config
+infer_config = config.infer_config
+
+IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
+
+device = torch.device('cuda')
+
+# load diffusion model
+print('Loading diffusion model ...')
+pipeline = DiffusionPipeline.from_pretrained(
+ "sudo-ai/zero123plus-v1.2",
+ custom_pipeline="zero123plus",
+ torch_dtype=torch.float16,
+)
+pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
+ pipeline.scheduler.config, timestep_spacing='trailing'
+)
+
+# load custom white-background UNet
+unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
+state_dict = torch.load(unet_ckpt_path, map_location='cpu')
+pipeline.unet.load_state_dict(state_dict, strict=True)
+
+pipeline = pipeline.to(device)
+
+# load reconstruction model
+print('Loading reconstruction model ...')
+model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
+model = instantiate_from_config(model_config)
+state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
+state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
+model.load_state_dict(state_dict, strict=True)
+
+model = model.to(device)
+if IS_FLEXICUBES:
+ model.init_flexicubes_geometry(device)
+model = model.eval()
+
+print('Loading Finished!')
+
+
+def check_input_image(input_image):
+ if input_image is None:
+ raise gr.Error("No image uploaded!")
+
+
+def preprocess(input_image, do_remove_background):
+
+ rembg_session = rembg.new_session() if do_remove_background else None
+
+ if do_remove_background:
+ input_image = remove_background(input_image, rembg_session)
+ input_image = resize_foreground(input_image, 0.85)
+
+ return input_image
+
+
+@spaces.GPU
+def generate_mvs(input_image, sample_steps, sample_seed):
+
+ seed_everything(sample_seed)
+
+ # sampling
+ z123_image = pipeline(
+ input_image,
+ num_inference_steps=sample_steps
+ ).images[0]
+
+ show_image = np.asarray(z123_image, dtype=np.uint8)
+ show_image = torch.from_numpy(show_image) # (960, 640, 3)
+ show_image = rearrange(show_image, '(n h) (m w) c -> (m h) (n w) c', n=3, m=2)
+ show_image = Image.fromarray(show_image.numpy())
+
+ return z123_image, show_image
+
+
+@spaces.GPU
+def make_mesh(mesh_fpath, planes):
+
+ mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
+ mesh_dirname = os.path.dirname(mesh_fpath)
+ mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
+
+ with torch.no_grad():
+
+ # get mesh
+ mesh_out = model.extract_mesh(
+ planes,
+ use_texture_map=False,
+ **infer_config,
+ )
+
+ vertices, faces, vertex_colors = mesh_out
+ vertices = vertices[:, [0, 2, 1]]
+ vertices[:, -1] *= -1
+
+ save_obj(vertices, faces, vertex_colors, mesh_fpath)
+
+ print(f"Mesh saved to {mesh_fpath}")
+
+ return mesh_fpath
+
+
+@spaces.GPU
+def make3d(images):
+
+ images = np.asarray(images, dtype=np.float32) / 255.0
+ images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
+ images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
+
+ input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=2.5).to(device)
+ render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
+
+ images = images.unsqueeze(0).to(device)
+ images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
+
+ mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
+ print(mesh_fpath)
+ mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
+ mesh_dirname = os.path.dirname(mesh_fpath)
+ video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
+
+ with torch.no_grad():
+ # get triplane
+ planes = model.forward_planes(images, input_cameras)
+
+ # get video
+ chunk_size = 20 if IS_FLEXICUBES else 1
+ render_size = 384
+
+ frames = []
+ for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
+ if IS_FLEXICUBES:
+ frame = model.forward_geometry(
+ planes,
+ render_cameras[:, i:i+chunk_size],
+ render_size=render_size,
+ )['img']
+ else:
+ frame = model.synthesizer(
+ planes,
+ cameras=render_cameras[:, i:i+chunk_size],
+ render_size=render_size,
+ )['images_rgb']
+ frames.append(frame)
+ frames = torch.cat(frames, dim=1)
+
+ images_to_video(
+ frames[0],
+ video_fpath,
+ fps=30,
+ )
+
+ print(f"Video saved to {video_fpath}")
+
+ mesh_fpath = make_mesh(mesh_fpath, planes)
+
+ return video_fpath, mesh_fpath
+
+
+import gradio as gr
+
+_HEADER_ = '''
+
+'''
+
+_LINKS_ = '''
+Code is available at GitHub
+Report is available at ArXiv
+'''
+
+_CITE_ = r"""
+```bibtex
+@article{xu2024instantmesh,
+ title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models},
+ author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying},
+ journal={arXiv preprint arXiv:2404.07191},
+ year={2024}
+}
+```
+"""
+
+
+with gr.Blocks() as demo:
+ gr.Markdown(_HEADER_)
+ with gr.Row(variant="panel"):
+ with gr.Column():
+ with gr.Row():
+ input_image = gr.Image(
+ label="Input Image",
+ image_mode="RGBA",
+ sources="upload",
+ width=256,
+ height=256,
+ type="pil",
+ elem_id="content_image",
+ )
+ processed_image = gr.Image(
+ label="Processed Image",
+ image_mode="RGBA",
+ width=256,
+ height=256,
+ type="pil",
+ interactive=False
+ )
+ with gr.Row():
+ with gr.Group():
+ do_remove_background = gr.Checkbox(
+ label="Remove Background", value=True
+ )
+ sample_seed = gr.Number(value=42, label="Seed (Try a different value if the result is unsatisfying)", precision=0)
+
+ sample_steps = gr.Slider(
+ label="Sample Steps",
+ minimum=30,
+ maximum=75,
+ value=75,
+ step=5
+ )
+
+ with gr.Row():
+ submit = gr.Button("Generate", elem_id="generate", variant="primary")
+
+ with gr.Row(variant="panel"):
+ gr.Examples(
+ examples=[
+ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
+ ],
+ inputs=[input_image],
+ label="Examples",
+ examples_per_page=20
+ )
+
+ with gr.Column():
+
+ with gr.Row():
+
+ with gr.Column():
+ mv_show_images = gr.Image(
+ label="Generated Multi-views",
+ type="pil",
+ width=379,
+ interactive=False
+ )
+
+ with gr.Column():
+ output_video = gr.Video(
+ label="video", format="mp4",
+ width=379,
+ autoplay=True,
+ interactive=False
+ )
+
+ with gr.Row():
+ output_model_obj = gr.Model3D(
+ label="Output Model (OBJ Format)",
+ width=768,
+ interactive=False,
+ )
+ gr.Markdown(_LINKS_)
+ gr.Markdown(_CITE_)
+
+ mv_images = gr.State()
+
+ submit.click(fn=check_input_image, inputs=[input_image]).success(
+ fn=preprocess,
+ inputs=[input_image, do_remove_background],
+ outputs=[processed_image],
+ ).success(
+ fn=generate_mvs,
+ inputs=[processed_image, sample_steps, sample_seed],
+ outputs=[mv_images, mv_show_images],
+ ).success(
+ fn=make3d,
+ inputs=[mv_images],
+ outputs=[output_video, output_model_obj]
+ )
+
+demo.launch()
\ No newline at end of file
diff --git a/configs/instant-mesh-base.yaml b/configs/instant-mesh-base.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..ad4f4c0cd0d3c6f4d3038b657a41dab82c048dd1
--- /dev/null
+++ b/configs/instant-mesh-base.yaml
@@ -0,0 +1,22 @@
+model_config:
+ target: src.models.lrm_mesh.InstantMesh
+ params:
+ encoder_feat_dim: 768
+ encoder_freeze: false
+ encoder_model_name: facebook/dino-vitb16
+ transformer_dim: 1024
+ transformer_layers: 12
+ transformer_heads: 16
+ triplane_low_res: 32
+ triplane_high_res: 64
+ triplane_dim: 40
+ rendering_samples_per_ray: 96
+ grid_res: 128
+ grid_scale: 2.1
+
+
+infer_config:
+ unet_path: ckpts/diffusion_pytorch_model.bin
+ model_path: ckpts/instant_mesh_base.ckpt
+ texture_resolution: 1024
+ render_resolution: 512
\ No newline at end of file
diff --git a/configs/instant-mesh-large.yaml b/configs/instant-mesh-large.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..e296bc89f6d0d0649136ba2ce0e34490f76a5e41
--- /dev/null
+++ b/configs/instant-mesh-large.yaml
@@ -0,0 +1,22 @@
+model_config:
+ target: src.models.lrm_mesh.InstantMesh
+ params:
+ encoder_feat_dim: 768
+ encoder_freeze: false
+ encoder_model_name: facebook/dino-vitb16
+ transformer_dim: 1024
+ transformer_layers: 16
+ transformer_heads: 16
+ triplane_low_res: 32
+ triplane_high_res: 64
+ triplane_dim: 80
+ rendering_samples_per_ray: 128
+ grid_res: 128
+ grid_scale: 2.1
+
+
+infer_config:
+ unet_path: ckpts/diffusion_pytorch_model.bin
+ model_path: ckpts/instant_mesh_large.ckpt
+ texture_resolution: 1024
+ render_resolution: 512
\ No newline at end of file
diff --git a/configs/instant-nerf-base.yaml b/configs/instant-nerf-base.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..ded3d484751127d430891fc28eb2de664aecd5e1
--- /dev/null
+++ b/configs/instant-nerf-base.yaml
@@ -0,0 +1,21 @@
+model_config:
+ target: src.models.lrm.InstantNeRF
+ params:
+ encoder_feat_dim: 768
+ encoder_freeze: false
+ encoder_model_name: facebook/dino-vitb16
+ transformer_dim: 1024
+ transformer_layers: 12
+ transformer_heads: 16
+ triplane_low_res: 32
+ triplane_high_res: 64
+ triplane_dim: 40
+ rendering_samples_per_ray: 96
+
+
+infer_config:
+ unet_path: ckpts/diffusion_pytorch_model.bin
+ model_path: ckpts/instant_nerf_base.ckpt
+ mesh_threshold: 10.0
+ mesh_resolution: 256
+ render_resolution: 384
\ No newline at end of file
diff --git a/configs/instant-nerf-large.yaml b/configs/instant-nerf-large.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..57494b69d74ee78dca2e2cead2ef68ddfd0fd531
--- /dev/null
+++ b/configs/instant-nerf-large.yaml
@@ -0,0 +1,21 @@
+model_config:
+ target: src.models.lrm.InstantNeRF
+ params:
+ encoder_feat_dim: 768
+ encoder_freeze: false
+ encoder_model_name: facebook/dino-vitb16
+ transformer_dim: 1024
+ transformer_layers: 16
+ transformer_heads: 16
+ triplane_low_res: 32
+ triplane_high_res: 64
+ triplane_dim: 80
+ rendering_samples_per_ray: 128
+
+
+infer_config:
+ unet_path: ckpts/diffusion_pytorch_model.bin
+ model_path: ckpts/instant_nerf_large.ckpt
+ mesh_threshold: 10.0
+ mesh_resolution: 256
+ render_resolution: 384
\ No newline at end of file
diff --git a/examples/bird.jpg b/examples/bird.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..ac70a36ebefb87fb283f3bb95d07fe71700702a3
Binary files /dev/null and b/examples/bird.jpg differ
diff --git a/examples/bubble_mart_blue.png b/examples/bubble_mart_blue.png
new file mode 100755
index 0000000000000000000000000000000000000000..af870322d4a8a2f237546fbea9560bb8e5f50364
Binary files /dev/null and b/examples/bubble_mart_blue.png differ
diff --git a/examples/cake.jpg b/examples/cake.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..2648c3fb4381e1173ebe42f003d47e45d4cb7816
Binary files /dev/null and b/examples/cake.jpg differ
diff --git a/examples/cartoon_dinosaur.png b/examples/cartoon_dinosaur.png
new file mode 100755
index 0000000000000000000000000000000000000000..598964626b767eb6470a28a68537c091fc5de2f8
Binary files /dev/null and b/examples/cartoon_dinosaur.png differ
diff --git a/examples/cartoon_girl.jpg b/examples/cartoon_girl.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..0664c7bb99a569faee449482ece59e3c32f06642
Binary files /dev/null and b/examples/cartoon_girl.jpg differ
diff --git a/examples/chair_comfort.jpg b/examples/chair_comfort.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..918347fe51773d7ecaa7fb929274db8d7d5d3e19
Binary files /dev/null and b/examples/chair_comfort.jpg differ
diff --git a/examples/chair_wood.jpg b/examples/chair_wood.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..bc60569896fb02a46185aabb85086890f0f400d7
Binary files /dev/null and b/examples/chair_wood.jpg differ
diff --git a/examples/chest.jpg b/examples/chest.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..26ae0b145887e43b850d298b94fe54828e909492
Binary files /dev/null and b/examples/chest.jpg differ
diff --git a/examples/cube.png b/examples/cube.png
new file mode 100644
index 0000000000000000000000000000000000000000..38a4636cb0febd8ff38f09448de47ca4e524ccf1
Binary files /dev/null and b/examples/cube.png differ
diff --git a/examples/extinguisher.png b/examples/extinguisher.png
new file mode 100755
index 0000000000000000000000000000000000000000..98f43a66718d49980e61d466b652bfca0a7ae9df
Binary files /dev/null and b/examples/extinguisher.png differ
diff --git a/examples/fruit_bycycle.jpg b/examples/fruit_bycycle.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..4695b19dc1078776f5e10b055c7fffcedbb984d3
Binary files /dev/null and b/examples/fruit_bycycle.jpg differ
diff --git a/examples/fruit_elephant.jpg b/examples/fruit_elephant.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..ef8eaf3b88ae0a38272b34802fe40032055afa58
Binary files /dev/null and b/examples/fruit_elephant.jpg differ
diff --git a/examples/genshin_building.png b/examples/genshin_building.png
new file mode 100755
index 0000000000000000000000000000000000000000..00b6a949d01283e1ae30fac4bd6040e13f18a055
Binary files /dev/null and b/examples/genshin_building.png differ
diff --git a/examples/house2.jpg b/examples/house2.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..2eb8d63a6b91d5b16e729710c8b703aa5c11f9e5
Binary files /dev/null and b/examples/house2.jpg differ
diff --git a/examples/kunkun.png b/examples/kunkun.png
new file mode 100755
index 0000000000000000000000000000000000000000..806c188eccfe9b2ad787d83ec979eee09a813127
Binary files /dev/null and b/examples/kunkun.png differ
diff --git a/examples/mushroom_teapot.jpg b/examples/mushroom_teapot.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a6c767354305f5467a4c0d5f199eee2a120f4501
Binary files /dev/null and b/examples/mushroom_teapot.jpg differ
diff --git a/examples/pikachu.png b/examples/pikachu.png
new file mode 100755
index 0000000000000000000000000000000000000000..e7579c16957a3e13b80d53cf0a41ddfdfd47b92d
Binary files /dev/null and b/examples/pikachu.png differ
diff --git a/examples/pistol.png b/examples/pistol.png
new file mode 100755
index 0000000000000000000000000000000000000000..7b814e7f43e69815d7d923e0cdcf7c02ca75249c
Binary files /dev/null and b/examples/pistol.png differ
diff --git a/examples/plant.jpg b/examples/plant.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3519c1639c3f837d9f1147cba1172e6aaab25a23
Binary files /dev/null and b/examples/plant.jpg differ
diff --git a/examples/robot.jpg b/examples/robot.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..929450fba69a20389f39d46cb51d27facc1bba6d
Binary files /dev/null and b/examples/robot.jpg differ
diff --git a/examples/sea_turtle.png b/examples/sea_turtle.png
new file mode 100755
index 0000000000000000000000000000000000000000..27c3e2a9c7d44cb33914422b410ef41cf6591433
Binary files /dev/null and b/examples/sea_turtle.png differ
diff --git a/examples/skating_shoe.jpg b/examples/skating_shoe.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..5f21cb1d43e9d42d2836118963fc1d2874523748
Binary files /dev/null and b/examples/skating_shoe.jpg differ
diff --git a/examples/sorting_board.png b/examples/sorting_board.png
new file mode 100755
index 0000000000000000000000000000000000000000..a40fb8362afce0e323dd4517bba784cc652f5f6c
Binary files /dev/null and b/examples/sorting_board.png differ
diff --git a/examples/sword.png b/examples/sword.png
new file mode 100755
index 0000000000000000000000000000000000000000..3068cb9bdbbd9ed3c0a143fd5c741abbc58508e3
Binary files /dev/null and b/examples/sword.png differ
diff --git a/examples/toy_car.jpg b/examples/toy_car.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..ffa72aa6c1510e200e5d640461b779d2e7bf4997
Binary files /dev/null and b/examples/toy_car.jpg differ
diff --git a/examples/toyduck.png b/examples/toyduck.png
new file mode 100644
index 0000000000000000000000000000000000000000..b08372317bd892362a665ceadd2e8ddf40f26198
Binary files /dev/null and b/examples/toyduck.png differ
diff --git a/examples/watermelon.png b/examples/watermelon.png
new file mode 100755
index 0000000000000000000000000000000000000000..52b39917abcbd2f1eef9b7c8cf9aa602bddde1bf
Binary files /dev/null and b/examples/watermelon.png differ
diff --git a/examples/whitedog.png b/examples/whitedog.png
new file mode 100755
index 0000000000000000000000000000000000000000..16c598a8133643898408ea806b69d5b18c53be7d
Binary files /dev/null and b/examples/whitedog.png differ
diff --git a/examples/x_cube.jpg b/examples/x_cube.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c05d020f888945c81f516d47ace9887c9fe6e998
Binary files /dev/null and b/examples/x_cube.jpg differ
diff --git a/examples/x_teapot.jpg b/examples/x_teapot.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4e1cb46c5541dcc4ea544864e2eeebd42dfcb18a
Binary files /dev/null and b/examples/x_teapot.jpg differ
diff --git a/examples/x_toyduck.jpg b/examples/x_toyduck.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5e60d43bd76d7511e44568c4f9bba2a11a1a4f04
Binary files /dev/null and b/examples/x_toyduck.jpg differ
diff --git a/requirements.txt b/requirements.txt
new file mode 100755
index 0000000000000000000000000000000000000000..1851076ab0faf7f5973adfd305d52040d6a2217f
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,21 @@
+pytorch-lightning==2.1.2
+einops
+omegaconf
+deepspeed
+torchmetrics
+webdataset
+accelerate
+tensorboard
+PyMCubes
+trimesh
+rembg
+transformers==4.34.1
+diffusers==0.19.3
+bitsandbytes
+imageio[ffmpeg]
+xatlas
+plyfile
+xformers==0.0.22.post7
+git+https://github.com/NVlabs/nvdiffrast/
+torch-scatter -f https://data.pyg.org/whl/torch-2.1.0+cu121.html
+huggingface-hub
\ No newline at end of file
diff --git a/src/__init__.py b/src/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/data/__init__.py b/src/data/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/data/objaverse.py b/src/data/objaverse.py
new file mode 100755
index 0000000000000000000000000000000000000000..dd27f86c2469e74da28e27929929d84cd1718965
--- /dev/null
+++ b/src/data/objaverse.py
@@ -0,0 +1,329 @@
+import os, sys
+import math
+import json
+import importlib
+from pathlib import Path
+
+import cv2
+import random
+import numpy as np
+from PIL import Image
+import webdataset as wds
+import pytorch_lightning as pl
+
+import torch
+import torch.nn.functional as F
+from torch.utils.data import Dataset
+from torch.utils.data import DataLoader
+from torch.utils.data.distributed import DistributedSampler
+from torchvision import transforms
+
+from src.utils.train_util import instantiate_from_config
+from src.utils.camera_util import (
+ FOV_to_intrinsics,
+ center_looking_at_camera_pose,
+ get_surrounding_views,
+)
+
+
+class DataModuleFromConfig(pl.LightningDataModule):
+ def __init__(
+ self,
+ batch_size=8,
+ num_workers=4,
+ train=None,
+ validation=None,
+ test=None,
+ **kwargs,
+ ):
+ super().__init__()
+
+ self.batch_size = batch_size
+ self.num_workers = num_workers
+
+ self.dataset_configs = dict()
+ if train is not None:
+ self.dataset_configs['train'] = train
+ if validation is not None:
+ self.dataset_configs['validation'] = validation
+ if test is not None:
+ self.dataset_configs['test'] = test
+
+ def setup(self, stage):
+
+ if stage in ['fit']:
+ self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
+ else:
+ raise NotImplementedError
+
+ def train_dataloader(self):
+
+ sampler = DistributedSampler(self.datasets['train'])
+ return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
+
+ def val_dataloader(self):
+
+ sampler = DistributedSampler(self.datasets['validation'])
+ return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler)
+
+ def test_dataloader(self):
+
+ return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
+
+
+class ObjaverseData(Dataset):
+ def __init__(self,
+ root_dir='objaverse/',
+ meta_fname='valid_paths.json',
+ input_image_dir='rendering_random_32views',
+ target_image_dir='rendering_random_32views',
+ input_view_num=6,
+ target_view_num=2,
+ total_view_n=32,
+ fov=50,
+ camera_rotation=True,
+ validation=False,
+ ):
+ self.root_dir = Path(root_dir)
+ self.input_image_dir = input_image_dir
+ self.target_image_dir = target_image_dir
+
+ self.input_view_num = input_view_num
+ self.target_view_num = target_view_num
+ self.total_view_n = total_view_n
+ self.fov = fov
+ self.camera_rotation = camera_rotation
+
+ with open(os.path.join(root_dir, meta_fname)) as f:
+ filtered_dict = json.load(f)
+ paths = filtered_dict['good_objs']
+ self.paths = paths
+
+ self.depth_scale = 4.0
+
+ total_objects = len(self.paths)
+ print('============= length of dataset %d =============' % len(self.paths))
+
+ def __len__(self):
+ return len(self.paths)
+
+ def load_im(self, path, color):
+ '''
+ replace background pixel with random color in rendering
+ '''
+ pil_img = Image.open(path)
+
+ image = np.asarray(pil_img, dtype=np.float32) / 255.
+ alpha = image[:, :, 3:]
+ image = image[:, :, :3] * alpha + color * (1 - alpha)
+
+ image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
+ alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
+ return image, alpha
+
+ def __getitem__(self, index):
+ # load data
+ while True:
+ input_image_path = os.path.join(self.root_dir, self.input_image_dir, self.paths[index])
+ target_image_path = os.path.join(self.root_dir, self.target_image_dir, self.paths[index])
+
+ indices = np.random.choice(range(self.total_view_n), self.input_view_num + self.target_view_num, replace=False)
+ input_indices = indices[:self.input_view_num]
+ target_indices = indices[self.input_view_num:]
+
+ '''background color, default: white'''
+ bg_white = [1., 1., 1.]
+ bg_black = [0., 0., 0.]
+
+ image_list = []
+ alpha_list = []
+ depth_list = []
+ normal_list = []
+ pose_list = []
+
+ try:
+ input_cameras = np.load(os.path.join(input_image_path, 'cameras.npz'))['cam_poses']
+ for idx in input_indices:
+ image, alpha = self.load_im(os.path.join(input_image_path, '%03d.png' % idx), bg_white)
+ normal, _ = self.load_im(os.path.join(input_image_path, '%03d_normal.png' % idx), bg_black)
+ depth = cv2.imread(os.path.join(input_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
+ depth = torch.from_numpy(depth).unsqueeze(0)
+ pose = input_cameras[idx]
+ pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)
+
+ image_list.append(image)
+ alpha_list.append(alpha)
+ depth_list.append(depth)
+ normal_list.append(normal)
+ pose_list.append(pose)
+
+ target_cameras = np.load(os.path.join(target_image_path, 'cameras.npz'))['cam_poses']
+ for idx in target_indices:
+ image, alpha = self.load_im(os.path.join(target_image_path, '%03d.png' % idx), bg_white)
+ normal, _ = self.load_im(os.path.join(target_image_path, '%03d_normal.png' % idx), bg_black)
+ depth = cv2.imread(os.path.join(target_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
+ depth = torch.from_numpy(depth).unsqueeze(0)
+ pose = target_cameras[idx]
+ pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)
+
+ image_list.append(image)
+ alpha_list.append(alpha)
+ depth_list.append(depth)
+ normal_list.append(normal)
+ pose_list.append(pose)
+
+ except Exception as e:
+ print(e)
+ index = np.random.randint(0, len(self.paths))
+ continue
+
+ break
+
+ images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W)
+ alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W)
+ depths = torch.stack(depth_list, dim=0).float() # (6+V, 1, H, W)
+ normals = torch.stack(normal_list, dim=0).float() # (6+V, 3, H, W)
+ w2cs = torch.from_numpy(np.stack(pose_list, axis=0)).float() # (6+V, 4, 4)
+ c2ws = torch.linalg.inv(w2cs).float()
+
+ normals = normals * 2.0 - 1.0
+ normals = F.normalize(normals, dim=1)
+ normals = (normals + 1.0) / 2.0
+ normals = torch.lerp(torch.zeros_like(normals), normals, alphas)
+
+ # random rotation along z axis
+ if self.camera_rotation:
+ degree = np.random.uniform(0, math.pi * 2)
+ rot = torch.tensor([
+ [np.cos(degree), -np.sin(degree), 0, 0],
+ [np.sin(degree), np.cos(degree), 0, 0],
+ [0, 0, 1, 0],
+ [0, 0, 0, 1],
+ ]).unsqueeze(0).float()
+ c2ws = torch.matmul(rot, c2ws)
+
+ # rotate normals
+ N, _, H, W = normals.shape
+ normals = normals * 2.0 - 1.0
+ normals = torch.matmul(rot[:, :3, :3], normals.view(N, 3, -1)).view(N, 3, H, W)
+ normals = F.normalize(normals, dim=1)
+ normals = (normals + 1.0) / 2.0
+ normals = torch.lerp(torch.zeros_like(normals), normals, alphas)
+
+ # random scaling
+ if np.random.rand() < 0.5:
+ scale = np.random.uniform(0.8, 1.0)
+ c2ws[:, :3, 3] *= scale
+ depths *= scale
+
+ # instrinsics of perspective cameras
+ K = FOV_to_intrinsics(self.fov)
+ Ks = K.unsqueeze(0).repeat(self.input_view_num + self.target_view_num, 1, 1).float()
+
+ data = {
+ 'input_images': images[:self.input_view_num], # (6, 3, H, W)
+ 'input_alphas': alphas[:self.input_view_num], # (6, 1, H, W)
+ 'input_depths': depths[:self.input_view_num], # (6, 1, H, W)
+ 'input_normals': normals[:self.input_view_num], # (6, 3, H, W)
+ 'input_c2ws': c2ws_input[:self.input_view_num], # (6, 4, 4)
+ 'input_Ks': Ks[:self.input_view_num], # (6, 3, 3)
+
+ # lrm generator input and supervision
+ 'target_images': images[self.input_view_num:], # (V, 3, H, W)
+ 'target_alphas': alphas[self.input_view_num:], # (V, 1, H, W)
+ 'target_depths': depths[self.input_view_num:], # (V, 1, H, W)
+ 'target_normals': normals[self.input_view_num:], # (V, 3, H, W)
+ 'target_c2ws': c2ws[self.input_view_num:], # (V, 4, 4)
+ 'target_Ks': Ks[self.input_view_num:], # (V, 3, 3)
+
+ 'depth_available': 1,
+ }
+ return data
+
+
+class ValidationData(Dataset):
+ def __init__(self,
+ root_dir='objaverse/',
+ input_view_num=6,
+ input_image_size=256,
+ fov=50,
+ ):
+ self.root_dir = Path(root_dir)
+ self.input_view_num = input_view_num
+ self.input_image_size = input_image_size
+ self.fov = fov
+
+ self.paths = sorted(os.listdir(self.root_dir))
+ print('============= length of dataset %d =============' % len(self.paths))
+
+ cam_distance = 2.5
+ azimuths = np.array([30, 90, 150, 210, 270, 330])
+ elevations = np.array([30, -20, 30, -20, 30, -20])
+ azimuths = np.deg2rad(azimuths)
+ elevations = np.deg2rad(elevations)
+
+ x = cam_distance * np.cos(elevations) * np.cos(azimuths)
+ y = cam_distance * np.cos(elevations) * np.sin(azimuths)
+ z = cam_distance * np.sin(elevations)
+
+ cam_locations = np.stack([x, y, z], axis=-1)
+ cam_locations = torch.from_numpy(cam_locations).float()
+ c2ws = center_looking_at_camera_pose(cam_locations)
+ self.c2ws = c2ws.float()
+ self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float()
+
+ render_c2ws = get_surrounding_views(M=8, radius=cam_distance)
+ render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1)
+ self.render_c2ws = render_c2ws.float()
+ self.render_Ks = render_Ks.float()
+
+ def __len__(self):
+ return len(self.paths)
+
+ def load_im(self, path, color):
+ '''
+ replace background pixel with random color in rendering
+ '''
+ pil_img = Image.open(path)
+ pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC)
+
+ image = np.asarray(pil_img, dtype=np.float32) / 255.
+ if image.shape[-1] == 4:
+ alpha = image[:, :, 3:]
+ image = image[:, :, :3] * alpha + color * (1 - alpha)
+ else:
+ alpha = np.ones_like(image[:, :, :1])
+
+ image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
+ alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
+ return image, alpha
+
+ def __getitem__(self, index):
+ # load data
+ input_image_path = os.path.join(self.root_dir, self.paths[index])
+
+ '''background color, default: white'''
+ # color = np.random.uniform(0.48, 0.52)
+ bkg_color = [1.0, 1.0, 1.0]
+
+ image_list = []
+ alpha_list = []
+
+ for idx in range(self.input_view_num):
+ image, alpha = self.load_im(os.path.join(input_image_path, f'{idx:03d}.png'), bkg_color)
+ image_list.append(image)
+ alpha_list.append(alpha)
+
+ images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W)
+ alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W)
+
+ data = {
+ 'input_images': images, # (6, 3, H, W)
+ 'input_alphas': alphas, # (6, 1, H, W)
+ 'input_c2ws': self.c2ws, # (6, 4, 4)
+ 'input_Ks': self.Ks, # (6, 3, 3)
+
+ 'render_c2ws': self.render_c2ws,
+ 'render_Ks': self.render_Ks,
+ }
+ return data
diff --git a/src/model.py b/src/model.py
new file mode 100755
index 0000000000000000000000000000000000000000..584a6dcc59a641104f8942e7f4b4fc225e551f6a
--- /dev/null
+++ b/src/model.py
@@ -0,0 +1,310 @@
+import os
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torchvision.transforms import v2
+from torchvision.utils import make_grid, save_image
+from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
+import pytorch_lightning as pl
+from einops import rearrange, repeat
+
+from src.utils.train_util import instantiate_from_config
+
+
+class MVRecon(pl.LightningModule):
+ def __init__(
+ self,
+ lrm_generator_config,
+ lrm_path=None,
+ input_size=256,
+ render_size=192,
+ ):
+ super(MVRecon, self).__init__()
+
+ self.input_size = input_size
+ self.render_size = render_size
+
+ # init modules
+ self.lrm_generator = instantiate_from_config(lrm_generator_config)
+ if lrm_path is not None:
+ lrm_ckpt = torch.load(lrm_path)
+ self.lrm_generator.load_state_dict(lrm_ckpt['weights'], strict=False)
+
+ self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg')
+
+ self.validation_step_outputs = []
+
+ def on_fit_start(self):
+ if self.global_rank == 0:
+ os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
+ os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)
+
+ def prepare_batch_data(self, batch):
+ lrm_generator_input = {}
+ render_gt = {} # for supervision
+
+ # input images
+ images = batch['input_images']
+ images = v2.functional.resize(
+ images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
+
+ lrm_generator_input['images'] = images.to(self.device)
+
+ # input cameras and render cameras
+ input_c2ws = batch['input_c2ws'].flatten(-2)
+ input_Ks = batch['input_Ks'].flatten(-2)
+ target_c2ws = batch['target_c2ws'].flatten(-2)
+ target_Ks = batch['target_Ks'].flatten(-2)
+ render_cameras_input = torch.cat([input_c2ws, input_Ks], dim=-1)
+ render_cameras_target = torch.cat([target_c2ws, target_Ks], dim=-1)
+ render_cameras = torch.cat([render_cameras_input, render_cameras_target], dim=1)
+
+ input_extrinsics = input_c2ws[:, :, :12]
+ input_intrinsics = torch.stack([
+ input_Ks[:, :, 0], input_Ks[:, :, 4],
+ input_Ks[:, :, 2], input_Ks[:, :, 5],
+ ], dim=-1)
+ cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
+
+ # add noise to input cameras
+ cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02
+
+ lrm_generator_input['cameras'] = cameras.to(self.device)
+ lrm_generator_input['render_cameras'] = render_cameras.to(self.device)
+
+ # target images
+ target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1)
+ target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1)
+ target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1)
+
+ # random crop
+ render_size = np.random.randint(self.render_size, 513)
+ target_images = v2.functional.resize(
+ target_images, render_size, interpolation=3, antialias=True).clamp(0, 1)
+ target_depths = v2.functional.resize(
+ target_depths, render_size, interpolation=0, antialias=True)
+ target_alphas = v2.functional.resize(
+ target_alphas, render_size, interpolation=0, antialias=True)
+
+ crop_params = v2.RandomCrop.get_params(
+ target_images, output_size=(self.render_size, self.render_size))
+ target_images = v2.functional.crop(target_images, *crop_params)
+ target_depths = v2.functional.crop(target_depths, *crop_params)[:, :, 0:1]
+ target_alphas = v2.functional.crop(target_alphas, *crop_params)[:, :, 0:1]
+
+ lrm_generator_input['render_size'] = render_size
+ lrm_generator_input['crop_params'] = crop_params
+
+ render_gt['target_images'] = target_images.to(self.device)
+ render_gt['target_depths'] = target_depths.to(self.device)
+ render_gt['target_alphas'] = target_alphas.to(self.device)
+
+ return lrm_generator_input, render_gt
+
+ def prepare_validation_batch_data(self, batch):
+ lrm_generator_input = {}
+
+ # input images
+ images = batch['input_images']
+ images = v2.functional.resize(
+ images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
+
+ lrm_generator_input['images'] = images.to(self.device)
+
+ input_c2ws = batch['input_c2ws'].flatten(-2)
+ input_Ks = batch['input_Ks'].flatten(-2)
+
+ input_extrinsics = input_c2ws[:, :, :12]
+ input_intrinsics = torch.stack([
+ input_Ks[:, :, 0], input_Ks[:, :, 4],
+ input_Ks[:, :, 2], input_Ks[:, :, 5],
+ ], dim=-1)
+ cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
+
+ lrm_generator_input['cameras'] = cameras.to(self.device)
+
+ render_c2ws = batch['render_c2ws'].flatten(-2)
+ render_Ks = batch['render_Ks'].flatten(-2)
+ render_cameras = torch.cat([render_c2ws, render_Ks], dim=-1)
+
+ lrm_generator_input['render_cameras'] = render_cameras.to(self.device)
+ lrm_generator_input['render_size'] = 384
+ lrm_generator_input['crop_params'] = None
+
+ return lrm_generator_input
+
+ def forward_lrm_generator(
+ self,
+ images,
+ cameras,
+ render_cameras,
+ render_size=192,
+ crop_params=None,
+ chunk_size=1,
+ ):
+ planes = torch.utils.checkpoint.checkpoint(
+ self.lrm_generator.forward_planes,
+ images,
+ cameras,
+ use_reentrant=False,
+ )
+ frames = []
+ for i in range(0, render_cameras.shape[1], chunk_size):
+ frames.append(
+ torch.utils.checkpoint.checkpoint(
+ self.lrm_generator.synthesizer,
+ planes,
+ cameras=render_cameras[:, i:i+chunk_size],
+ render_size=render_size,
+ crop_params=crop_params,
+ use_reentrant=False
+ )
+ )
+ frames = {
+ k: torch.cat([r[k] for r in frames], dim=1)
+ for k in frames[0].keys()
+ }
+ return frames
+
+ def forward(self, lrm_generator_input):
+ images = lrm_generator_input['images']
+ cameras = lrm_generator_input['cameras']
+ render_cameras = lrm_generator_input['render_cameras']
+ render_size = lrm_generator_input['render_size']
+ crop_params = lrm_generator_input['crop_params']
+
+ out = self.forward_lrm_generator(
+ images,
+ cameras,
+ render_cameras,
+ render_size=render_size,
+ crop_params=crop_params,
+ chunk_size=1,
+ )
+ render_images = torch.clamp(out['images_rgb'], 0.0, 1.0)
+ render_depths = out['images_depth']
+ render_alphas = torch.clamp(out['images_weight'], 0.0, 1.0)
+
+ out = {
+ 'render_images': render_images,
+ 'render_depths': render_depths,
+ 'render_alphas': render_alphas,
+ }
+ return out
+
+ def training_step(self, batch, batch_idx):
+ lrm_generator_input, render_gt = self.prepare_batch_data(batch)
+
+ render_out = self.forward(lrm_generator_input)
+
+ loss, loss_dict = self.compute_loss(render_out, render_gt)
+
+ self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+
+ if self.global_step % 1000 == 0 and self.global_rank == 0:
+ B, N, C, H, W = render_gt['target_images'].shape
+ N_in = lrm_generator_input['images'].shape[1]
+
+ input_images = v2.functional.resize(
+ lrm_generator_input['images'], (H, W), interpolation=3, antialias=True).clamp(0, 1)
+ input_images = torch.cat(
+ [input_images, torch.ones(B, N-N_in, C, H, W).to(input_images)], dim=1)
+
+ input_images = rearrange(
+ input_images, 'b n c h w -> b c h (n w)')
+ target_images = rearrange(
+ render_gt['target_images'], 'b n c h w -> b c h (n w)')
+ render_images = rearrange(
+ render_out['render_images'], 'b n c h w -> b c h (n w)')
+ target_alphas = rearrange(
+ repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ render_alphas = rearrange(
+ repeat(render_out['render_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ target_depths = rearrange(
+ repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ render_depths = rearrange(
+ repeat(render_out['render_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ MAX_DEPTH = torch.max(target_depths)
+ target_depths = target_depths / MAX_DEPTH * target_alphas
+ render_depths = render_depths / MAX_DEPTH
+
+ grid = torch.cat([
+ input_images,
+ target_images, render_images,
+ target_alphas, render_alphas,
+ target_depths, render_depths,
+ ], dim=-2)
+ grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1))
+
+ save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png'))
+
+ return loss
+
+ def compute_loss(self, render_out, render_gt):
+ # NOTE: the rgb value range of OpenLRM is [0, 1]
+ render_images = render_out['render_images']
+ target_images = render_gt['target_images'].to(render_images)
+ render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
+ target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
+
+ loss_mse = F.mse_loss(render_images, target_images)
+ loss_lpips = 2.0 * self.lpips(render_images, target_images)
+
+ render_alphas = render_out['render_alphas']
+ target_alphas = render_gt['target_alphas']
+ loss_mask = F.mse_loss(render_alphas, target_alphas)
+
+ loss = loss_mse + loss_lpips + loss_mask
+
+ prefix = 'train'
+ loss_dict = {}
+ loss_dict.update({f'{prefix}/loss_mse': loss_mse})
+ loss_dict.update({f'{prefix}/loss_lpips': loss_lpips})
+ loss_dict.update({f'{prefix}/loss_mask': loss_mask})
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ lrm_generator_input = self.prepare_validation_batch_data(batch)
+
+ render_out = self.forward(lrm_generator_input)
+ render_images = render_out['render_images']
+ render_images = rearrange(render_images, 'b n c h w -> b c h (n w)')
+
+ self.validation_step_outputs.append(render_images)
+
+ def on_validation_epoch_end(self):
+ images = torch.cat(self.validation_step_outputs, dim=-1)
+
+ all_images = self.all_gather(images)
+ all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')
+
+ if self.global_rank == 0:
+ image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')
+
+ grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1))
+ save_image(grid, image_path)
+ print(f"Saved image to {image_path}")
+
+ self.validation_step_outputs.clear()
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+
+ params = []
+
+ lrm_params_fast, lrm_params_slow = [], []
+ for n, p in self.lrm_generator.named_parameters():
+ if 'adaLN_modulation' in n or 'camera_embedder' in n:
+ lrm_params_fast.append(p)
+ else:
+ lrm_params_slow.append(p)
+ params.append({"params": lrm_params_fast, "lr": lr, "weight_decay": 0.01 })
+ params.append({"params": lrm_params_slow, "lr": lr / 10.0, "weight_decay": 0.01 })
+
+ optimizer = torch.optim.AdamW(params, lr=lr, betas=(0.90, 0.95))
+ scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4)
+
+ return {'optimizer': optimizer, 'lr_scheduler': scheduler}
diff --git a/src/model_mesh.py b/src/model_mesh.py
new file mode 100755
index 0000000000000000000000000000000000000000..99945a0b410242a71678ad0034bf38315a34571b
--- /dev/null
+++ b/src/model_mesh.py
@@ -0,0 +1,325 @@
+import os
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torchvision.transforms import v2
+from torchvision.utils import make_grid, save_image
+from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
+import pytorch_lightning as pl
+from einops import rearrange, repeat
+
+from src.utils.train_util import instantiate_from_config
+
+
+# Regulrarization loss for FlexiCubes
+def sdf_reg_loss_batch(sdf, all_edges):
+ sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2)
+ mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
+ sdf_f1x6x2 = sdf_f1x6x2[mask]
+ sdf_diff = F.binary_cross_entropy_with_logits(
+ sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \
+ F.binary_cross_entropy_with_logits(
+ sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float())
+ return sdf_diff
+
+
+class MVRecon(pl.LightningModule):
+ def __init__(
+ self,
+ lrm_generator_config,
+ input_size=256,
+ render_size=512,
+ init_ckpt=None,
+ ):
+ super(MVRecon, self).__init__()
+
+ self.input_size = input_size
+ self.render_size = render_size
+
+ # init modules
+ self.lrm_generator = instantiate_from_config(lrm_generator_config)
+
+ self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg')
+
+ # Load weights from pretrained MVRecon model, and use the mlp
+ # weights to initialize the weights of sdf and rgb mlps.
+ if init_ckpt is not None:
+ sd = torch.load(init_ckpt, map_location='cpu')['state_dict']
+ sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')}
+ sd_fc = {}
+ for k, v in sd.items():
+ if k.startswith('lrm_generator.synthesizer.decoder.net.'):
+ if k.startswith('lrm_generator.synthesizer.decoder.net.6.'): # last layer
+ # Here we assume the density filed's isosurface threshold is t,
+ # we reverse the sign of density filed to initialize SDF field.
+ # -(w*x + b - t) = (-w)*x + (t - b)
+ if 'weight' in k:
+ sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1]
+ else:
+ sd_fc[k.replace('net.', 'net_sdf.')] = 3.0 - v[0:1]
+ sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4]
+ else:
+ sd_fc[k.replace('net.', 'net_sdf.')] = v
+ sd_fc[k.replace('net.', 'net_rgb.')] = v
+ else:
+ sd_fc[k] = v
+ sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()}
+ # missing `net_deformation` and `net_weight` parameters
+ self.lrm_generator.load_state_dict(sd_fc, strict=False)
+ print(f'Loaded weights from {init_ckpt}')
+
+ self.validation_step_outputs = []
+
+ def on_fit_start(self):
+ device = torch.device(f'cuda:{self.global_rank}')
+ self.lrm_generator.init_flexicubes_geometry(device)
+ if self.global_rank == 0:
+ os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
+ os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)
+
+ def prepare_batch_data(self, batch):
+ lrm_generator_input = {}
+ render_gt = {}
+
+ # input images
+ images = batch['input_images']
+ images = v2.functional.resize(
+ images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
+
+ lrm_generator_input['images'] = images.to(self.device)
+
+ # input cameras and render cameras
+ input_c2ws = batch['input_c2ws']
+ input_Ks = batch['input_Ks']
+ target_c2ws = batch['target_c2ws']
+
+ render_c2ws = torch.cat([input_c2ws, target_c2ws], dim=1)
+ render_w2cs = torch.linalg.inv(render_c2ws)
+
+ input_extrinsics = input_c2ws.flatten(-2)
+ input_extrinsics = input_extrinsics[:, :, :12]
+ input_intrinsics = input_Ks.flatten(-2)
+ input_intrinsics = torch.stack([
+ input_intrinsics[:, :, 0], input_intrinsics[:, :, 4],
+ input_intrinsics[:, :, 2], input_intrinsics[:, :, 5],
+ ], dim=-1)
+ cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
+
+ # add noise to input_cameras
+ cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02
+
+ lrm_generator_input['cameras'] = cameras.to(self.device)
+ lrm_generator_input['render_cameras'] = render_w2cs.to(self.device)
+
+ # target images
+ target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1)
+ target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1)
+ target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1)
+ target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1)
+
+ render_size = self.render_size
+ target_images = v2.functional.resize(
+ target_images, render_size, interpolation=3, antialias=True).clamp(0, 1)
+ target_depths = v2.functional.resize(
+ target_depths, render_size, interpolation=0, antialias=True)
+ target_alphas = v2.functional.resize(
+ target_alphas, render_size, interpolation=0, antialias=True)
+ target_normals = v2.functional.resize(
+ target_normals, render_size, interpolation=3, antialias=True)
+
+ lrm_generator_input['render_size'] = render_size
+
+ render_gt['target_images'] = target_images.to(self.device)
+ render_gt['target_depths'] = target_depths.to(self.device)
+ render_gt['target_alphas'] = target_alphas.to(self.device)
+ render_gt['target_normals'] = target_normals.to(self.device)
+
+ return lrm_generator_input, render_gt
+
+ def prepare_validation_batch_data(self, batch):
+ lrm_generator_input = {}
+
+ # input images
+ images = batch['input_images']
+ images = v2.functional.resize(
+ images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
+
+ lrm_generator_input['images'] = images.to(self.device)
+
+ # input cameras
+ input_c2ws = batch['input_c2ws'].flatten(-2)
+ input_Ks = batch['input_Ks'].flatten(-2)
+
+ input_extrinsics = input_c2ws[:, :, :12]
+ input_intrinsics = torch.stack([
+ input_Ks[:, :, 0], input_Ks[:, :, 4],
+ input_Ks[:, :, 2], input_Ks[:, :, 5],
+ ], dim=-1)
+ cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
+
+ lrm_generator_input['cameras'] = cameras.to(self.device)
+
+ # render cameras
+ render_c2ws = batch['render_c2ws']
+ render_w2cs = torch.linalg.inv(render_c2ws)
+
+ lrm_generator_input['render_cameras'] = render_w2cs.to(self.device)
+ lrm_generator_input['render_size'] = 384
+
+ return lrm_generator_input
+
+ def forward_lrm_generator(self, images, cameras, render_cameras, render_size=512):
+ planes = torch.utils.checkpoint.checkpoint(
+ self.lrm_generator.forward_planes,
+ images,
+ cameras,
+ use_reentrant=False,
+ )
+ out = self.lrm_generator.forward_geometry(
+ planes,
+ render_cameras,
+ render_size,
+ )
+ return out
+
+ def forward(self, lrm_generator_input):
+ images = lrm_generator_input['images']
+ cameras = lrm_generator_input['cameras']
+ render_cameras = lrm_generator_input['render_cameras']
+ render_size = lrm_generator_input['render_size']
+
+ out = self.forward_lrm_generator(
+ images, cameras, render_cameras, render_size=render_size)
+
+ return out
+
+ def training_step(self, batch, batch_idx):
+ lrm_generator_input, render_gt = self.prepare_batch_data(batch)
+
+ render_out = self.forward(lrm_generator_input)
+
+ loss, loss_dict = self.compute_loss(render_out, render_gt)
+
+ self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+
+ if self.global_step % 1000 == 0 and self.global_rank == 0:
+ B, N, C, H, W = render_gt['target_images'].shape
+ N_in = lrm_generator_input['images'].shape[1]
+
+ target_images = rearrange(
+ render_gt['target_images'], 'b n c h w -> b c h (n w)')
+ render_images = rearrange(
+ render_out['img'], 'b n c h w -> b c h (n w)')
+ target_alphas = rearrange(
+ repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ render_alphas = rearrange(
+ repeat(render_out['mask'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ target_depths = rearrange(
+ repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ render_depths = rearrange(
+ repeat(render_out['depth'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
+ target_normals = rearrange(
+ render_gt['target_normals'], 'b n c h w -> b c h (n w)')
+ render_normals = rearrange(
+ render_out['normal'], 'b n c h w -> b c h (n w)')
+ MAX_DEPTH = torch.max(target_depths)
+ target_depths = target_depths / MAX_DEPTH * target_alphas
+ render_depths = render_depths / MAX_DEPTH
+
+ grid = torch.cat([
+ target_images, render_images,
+ target_alphas, render_alphas,
+ target_depths, render_depths,
+ target_normals, render_normals,
+ ], dim=-2)
+ grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1))
+
+ image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')
+ save_image(grid, image_path)
+ print(f"Saved image to {image_path}")
+
+ return loss
+
+ def compute_loss(self, render_out, render_gt):
+ # NOTE: the rgb value range of OpenLRM is [0, 1]
+ render_images = render_out['img']
+ target_images = render_gt['target_images'].to(render_images)
+ render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
+ target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
+ loss_mse = F.mse_loss(render_images, target_images)
+ loss_lpips = 2.0 * self.lpips(render_images, target_images)
+
+ render_alphas = render_out['mask']
+ target_alphas = render_gt['target_alphas']
+ loss_mask = F.mse_loss(render_alphas, target_alphas)
+
+ render_depths = render_out['depth']
+ target_depths = render_gt['target_depths']
+ loss_depth = 0.5 * F.l1_loss(render_depths[target_alphas>0], target_depths[target_alphas>0])
+
+ render_normals = render_out['normal'] * 2.0 - 1.0
+ target_normals = render_gt['target_normals'] * 2.0 - 1.0
+ similarity = (render_normals * target_normals).sum(dim=-3).abs()
+ normal_mask = target_alphas.squeeze(-3)
+ loss_normal = 1 - similarity[normal_mask>0].mean()
+ loss_normal = 0.2 * loss_normal
+
+ # flexicubes regularization loss
+ sdf = render_out['sdf']
+ sdf_reg_loss = render_out['sdf_reg_loss']
+ sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01
+ _, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss
+ flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5
+ flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1
+
+ loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg
+
+ loss = loss_mse + loss_lpips + loss_mask + loss_normal + loss_reg
+
+ prefix = 'train'
+ loss_dict = {}
+ loss_dict.update({f'{prefix}/loss_mse': loss_mse})
+ loss_dict.update({f'{prefix}/loss_lpips': loss_lpips})
+ loss_dict.update({f'{prefix}/loss_mask': loss_mask})
+ loss_dict.update({f'{prefix}/loss_normal': loss_normal})
+ loss_dict.update({f'{prefix}/loss_depth': loss_depth})
+ loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy})
+ loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg})
+ loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg})
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ lrm_generator_input = self.prepare_validation_batch_data(batch)
+
+ render_out = self.forward(lrm_generator_input)
+ render_images = render_out['img']
+ render_images = rearrange(render_images, 'b n c h w -> b c h (n w)')
+
+ self.validation_step_outputs.append(render_images)
+
+ def on_validation_epoch_end(self):
+ images = torch.cat(self.validation_step_outputs, dim=-1)
+
+ all_images = self.all_gather(images)
+ all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')
+
+ if self.global_rank == 0:
+ image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')
+
+ grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1))
+ save_image(grid, image_path)
+ print(f"Saved image to {image_path}")
+
+ self.validation_step_outputs.clear()
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+
+ optimizer = torch.optim.AdamW(
+ self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01)
+ scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0)
+
+ return {'optimizer': optimizer, 'lr_scheduler': scheduler}
\ No newline at end of file
diff --git a/src/models/__init__.py b/src/models/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/models/decoder/__init__.py b/src/models/decoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/models/decoder/transformer.py b/src/models/decoder/transformer.py
new file mode 100755
index 0000000000000000000000000000000000000000..d8e628c0bf589ee827908c894b93cc107f1c58b9
--- /dev/null
+++ b/src/models/decoder/transformer.py
@@ -0,0 +1,123 @@
+# Copyright (c) 2023, Zexin He
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# https://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import torch
+import torch.nn as nn
+
+
+class BasicTransformerBlock(nn.Module):
+ """
+ Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks.
+ """
+ # use attention from torch.nn.MultiHeadAttention
+ # Block contains a cross-attention layer, a self-attention layer, and a MLP
+ def __init__(
+ self,
+ inner_dim: int,
+ cond_dim: int,
+ num_heads: int,
+ eps: float,
+ attn_drop: float = 0.,
+ attn_bias: bool = False,
+ mlp_ratio: float = 4.,
+ mlp_drop: float = 0.,
+ ):
+ super().__init__()
+
+ self.norm1 = nn.LayerNorm(inner_dim)
+ self.cross_attn = nn.MultiheadAttention(
+ embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
+ dropout=attn_drop, bias=attn_bias, batch_first=True)
+ self.norm2 = nn.LayerNorm(inner_dim)
+ self.self_attn = nn.MultiheadAttention(
+ embed_dim=inner_dim, num_heads=num_heads,
+ dropout=attn_drop, bias=attn_bias, batch_first=True)
+ self.norm3 = nn.LayerNorm(inner_dim)
+ self.mlp = nn.Sequential(
+ nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
+ nn.GELU(),
+ nn.Dropout(mlp_drop),
+ nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
+ nn.Dropout(mlp_drop),
+ )
+
+ def forward(self, x, cond):
+ # x: [N, L, D]
+ # cond: [N, L_cond, D_cond]
+ x = x + self.cross_attn(self.norm1(x), cond, cond)[0]
+ before_sa = self.norm2(x)
+ x = x + self.self_attn(before_sa, before_sa, before_sa)[0]
+ x = x + self.mlp(self.norm3(x))
+ return x
+
+
+class TriplaneTransformer(nn.Module):
+ """
+ Transformer with condition that generates a triplane representation.
+
+ Reference:
+ Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486
+ """
+ def __init__(
+ self,
+ inner_dim: int,
+ image_feat_dim: int,
+ triplane_low_res: int,
+ triplane_high_res: int,
+ triplane_dim: int,
+ num_layers: int,
+ num_heads: int,
+ eps: float = 1e-6,
+ ):
+ super().__init__()
+
+ # attributes
+ self.triplane_low_res = triplane_low_res
+ self.triplane_high_res = triplane_high_res
+ self.triplane_dim = triplane_dim
+
+ # modules
+ # initialize pos_embed with 1/sqrt(dim) * N(0, 1)
+ self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5)
+ self.layers = nn.ModuleList([
+ BasicTransformerBlock(
+ inner_dim=inner_dim, cond_dim=image_feat_dim, num_heads=num_heads, eps=eps)
+ for _ in range(num_layers)
+ ])
+ self.norm = nn.LayerNorm(inner_dim, eps=eps)
+ self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0)
+
+ def forward(self, image_feats):
+ # image_feats: [N, L_cond, D_cond]
+
+ N = image_feats.shape[0]
+ H = W = self.triplane_low_res
+ L = 3 * H * W
+
+ x = self.pos_embed.repeat(N, 1, 1) # [N, L, D]
+ for layer in self.layers:
+ x = layer(x, image_feats)
+ x = self.norm(x)
+
+ # separate each plane and apply deconv
+ x = x.view(N, 3, H, W, -1)
+ x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W]
+ x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W]
+ x = self.deconv(x) # [3*N, D', H', W']
+ x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W']
+ x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W']
+ x = x.contiguous()
+
+ return x
diff --git a/src/models/encoder/__init__.py b/src/models/encoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/models/encoder/dino.py b/src/models/encoder/dino.py
new file mode 100755
index 0000000000000000000000000000000000000000..684444cab2a13979bcd5688069e9f7729d4ca784
--- /dev/null
+++ b/src/models/encoder/dino.py
@@ -0,0 +1,550 @@
+# coding=utf-8
+# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ViT model."""
+
+
+import collections.abc
+import math
+from typing import Dict, List, Optional, Set, Tuple, Union
+
+import torch
+from torch import nn
+
+from transformers.activations import ACT2FN
+from transformers.modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+)
+from transformers import PreTrainedModel, ViTConfig
+from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+
+
+class ViTEmbeddings(nn.Module):
+ """
+ Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
+ """
+
+ def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None:
+ super().__init__()
+
+ self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
+ self.patch_embeddings = ViTPatchEmbeddings(config)
+ num_patches = self.patch_embeddings.num_patches
+ self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
+ """
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
+ resolution images.
+
+ Source:
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
+ """
+
+ num_patches = embeddings.shape[1] - 1
+ num_positions = self.position_embeddings.shape[1] - 1
+ if num_patches == num_positions and height == width:
+ return self.position_embeddings
+ class_pos_embed = self.position_embeddings[:, 0]
+ patch_pos_embed = self.position_embeddings[:, 1:]
+ dim = embeddings.shape[-1]
+ h0 = height // self.config.patch_size
+ w0 = width // self.config.patch_size
+ # we add a small number to avoid floating point error in the interpolation
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
+ h0, w0 = h0 + 0.1, w0 + 0.1
+ patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
+ patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
+ patch_pos_embed = nn.functional.interpolate(
+ patch_pos_embed,
+ scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
+ mode="bicubic",
+ align_corners=False,
+ )
+ assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
+
+ def forward(
+ self,
+ pixel_values: torch.Tensor,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ interpolate_pos_encoding: bool = False,
+ ) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
+
+ if bool_masked_pos is not None:
+ seq_length = embeddings.shape[1]
+ mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
+ # replace the masked visual tokens by mask_tokens
+ mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
+ embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
+
+ # add the [CLS] token to the embedded patch tokens
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
+ embeddings = torch.cat((cls_tokens, embeddings), dim=1)
+
+ # add positional encoding to each token
+ if interpolate_pos_encoding:
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
+ else:
+ embeddings = embeddings + self.position_embeddings
+
+ embeddings = self.dropout(embeddings)
+
+ return embeddings
+
+
+class ViTPatchEmbeddings(nn.Module):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ image_size, patch_size = config.image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ f" Expected {self.num_channels} but got {num_channels}."
+ )
+ if not interpolate_pos_encoding:
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model"
+ f" ({self.image_size[0]}*{self.image_size[1]})."
+ )
+ embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
+ return embeddings
+
+
+class ViTSelfAttention(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+class ViTSelfOutput(nn.Module):
+ """
+ The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ return hidden_states
+
+
+class ViTAttention(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.attention = ViTSelfAttention(config)
+ self.output = ViTSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads: Set[int]) -> None:
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions)
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class ViTIntermediate(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+
+class ViTOutput(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+
+def modulate(x, shift, scale):
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
+
+
+class ViTLayer(nn.Module):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ViTAttention(config)
+ self.intermediate = ViTIntermediate(config)
+ self.output = ViTOutput(config)
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.adaLN_modulation = nn.Sequential(
+ nn.SiLU(),
+ nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=True)
+ )
+ nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
+ nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ adaln_input: torch.Tensor = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ shift_msa, scale_msa, shift_mlp, scale_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
+
+ self_attention_outputs = self.attention(
+ modulate(self.layernorm_before(hidden_states), shift_msa, scale_msa), # in ViT, layernorm is applied before self-attention
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states
+
+ # in ViT, layernorm is also applied after self-attention
+ layer_output = modulate(self.layernorm_after(hidden_states), shift_mlp, scale_mlp)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_states)
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class ViTEncoder(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ adaln_input: torch.Tensor = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ adaln_input,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, adaln_input, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class ViTPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ViTConfig
+ base_model_prefix = "vit"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["ViTEmbeddings", "ViTLayer"]
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
+ # `trunc_normal_cpu` not implemented in `half` issues
+ module.weight.data = nn.init.trunc_normal_(
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
+ ).to(module.weight.dtype)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, ViTEmbeddings):
+ module.position_embeddings.data = nn.init.trunc_normal_(
+ module.position_embeddings.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ ).to(module.position_embeddings.dtype)
+
+ module.cls_token.data = nn.init.trunc_normal_(
+ module.cls_token.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ ).to(module.cls_token.dtype)
+
+
+class ViTModel(ViTPreTrainedModel):
+ def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token)
+ self.encoder = ViTEncoder(config)
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pooler = ViTPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> ViTPatchEmbeddings:
+ return self.embeddings.patch_embeddings
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ adaln_input: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
+ expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
+ if pixel_values.dtype != expected_dtype:
+ pixel_values = pixel_values.to(expected_dtype)
+
+ embedding_output = self.embeddings(
+ pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ adaln_input=adaln_input,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
+ return head_outputs + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class ViTPooler(nn.Module):
+ def __init__(self, config: ViTConfig):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
\ No newline at end of file
diff --git a/src/models/encoder/dino_wrapper.py b/src/models/encoder/dino_wrapper.py
new file mode 100755
index 0000000000000000000000000000000000000000..e84fd51e7dfcfd1a969b763f5a49aeb7f608e6f9
--- /dev/null
+++ b/src/models/encoder/dino_wrapper.py
@@ -0,0 +1,80 @@
+# Copyright (c) 2023, Zexin He
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# https://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import torch.nn as nn
+from transformers import ViTImageProcessor
+from einops import rearrange, repeat
+from .dino import ViTModel
+
+
+class DinoWrapper(nn.Module):
+ """
+ Dino v1 wrapper using huggingface transformer implementation.
+ """
+ def __init__(self, model_name: str, freeze: bool = True):
+ super().__init__()
+ self.model, self.processor = self._build_dino(model_name)
+ self.camera_embedder = nn.Sequential(
+ nn.Linear(16, self.model.config.hidden_size, bias=True),
+ nn.SiLU(),
+ nn.Linear(self.model.config.hidden_size, self.model.config.hidden_size, bias=True)
+ )
+ if freeze:
+ self._freeze()
+
+ def forward(self, image, camera):
+ # image: [B, N, C, H, W]
+ # camera: [B, N, D]
+ # RGB image with [0,1] scale and properly sized
+ if image.ndim == 5:
+ image = rearrange(image, 'b n c h w -> (b n) c h w')
+ dtype = image.dtype
+ inputs = self.processor(
+ images=image.float(),
+ return_tensors="pt",
+ do_rescale=False,
+ do_resize=False,
+ ).to(self.model.device).to(dtype)
+ # embed camera
+ N = camera.shape[1]
+ camera_embeddings = self.camera_embedder(camera)
+ camera_embeddings = rearrange(camera_embeddings, 'b n d -> (b n) d')
+ embeddings = camera_embeddings
+ # This resampling of positional embedding uses bicubic interpolation
+ outputs = self.model(**inputs, adaln_input=embeddings, interpolate_pos_encoding=True)
+ last_hidden_states = outputs.last_hidden_state
+ return last_hidden_states
+
+ def _freeze(self):
+ print(f"======== Freezing DinoWrapper ========")
+ self.model.eval()
+ for name, param in self.model.named_parameters():
+ param.requires_grad = False
+
+ @staticmethod
+ def _build_dino(model_name: str, proxy_error_retries: int = 3, proxy_error_cooldown: int = 5):
+ import requests
+ try:
+ model = ViTModel.from_pretrained(model_name, add_pooling_layer=False)
+ processor = ViTImageProcessor.from_pretrained(model_name)
+ return model, processor
+ except requests.exceptions.ProxyError as err:
+ if proxy_error_retries > 0:
+ print(f"Huggingface ProxyError: Retrying in {proxy_error_cooldown} seconds...")
+ import time
+ time.sleep(proxy_error_cooldown)
+ return DinoWrapper._build_dino(model_name, proxy_error_retries - 1, proxy_error_cooldown)
+ else:
+ raise err
diff --git a/src/models/geometry/__init__.py b/src/models/geometry/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..89e9a6c2fffe82a55693885dae78c1a630924389
--- /dev/null
+++ b/src/models/geometry/__init__.py
@@ -0,0 +1,7 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
diff --git a/src/models/geometry/camera/__init__.py b/src/models/geometry/camera/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..c5c7082e47c65a08e25489b3c3fd010d07ad9758
--- /dev/null
+++ b/src/models/geometry/camera/__init__.py
@@ -0,0 +1,16 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+from torch import nn
+
+
+class Camera(nn.Module):
+ def __init__(self):
+ super(Camera, self).__init__()
+ pass
diff --git a/src/models/geometry/camera/perspective_camera.py b/src/models/geometry/camera/perspective_camera.py
new file mode 100755
index 0000000000000000000000000000000000000000..7dcab0d2a321a77a5d3c2d4c3f40ba2cc32f6dfa
--- /dev/null
+++ b/src/models/geometry/camera/perspective_camera.py
@@ -0,0 +1,35 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+from . import Camera
+import numpy as np
+
+
+def projection(x=0.1, n=1.0, f=50.0, near_plane=None):
+ if near_plane is None:
+ near_plane = n
+ return np.array(
+ [[n / x, 0, 0, 0],
+ [0, n / -x, 0, 0],
+ [0, 0, -(f + near_plane) / (f - near_plane), -(2 * f * near_plane) / (f - near_plane)],
+ [0, 0, -1, 0]]).astype(np.float32)
+
+
+class PerspectiveCamera(Camera):
+ def __init__(self, fovy=49.0, device='cuda'):
+ super(PerspectiveCamera, self).__init__()
+ self.device = device
+ focal = np.tan(fovy / 180.0 * np.pi * 0.5)
+ self.proj_mtx = torch.from_numpy(projection(x=focal, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0)
+
+ def project(self, points_bxnx4):
+ out = torch.matmul(
+ points_bxnx4,
+ torch.transpose(self.proj_mtx, 1, 2))
+ return out
diff --git a/src/models/geometry/render/__init__.py b/src/models/geometry/render/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..483cfabbf395853f1ca3e67b856d5f17b9889d1b
--- /dev/null
+++ b/src/models/geometry/render/__init__.py
@@ -0,0 +1,8 @@
+import torch
+
+class Renderer():
+ def __init__(self):
+ pass
+
+ def forward(self):
+ pass
\ No newline at end of file
diff --git a/src/models/geometry/render/neural_render.py b/src/models/geometry/render/neural_render.py
new file mode 100755
index 0000000000000000000000000000000000000000..473464480125c050ee6dba973450678a197145fb
--- /dev/null
+++ b/src/models/geometry/render/neural_render.py
@@ -0,0 +1,121 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+import torch.nn.functional as F
+import nvdiffrast.torch as dr
+from . import Renderer
+
+_FG_LUT = None
+
+
+def interpolate(attr, rast, attr_idx, rast_db=None):
+ return dr.interpolate(
+ attr.contiguous(), rast, attr_idx, rast_db=rast_db,
+ diff_attrs=None if rast_db is None else 'all')
+
+
+def xfm_points(points, matrix, use_python=True):
+ '''Transform points.
+ Args:
+ points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3]
+ matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4]
+ use_python: Use PyTorch's torch.matmul (for validation)
+ Returns:
+ Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4].
+ '''
+ out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2))
+ if torch.is_anomaly_enabled():
+ assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN"
+ return out
+
+
+def dot(x, y):
+ return torch.sum(x * y, -1, keepdim=True)
+
+
+def compute_vertex_normal(v_pos, t_pos_idx):
+ i0 = t_pos_idx[:, 0]
+ i1 = t_pos_idx[:, 1]
+ i2 = t_pos_idx[:, 2]
+
+ v0 = v_pos[i0, :]
+ v1 = v_pos[i1, :]
+ v2 = v_pos[i2, :]
+
+ face_normals = torch.cross(v1 - v0, v2 - v0)
+
+ # Splat face normals to vertices
+ v_nrm = torch.zeros_like(v_pos)
+ v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
+ v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
+ v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
+
+ # Normalize, replace zero (degenerated) normals with some default value
+ v_nrm = torch.where(
+ dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
+ )
+ v_nrm = F.normalize(v_nrm, dim=1)
+ assert torch.all(torch.isfinite(v_nrm))
+
+ return v_nrm
+
+
+class NeuralRender(Renderer):
+ def __init__(self, device='cuda', camera_model=None):
+ super(NeuralRender, self).__init__()
+ self.device = device
+ self.ctx = dr.RasterizeCudaContext(device=device)
+ self.projection_mtx = None
+ self.camera = camera_model
+
+ def render_mesh(
+ self,
+ mesh_v_pos_bxnx3,
+ mesh_t_pos_idx_fx3,
+ camera_mv_bx4x4,
+ mesh_v_feat_bxnxd,
+ resolution=256,
+ spp=1,
+ device='cuda',
+ hierarchical_mask=False
+ ):
+ assert not hierarchical_mask
+
+ mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
+ v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates
+ v_pos_clip = self.camera.project(v_pos) # Projection in the camera
+
+ v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates
+
+ # Render the image,
+ # Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
+ num_layers = 1
+ mask_pyramid = None
+ assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes
+ mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos
+
+ with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
+ for _ in range(num_layers):
+ rast, db = peeler.rasterize_next_layer()
+ gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)
+
+ hard_mask = torch.clamp(rast[..., -1:], 0, 1)
+ antialias_mask = dr.antialias(
+ hard_mask.clone().contiguous(), rast, v_pos_clip,
+ mesh_t_pos_idx_fx3)
+
+ depth = gb_feat[..., -2:-1]
+ ori_mesh_feature = gb_feat[..., :-4]
+
+ normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
+ normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
+ normal = F.normalize(normal, dim=-1)
+ normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background
+
+ return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal
diff --git a/src/models/geometry/rep_3d/__init__.py b/src/models/geometry/rep_3d/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..a3d5628a8433298477d1963f92578d47106b4a0f
--- /dev/null
+++ b/src/models/geometry/rep_3d/__init__.py
@@ -0,0 +1,18 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+import numpy as np
+
+
+class Geometry():
+ def __init__(self):
+ pass
+
+ def forward(self):
+ pass
diff --git a/src/models/geometry/rep_3d/dmtet.py b/src/models/geometry/rep_3d/dmtet.py
new file mode 100755
index 0000000000000000000000000000000000000000..b6a709380abac0bbf66fd1c8582485f3982223e4
--- /dev/null
+++ b/src/models/geometry/rep_3d/dmtet.py
@@ -0,0 +1,504 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+import numpy as np
+import os
+from . import Geometry
+from .dmtet_utils import get_center_boundary_index
+import torch.nn.functional as F
+
+
+###############################################################################
+# DMTet utility functions
+###############################################################################
+def create_mt_variable(device):
+ triangle_table = torch.tensor(
+ [
+ [-1, -1, -1, -1, -1, -1],
+ [1, 0, 2, -1, -1, -1],
+ [4, 0, 3, -1, -1, -1],
+ [1, 4, 2, 1, 3, 4],
+ [3, 1, 5, -1, -1, -1],
+ [2, 3, 0, 2, 5, 3],
+ [1, 4, 0, 1, 5, 4],
+ [4, 2, 5, -1, -1, -1],
+ [4, 5, 2, -1, -1, -1],
+ [4, 1, 0, 4, 5, 1],
+ [3, 2, 0, 3, 5, 2],
+ [1, 3, 5, -1, -1, -1],
+ [4, 1, 2, 4, 3, 1],
+ [3, 0, 4, -1, -1, -1],
+ [2, 0, 1, -1, -1, -1],
+ [-1, -1, -1, -1, -1, -1]
+ ], dtype=torch.long, device=device)
+
+ num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device)
+ base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device)
+ v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device))
+ return triangle_table, num_triangles_table, base_tet_edges, v_id
+
+
+def sort_edges(edges_ex2):
+ with torch.no_grad():
+ order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
+ order = order.unsqueeze(dim=1)
+ a = torch.gather(input=edges_ex2, index=order, dim=1)
+ b = torch.gather(input=edges_ex2, index=1 - order, dim=1)
+ return torch.stack([a, b], -1)
+
+
+###############################################################################
+# marching tetrahedrons (differentiable)
+###############################################################################
+
+def marching_tets(pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id):
+ with torch.no_grad():
+ occ_n = sdf_n > 0
+ occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
+ occ_sum = torch.sum(occ_fx4, -1)
+ valid_tets = (occ_sum > 0) & (occ_sum < 4)
+ occ_sum = occ_sum[valid_tets]
+
+ # find all vertices
+ all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2)
+ all_edges = sort_edges(all_edges)
+ unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
+
+ unique_edges = unique_edges.long()
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device)
+ idx_map = mapping[idx_map] # map edges to verts
+
+ interp_v = unique_edges[mask_edges] # .long()
+ edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
+ edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
+ edges_to_interp_sdf[:, -1] *= -1
+
+ denominator = edges_to_interp_sdf.sum(1, keepdim=True)
+
+ edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
+ verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
+
+ idx_map = idx_map.reshape(-1, 6)
+
+ tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
+ num_triangles = num_triangles_table[tetindex]
+
+ # Generate triangle indices
+ faces = torch.cat(
+ (
+ torch.gather(
+ input=idx_map[num_triangles == 1], dim=1,
+ index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
+ torch.gather(
+ input=idx_map[num_triangles == 2], dim=1,
+ index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
+ ), dim=0)
+ return verts, faces
+
+
+def create_tetmesh_variables(device='cuda'):
+ tet_table = torch.tensor(
+ [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
+ [0, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1],
+ [1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1],
+ [1, 0, 8, 7, 0, 5, 8, 7, 0, 5, 6, 8],
+ [2, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1],
+ [2, 0, 9, 7, 0, 4, 9, 7, 0, 4, 6, 9],
+ [2, 1, 9, 5, 1, 4, 9, 5, 1, 4, 8, 9],
+ [6, 0, 1, 2, 6, 1, 2, 8, 6, 8, 2, 9],
+ [3, 6, 8, 9, -1, -1, -1, -1, -1, -1, -1, -1],
+ [3, 0, 9, 8, 0, 4, 9, 8, 0, 4, 5, 9],
+ [3, 1, 9, 6, 1, 4, 9, 6, 1, 4, 7, 9],
+ [5, 0, 1, 3, 5, 1, 3, 7, 5, 7, 3, 9],
+ [3, 2, 8, 6, 2, 5, 8, 6, 2, 5, 7, 8],
+ [4, 0, 2, 3, 4, 2, 3, 7, 4, 7, 3, 8],
+ [4, 1, 2, 3, 4, 2, 3, 5, 4, 5, 3, 6],
+ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], dtype=torch.long, device=device)
+ num_tets_table = torch.tensor([0, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 0], dtype=torch.long, device=device)
+ return tet_table, num_tets_table
+
+
+def marching_tets_tetmesh(
+ pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id,
+ return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None):
+ with torch.no_grad():
+ occ_n = sdf_n > 0
+ occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
+ occ_sum = torch.sum(occ_fx4, -1)
+ valid_tets = (occ_sum > 0) & (occ_sum < 4)
+ occ_sum = occ_sum[valid_tets]
+
+ # find all vertices
+ all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2)
+ all_edges = sort_edges(all_edges)
+ unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
+
+ unique_edges = unique_edges.long()
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device)
+ idx_map = mapping[idx_map] # map edges to verts
+
+ interp_v = unique_edges[mask_edges] # .long()
+ edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
+ edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
+ edges_to_interp_sdf[:, -1] *= -1
+
+ denominator = edges_to_interp_sdf.sum(1, keepdim=True)
+
+ edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
+ verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
+
+ idx_map = idx_map.reshape(-1, 6)
+
+ tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
+ num_triangles = num_triangles_table[tetindex]
+
+ # Generate triangle indices
+ faces = torch.cat(
+ (
+ torch.gather(
+ input=idx_map[num_triangles == 1], dim=1,
+ index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
+ torch.gather(
+ input=idx_map[num_triangles == 2], dim=1,
+ index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
+ ), dim=0)
+ if not return_tet_mesh:
+ return verts, faces
+ occupied_verts = ori_v[occ_n]
+ mapping = torch.ones((pos_nx3.shape[0]), dtype=torch.long, device="cuda") * -1
+ mapping[occ_n] = torch.arange(occupied_verts.shape[0], device="cuda")
+ tet_fx4 = mapping[tet_fx4.reshape(-1)].reshape((-1, 4))
+
+ idx_map = torch.cat([tet_fx4[valid_tets] + verts.shape[0], idx_map], -1) # t x 10
+ tet_verts = torch.cat([verts, occupied_verts], 0)
+ num_tets = num_tets_table[tetindex]
+
+ tets = torch.cat(
+ (
+ torch.gather(input=idx_map[num_tets == 1], dim=1, index=tet_table[tetindex[num_tets == 1]][:, :4]).reshape(
+ -1,
+ 4),
+ torch.gather(input=idx_map[num_tets == 3], dim=1, index=tet_table[tetindex[num_tets == 3]][:, :12]).reshape(
+ -1,
+ 4),
+ ), dim=0)
+ # add fully occupied tets
+ fully_occupied = occ_fx4.sum(-1) == 4
+ tet_fully_occupied = tet_fx4[fully_occupied] + verts.shape[0]
+ tets = torch.cat([tets, tet_fully_occupied])
+
+ return verts, faces, tet_verts, tets
+
+
+###############################################################################
+# Compact tet grid
+###############################################################################
+
+def compact_tets(pos_nx3, sdf_n, tet_fx4):
+ with torch.no_grad():
+ # Find surface tets
+ occ_n = sdf_n > 0
+ occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
+ occ_sum = torch.sum(occ_fx4, -1)
+ valid_tets = (occ_sum > 0) & (occ_sum < 4) # one value per tet, these are the surface tets
+
+ valid_vtx = tet_fx4[valid_tets].reshape(-1)
+ unique_vtx, idx_map = torch.unique(valid_vtx, dim=0, return_inverse=True)
+ new_pos = pos_nx3[unique_vtx]
+ new_sdf = sdf_n[unique_vtx]
+ new_tets = idx_map.reshape(-1, 4)
+ return new_pos, new_sdf, new_tets
+
+
+###############################################################################
+# Subdivide volume
+###############################################################################
+
+def batch_subdivide_volume(tet_pos_bxnx3, tet_bxfx4, grid_sdf):
+ device = tet_pos_bxnx3.device
+ # get new verts
+ tet_fx4 = tet_bxfx4[0]
+ edges = [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3]
+ all_edges = tet_fx4[:, edges].reshape(-1, 2)
+ all_edges = sort_edges(all_edges)
+ unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
+ idx_map = idx_map + tet_pos_bxnx3.shape[1]
+ all_values = torch.cat([tet_pos_bxnx3, grid_sdf], -1)
+ mid_points_pos = all_values[:, unique_edges.reshape(-1)].reshape(
+ all_values.shape[0], -1, 2,
+ all_values.shape[-1]).mean(2)
+ new_v = torch.cat([all_values, mid_points_pos], 1)
+ new_v, new_sdf = new_v[..., :3], new_v[..., 3]
+
+ # get new tets
+
+ idx_a, idx_b, idx_c, idx_d = tet_fx4[:, 0], tet_fx4[:, 1], tet_fx4[:, 2], tet_fx4[:, 3]
+ idx_ab = idx_map[0::6]
+ idx_ac = idx_map[1::6]
+ idx_ad = idx_map[2::6]
+ idx_bc = idx_map[3::6]
+ idx_bd = idx_map[4::6]
+ idx_cd = idx_map[5::6]
+
+ tet_1 = torch.stack([idx_a, idx_ab, idx_ac, idx_ad], dim=1)
+ tet_2 = torch.stack([idx_b, idx_bc, idx_ab, idx_bd], dim=1)
+ tet_3 = torch.stack([idx_c, idx_ac, idx_bc, idx_cd], dim=1)
+ tet_4 = torch.stack([idx_d, idx_ad, idx_cd, idx_bd], dim=1)
+ tet_5 = torch.stack([idx_ab, idx_ac, idx_ad, idx_bd], dim=1)
+ tet_6 = torch.stack([idx_ab, idx_ac, idx_bd, idx_bc], dim=1)
+ tet_7 = torch.stack([idx_cd, idx_ac, idx_bd, idx_ad], dim=1)
+ tet_8 = torch.stack([idx_cd, idx_ac, idx_bc, idx_bd], dim=1)
+
+ tet_np = torch.cat([tet_1, tet_2, tet_3, tet_4, tet_5, tet_6, tet_7, tet_8], dim=0)
+ tet_np = tet_np.reshape(1, -1, 4).expand(tet_pos_bxnx3.shape[0], -1, -1)
+ tet = tet_np.long().to(device)
+
+ return new_v, tet, new_sdf
+
+
+###############################################################################
+# Adjacency
+###############################################################################
+def tet_to_tet_adj_sparse(tet_tx4):
+ # include self connection!!!!!!!!!!!!!!!!!!!
+ with torch.no_grad():
+ t = tet_tx4.shape[0]
+ device = tet_tx4.device
+ idx_array = torch.LongTensor(
+ [0, 1, 2,
+ 1, 0, 3,
+ 2, 3, 0,
+ 3, 2, 1]).to(device).reshape(4, 3).unsqueeze(0).expand(t, -1, -1) # (t, 4, 3)
+
+ # get all faces
+ all_faces = torch.gather(input=tet_tx4.unsqueeze(1).expand(-1, 4, -1), index=idx_array, dim=-1).reshape(
+ -1,
+ 3) # (tx4, 3)
+ all_faces_tet_idx = torch.arange(t, device=device).unsqueeze(-1).expand(-1, 4).reshape(-1)
+ # sort and group
+ all_faces_sorted, _ = torch.sort(all_faces, dim=1)
+
+ all_faces_unique, inverse_indices, counts = torch.unique(
+ all_faces_sorted, dim=0, return_counts=True,
+ return_inverse=True)
+ tet_face_fx3 = all_faces_unique[counts == 2]
+ counts = counts[inverse_indices] # tx4
+ valid = (counts == 2)
+
+ group = inverse_indices[valid]
+ # print (inverse_indices.shape, group.shape, all_faces_tet_idx.shape)
+ _, indices = torch.sort(group)
+ all_faces_tet_idx_grouped = all_faces_tet_idx[valid][indices]
+ tet_face_tetidx_fx2 = torch.stack([all_faces_tet_idx_grouped[::2], all_faces_tet_idx_grouped[1::2]], dim=-1)
+
+ tet_adj_idx = torch.cat([tet_face_tetidx_fx2, torch.flip(tet_face_tetidx_fx2, [1])])
+ adj_self = torch.arange(t, device=tet_tx4.device)
+ adj_self = torch.stack([adj_self, adj_self], -1)
+ tet_adj_idx = torch.cat([tet_adj_idx, adj_self])
+
+ tet_adj_idx = torch.unique(tet_adj_idx, dim=0)
+ values = torch.ones(
+ tet_adj_idx.shape[0], device=tet_tx4.device).float()
+ adj_sparse = torch.sparse.FloatTensor(
+ tet_adj_idx.t(), values, torch.Size([t, t]))
+
+ # normalization
+ neighbor_num = 1.0 / torch.sparse.sum(
+ adj_sparse, dim=1).to_dense()
+ values = torch.index_select(neighbor_num, 0, tet_adj_idx[:, 0])
+ adj_sparse = torch.sparse.FloatTensor(
+ tet_adj_idx.t(), values, torch.Size([t, t]))
+ return adj_sparse
+
+
+###############################################################################
+# Compact grid
+###############################################################################
+
+def get_tet_bxfx4x3(bxnxz, bxfx4):
+ n_batch, z = bxnxz.shape[0], bxnxz.shape[2]
+ gather_input = bxnxz.unsqueeze(2).expand(
+ n_batch, bxnxz.shape[1], 4, z)
+ gather_index = bxfx4.unsqueeze(-1).expand(
+ n_batch, bxfx4.shape[1], 4, z).long()
+ tet_bxfx4xz = torch.gather(
+ input=gather_input, dim=1, index=gather_index)
+
+ return tet_bxfx4xz
+
+
+def shrink_grid(tet_pos_bxnx3, tet_bxfx4, grid_sdf):
+ with torch.no_grad():
+ assert tet_pos_bxnx3.shape[0] == 1
+
+ occ = grid_sdf[0] > 0
+ occ_sum = get_tet_bxfx4x3(occ.unsqueeze(0).unsqueeze(-1), tet_bxfx4).reshape(-1, 4).sum(-1)
+ mask = (occ_sum > 0) & (occ_sum < 4)
+
+ # build connectivity graph
+ adj_matrix = tet_to_tet_adj_sparse(tet_bxfx4[0])
+ mask = mask.float().unsqueeze(-1)
+
+ # Include a one ring of neighbors
+ for i in range(1):
+ mask = torch.sparse.mm(adj_matrix, mask)
+ mask = mask.squeeze(-1) > 0
+
+ mapping = torch.zeros((tet_pos_bxnx3.shape[1]), device=tet_pos_bxnx3.device, dtype=torch.long)
+ new_tet_bxfx4 = tet_bxfx4[:, mask].long()
+ selected_verts_idx = torch.unique(new_tet_bxfx4)
+ new_tet_pos_bxnx3 = tet_pos_bxnx3[:, selected_verts_idx]
+ mapping[selected_verts_idx] = torch.arange(selected_verts_idx.shape[0], device=tet_pos_bxnx3.device)
+ new_tet_bxfx4 = mapping[new_tet_bxfx4.reshape(-1)].reshape(new_tet_bxfx4.shape)
+ new_grid_sdf = grid_sdf[:, selected_verts_idx]
+ return new_tet_pos_bxnx3, new_tet_bxfx4, new_grid_sdf
+
+
+###############################################################################
+# Regularizer
+###############################################################################
+
+def sdf_reg_loss(sdf, all_edges):
+ sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1, 2)
+ mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
+ sdf_f1x6x2 = sdf_f1x6x2[mask]
+ sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(
+ sdf_f1x6x2[..., 0],
+ (sdf_f1x6x2[..., 1] > 0).float()) + \
+ torch.nn.functional.binary_cross_entropy_with_logits(
+ sdf_f1x6x2[..., 1],
+ (sdf_f1x6x2[..., 0] > 0).float())
+ return sdf_diff
+
+
+def sdf_reg_loss_batch(sdf, all_edges):
+ sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2)
+ mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
+ sdf_f1x6x2 = sdf_f1x6x2[mask]
+ sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \
+ torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float())
+ return sdf_diff
+
+
+###############################################################################
+# Geometry interface
+###############################################################################
+class DMTetGeometry(Geometry):
+ def __init__(
+ self, grid_res=64, scale=2.0, device='cuda', renderer=None,
+ render_type='neural_render', args=None):
+ super(DMTetGeometry, self).__init__()
+ self.grid_res = grid_res
+ self.device = device
+ self.args = args
+ tets = np.load('data/tets/%d_compress.npz' % (grid_res))
+ self.verts = torch.from_numpy(tets['vertices']).float().to(self.device)
+ # Make sure the tet is zero-centered and length is equal to 1
+ length = self.verts.max(dim=0)[0] - self.verts.min(dim=0)[0]
+ length = length.max()
+ mid = (self.verts.max(dim=0)[0] + self.verts.min(dim=0)[0]) / 2.0
+ self.verts = (self.verts - mid.unsqueeze(dim=0)) / length
+ if isinstance(scale, list):
+ self.verts[:, 0] = self.verts[:, 0] * scale[0]
+ self.verts[:, 1] = self.verts[:, 1] * scale[1]
+ self.verts[:, 2] = self.verts[:, 2] * scale[1]
+ else:
+ self.verts = self.verts * scale
+ self.indices = torch.from_numpy(tets['tets']).long().to(self.device)
+ self.triangle_table, self.num_triangles_table, self.base_tet_edges, self.v_id = create_mt_variable(self.device)
+ self.tet_table, self.num_tets_table = create_tetmesh_variables(self.device)
+ # Parameters for regularization computation
+ edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=self.device)
+ all_edges = self.indices[:, edges].reshape(-1, 2)
+ all_edges_sorted = torch.sort(all_edges, dim=1)[0]
+ self.all_edges = torch.unique(all_edges_sorted, dim=0)
+
+ # Parameters used for fix boundary sdf
+ self.center_indices, self.boundary_indices = get_center_boundary_index(self.verts)
+ self.renderer = renderer
+ self.render_type = render_type
+
+ def getAABB(self):
+ return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
+
+ def get_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None):
+ if indices is None:
+ indices = self.indices
+ verts, faces = marching_tets(
+ v_deformed_nx3, sdf_n, indices, self.triangle_table,
+ self.num_triangles_table, self.base_tet_edges, self.v_id)
+ faces = torch.cat(
+ [faces[:, 0:1],
+ faces[:, 2:3],
+ faces[:, 1:2], ], dim=-1)
+ return verts, faces
+
+ def get_tet_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None):
+ if indices is None:
+ indices = self.indices
+ verts, faces, tet_verts, tets = marching_tets_tetmesh(
+ v_deformed_nx3, sdf_n, indices, self.triangle_table,
+ self.num_triangles_table, self.base_tet_edges, self.v_id, return_tet_mesh=True,
+ num_tets_table=self.num_tets_table, tet_table=self.tet_table, ori_v=v_deformed_nx3)
+ faces = torch.cat(
+ [faces[:, 0:1],
+ faces[:, 2:3],
+ faces[:, 1:2], ], dim=-1)
+ return verts, faces, tet_verts, tets
+
+ def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
+ return_value = dict()
+ if self.render_type == 'neural_render':
+ tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh(
+ mesh_v_nx3.unsqueeze(dim=0),
+ mesh_f_fx3.int(),
+ camera_mv_bx4x4,
+ mesh_v_nx3.unsqueeze(dim=0),
+ resolution=resolution,
+ device=self.device,
+ hierarchical_mask=hierarchical_mask
+ )
+
+ return_value['tex_pos'] = tex_pos
+ return_value['mask'] = mask
+ return_value['hard_mask'] = hard_mask
+ return_value['rast'] = rast
+ return_value['v_pos_clip'] = v_pos_clip
+ return_value['mask_pyramid'] = mask_pyramid
+ return_value['depth'] = depth
+ else:
+ raise NotImplementedError
+
+ return return_value
+
+ def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
+ # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
+ v_list = []
+ f_list = []
+ n_batch = v_deformed_bxnx3.shape[0]
+ all_render_output = []
+ for i_batch in range(n_batch):
+ verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
+ v_list.append(verts_nx3)
+ f_list.append(faces_fx3)
+ render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
+ all_render_output.append(render_output)
+
+ # Concatenate all render output
+ return_keys = all_render_output[0].keys()
+ return_value = dict()
+ for k in return_keys:
+ value = [v[k] for v in all_render_output]
+ return_value[k] = value
+ # We can do concatenation outside of the render
+ return return_value
diff --git a/src/models/geometry/rep_3d/dmtet_utils.py b/src/models/geometry/rep_3d/dmtet_utils.py
new file mode 100755
index 0000000000000000000000000000000000000000..8d466a9e78c49d947c115707693aa18d759885ad
--- /dev/null
+++ b/src/models/geometry/rep_3d/dmtet_utils.py
@@ -0,0 +1,20 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+
+
+def get_center_boundary_index(verts):
+ length_ = torch.sum(verts ** 2, dim=-1)
+ center_idx = torch.argmin(length_)
+ boundary_neg = verts == verts.max()
+ boundary_pos = verts == verts.min()
+ boundary = torch.bitwise_or(boundary_pos, boundary_neg)
+ boundary = torch.sum(boundary.float(), dim=-1)
+ boundary_idx = torch.nonzero(boundary)
+ return center_idx, boundary_idx.squeeze(dim=-1)
diff --git a/src/models/geometry/rep_3d/extract_texture_map.py b/src/models/geometry/rep_3d/extract_texture_map.py
new file mode 100755
index 0000000000000000000000000000000000000000..a5d62bb5a6c5cdf632fb504db3d2dfa99a3abbd3
--- /dev/null
+++ b/src/models/geometry/rep_3d/extract_texture_map.py
@@ -0,0 +1,40 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+import xatlas
+import numpy as np
+import nvdiffrast.torch as dr
+
+
+# ==============================================================================================
+def interpolate(attr, rast, attr_idx, rast_db=None):
+ return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all')
+
+
+def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution):
+ vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy())
+
+ # Convert to tensors
+ indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
+
+ uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device)
+ mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device)
+ # mesh_v_tex. ture
+ uv_clip = uvs[None, ...] * 2.0 - 1.0
+
+ # pad to four component coordinate
+ uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1)
+
+ # rasterize
+ rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution))
+
+ # Interpolate world space position
+ gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int())
+ mask = rast[..., 3:4] > 0
+ return uvs, mesh_tex_idx, gb_pos, mask
diff --git a/src/models/geometry/rep_3d/flexicubes.py b/src/models/geometry/rep_3d/flexicubes.py
new file mode 100755
index 0000000000000000000000000000000000000000..26d7b91b6266d802baaf55b64238629cd0f740d0
--- /dev/null
+++ b/src/models/geometry/rep_3d/flexicubes.py
@@ -0,0 +1,579 @@
+# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+import torch
+from .tables import *
+
+__all__ = [
+ 'FlexiCubes'
+]
+
+
+class FlexiCubes:
+ """
+ This class implements the FlexiCubes method for extracting meshes from scalar fields.
+ It maintains a series of lookup tables and indices to support the mesh extraction process.
+ FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances
+ the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting
+ the surface representation through gradient-based optimization.
+
+ During instantiation, the class loads DMC tables from a file and transforms them into
+ PyTorch tensors on the specified device.
+
+ Attributes:
+ device (str): Specifies the computational device (default is "cuda").
+ dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges
+ associated with each dual vertex in 256 Marching Cubes (MC) configurations.
+ num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of
+ the 256 MC configurations.
+ check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19
+ of the DMC configurations.
+ tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface.
+ quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles
+ along one diagonal.
+ quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into
+ two triangles along the other diagonal.
+ quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles
+ during training by connecting all edges to their midpoints.
+ cube_corners (torch.Tensor): Defines the positions of a standard unit cube's
+ eight corners in 3D space, ordered starting from the origin (0,0,0),
+ moving along the x-axis, then y-axis, and finally z-axis.
+ Used as a blueprint for generating a voxel grid.
+ cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used
+ to retrieve the case id.
+ cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs.
+ Used to retrieve edge vertices in DMC.
+ edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with
+ their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the
+ first edge is oriented along the x-axis.
+ dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges
+ across four adjacent cubes to the shared faces of these cubes. For instance,
+ dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along
+ the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively.
+ This tensor is only utilized during isosurface tetrahedralization.
+ adj_pairs (torch.Tensor):
+ A tensor containing index pairs that correspond to neighboring cubes that share the same edge.
+ qef_reg_scale (float):
+ The scaling factor applied to the regularization loss to prevent issues with singularity
+ when solving the QEF. This parameter is only used when a 'grad_func' is specified.
+ weight_scale (float):
+ The scale of weights in FlexiCubes. Should be between 0 and 1.
+ """
+
+ def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
+
+ self.device = device
+ self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
+ self.num_vd_table = torch.tensor(num_vd_table,
+ dtype=torch.long, device=device, requires_grad=False)
+ self.check_table = torch.tensor(
+ check_table,
+ dtype=torch.long, device=device, requires_grad=False)
+
+ self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
+ self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
+ self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
+ self.quad_split_train = torch.tensor(
+ [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
+
+ self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
+ 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
+ self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
+ self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
+ 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
+
+ self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
+ dtype=torch.long, device=device)
+ self.dir_faces_table = torch.tensor([
+ [[5, 4], [3, 2], [4, 5], [2, 3]],
+ [[5, 4], [1, 0], [4, 5], [0, 1]],
+ [[3, 2], [1, 0], [2, 3], [0, 1]]
+ ], dtype=torch.long, device=device)
+ self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
+ self.qef_reg_scale = qef_reg_scale
+ self.weight_scale = weight_scale
+
+ def construct_voxel_grid(self, res):
+ """
+ Generates a voxel grid based on the specified resolution.
+
+ Args:
+ res (int or list[int]): The resolution of the voxel grid. If an integer
+ is provided, it is used for all three dimensions. If a list or tuple
+ of 3 integers is provided, they define the resolution for the x,
+ y, and z dimensions respectively.
+
+ Returns:
+ (torch.Tensor, torch.Tensor): Returns the vertices and the indices of the
+ cube corners (index into vertices) of the constructed voxel grid.
+ The vertices are centered at the origin, with the length of each
+ dimension in the grid being one.
+ """
+ base_cube_f = torch.arange(8).to(self.device)
+ if isinstance(res, int):
+ res = (res, res, res)
+ voxel_grid_template = torch.ones(res, device=self.device)
+
+ res = torch.tensor([res], dtype=torch.float, device=self.device)
+ coords = torch.nonzero(voxel_grid_template).float() / res # N, 3
+ verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3)
+ cubes = (base_cube_f.unsqueeze(0) +
+ torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
+
+ verts_rounded = torch.round(verts * 10**5) / (10**5)
+ verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
+ cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
+
+ return verts_unique - 0.5, cubes
+
+ def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None,
+ gamma_f=None, training=False, output_tetmesh=False, grad_func=None):
+ r"""
+ Main function for mesh extraction from scalar field using FlexiCubes. This function converts
+ discrete signed distance fields, encoded on voxel grids and additional per-cube parameters,
+ to triangle or tetrahedral meshes using a differentiable operation as described in
+ `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances
+ mesh quality and geometric fidelity by adjusting the surface representation based on gradient
+ optimization. The output surface is differentiable with respect to the input vertex positions,
+ scalar field values, and weight parameters.
+
+ If you intend to extract a surface mesh from a fixed Signed Distance Field without the
+ optimization of parameters, it is suggested to provide the "grad_func" which should
+ return the surface gradient at any given 3D position. When grad_func is provided, the process
+ to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as
+ described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy.
+ Please note, this approach is non-differentiable.
+
+ For more details and example usage in optimization, refer to the
+ `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper.
+
+ Args:
+ x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed.
+ s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values
+ denote that the corresponding vertex resides inside the isosurface. This affects
+ the directions of the extracted triangle faces and volume to be tetrahedralized.
+ cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid.
+ res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it
+ is used for all three dimensions. If a list or tuple of 3 integers is provided, they
+ specify the resolution for the x, y, and z dimensions respectively.
+ beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual
+ vertices positioning. Defaults to uniform value for all edges.
+ alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual
+ vertices positioning. Defaults to uniform value for all vertices.
+ gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of
+ quadrilaterals into triangles. Defaults to uniform value for all cubes.
+ training (bool, optional): If set to True, applies differentiable quad splitting for
+ training. Defaults to False.
+ output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise,
+ outputs a triangular mesh. Defaults to False.
+ grad_func (callable, optional): A function to compute the surface gradient at specified
+ 3D positions (input: Nx3 positions). The function should return gradients as an Nx3
+ tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None.
+
+ Returns:
+ (torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing:
+ - Vertices for the extracted triangular/tetrahedral mesh.
+ - Faces for the extracted triangular/tetrahedral mesh.
+ - Regularizer L_dev, computed per dual vertex.
+
+ .. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization:
+ https://research.nvidia.com/labs/toronto-ai/flexicubes/
+ .. _Manifold Dual Contouring:
+ https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf
+ """
+
+ surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
+ if surf_cubes.sum() == 0:
+ return torch.zeros(
+ (0, 3),
+ device=self.device), torch.zeros(
+ (0, 4),
+ dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros(
+ (0, 3),
+ dtype=torch.long, device=self.device), torch.zeros(
+ (0),
+ device=self.device)
+ beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes)
+
+ case_ids = self._get_case_id(occ_fx8, surf_cubes, res)
+
+ surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes)
+
+ vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd(
+ x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func)
+ vertices, faces, s_edges, edge_indices = self._triangulate(
+ s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func)
+ if not output_tetmesh:
+ return vertices, faces, L_dev
+ else:
+ vertices, tets = self._tetrahedralize(
+ x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
+ surf_cubes, training)
+ return vertices, tets, L_dev
+
+ def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
+ """
+ Regularizer L_dev as in Equation 8
+ """
+ dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
+ mean_l2 = torch.zeros_like(vd[:, 0])
+ mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
+ mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
+ return mad
+
+ def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes):
+ """
+ Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
+ """
+ n_cubes = surf_cubes.shape[0]
+
+ if beta_fx12 is not None:
+ beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1)
+ else:
+ beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
+
+ if alpha_fx8 is not None:
+ alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1)
+ else:
+ alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
+
+ if gamma_f is not None:
+ gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2
+ else:
+ gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
+
+ return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes]
+
+ @torch.no_grad()
+ def _get_case_id(self, occ_fx8, surf_cubes, res):
+ """
+ Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
+ ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
+ supplementary material. It should be noted that this function assumes a regular grid.
+ """
+ case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
+
+ problem_config = self.check_table.to(self.device)[case_ids]
+ to_check = problem_config[..., 0] == 1
+ problem_config = problem_config[to_check]
+ if not isinstance(res, (list, tuple)):
+ res = [res, res, res]
+
+ # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
+ # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
+ # This allows efficient checking on adjacent cubes.
+ problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
+ vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
+ vol_idx_problem = vol_idx[surf_cubes][to_check]
+ problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
+ vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
+
+ within_range = (
+ vol_idx_problem_adj[..., 0] >= 0) & (
+ vol_idx_problem_adj[..., 0] < res[0]) & (
+ vol_idx_problem_adj[..., 1] >= 0) & (
+ vol_idx_problem_adj[..., 1] < res[1]) & (
+ vol_idx_problem_adj[..., 2] >= 0) & (
+ vol_idx_problem_adj[..., 2] < res[2])
+
+ vol_idx_problem = vol_idx_problem[within_range]
+ vol_idx_problem_adj = vol_idx_problem_adj[within_range]
+ problem_config = problem_config[within_range]
+ problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
+ vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
+ # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
+ to_invert = (problem_config_adj[..., 0] == 1)
+ idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
+ case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
+ return case_ids
+
+ @torch.no_grad()
+ def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes):
+ """
+ Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
+ can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
+ and marks the cube edges with this index.
+ """
+ occ_n = s_n < 0
+ all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2)
+ unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
+
+ unique_edges = unique_edges.long()
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
+
+ surf_edges_mask = mask_edges[_idx_map]
+ counts = counts[_idx_map]
+
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
+ # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
+ # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
+ idx_map = mapping[_idx_map]
+ surf_edges = unique_edges[mask_edges]
+ return surf_edges, idx_map, counts, surf_edges_mask
+
+ @torch.no_grad()
+ def _identify_surf_cubes(self, s_n, cube_fx8):
+ """
+ Identifies grid cubes that intersect with the underlying surface by checking if the signs at
+ all corners are not identical.
+ """
+ occ_n = s_n < 0
+ occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
+ _occ_sum = torch.sum(occ_fx8, -1)
+ surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
+ return surf_cubes, occ_fx8
+
+ def _linear_interp(self, edges_weight, edges_x):
+ """
+ Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
+ """
+ edge_dim = edges_weight.dim() - 2
+ assert edges_weight.shape[edge_dim] == 2
+ edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
+ torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
+ denominator = edges_weight.sum(edge_dim)
+ ue = (edges_x * edges_weight).sum(edge_dim) / denominator
+ return ue
+
+ def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None):
+ p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
+ norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
+ c_bx3 = c_bx3.reshape(-1, 3)
+ A = norm_bxnx3
+ B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
+
+ A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
+ B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1)
+ A = torch.cat([A, A_reg], 1)
+ B = torch.cat([B, B_reg], 1)
+ dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
+ return dual_verts
+
+ def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func):
+ """
+ Computes the location of dual vertices as described in Section 4.2
+ """
+ alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
+ surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
+ surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
+ zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
+
+ idx_map = idx_map.reshape(-1, 12)
+ num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
+ edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
+
+ total_num_vd = 0
+ vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
+ if grad_func is not None:
+ normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1)
+ vd = []
+ for num in torch.unique(num_vd):
+ cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
+ curr_num_vd = cur_cubes.sum() * num
+ curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
+ curr_edge_group_to_vd = torch.arange(
+ curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
+ total_num_vd += curr_num_vd
+ curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
+ cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
+
+ curr_mask = (curr_edge_group != -1)
+ edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
+ edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
+ edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
+ vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
+ vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
+
+ if grad_func is not None:
+ with torch.no_grad():
+ cube_e_verts_idx = idx_map[cur_cubes]
+ curr_edge_group[~curr_mask] = 0
+
+ verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group)
+ verts_group_idx[verts_group_idx == -1] = 0
+ verts_group_pos = torch.index_select(
+ input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3)
+ v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1)
+ curr_mask = curr_mask.reshape(-1, num.item(), 7, 1)
+ verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2))
+
+ normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape(
+ -1, num.item(), 7,
+ 3)
+ curr_mask = curr_mask.squeeze(2)
+ vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask,
+ verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3))
+ edge_group = torch.cat(edge_group)
+ edge_group_to_vd = torch.cat(edge_group_to_vd)
+ edge_group_to_cube = torch.cat(edge_group_to_cube)
+ vd_num_edges = torch.cat(vd_num_edges)
+ vd_gamma = torch.cat(vd_gamma)
+
+ if grad_func is not None:
+ vd = torch.cat(vd)
+ L_dev = torch.zeros([1], device=self.device)
+ else:
+ vd = torch.zeros((total_num_vd, 3), device=self.device)
+ beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
+
+ idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
+
+ x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
+ s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
+
+ zero_crossing_group = torch.index_select(
+ input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
+
+ alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
+ index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
+ ue_group = self._linear_interp(s_group * alpha_group, x_group)
+
+ beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0,
+ index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
+ beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
+ vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
+ L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
+
+ v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
+
+ vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
+ 12 + edge_group, src=v_idx[edge_group_to_vd])
+
+ return vd, L_dev, vd_gamma, vd_idx_map
+
+ def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func):
+ """
+ Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
+ triangles based on the gamma parameter, as described in Section 4.3.
+ """
+ with torch.no_grad():
+ group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
+ group = idx_map.reshape(-1)[group_mask]
+ vd_idx = vd_idx_map[group_mask]
+ edge_indices, indices = torch.sort(group, stable=True)
+ quad_vd_idx = vd_idx[indices].reshape(-1, 4)
+
+ # Ensure all face directions point towards the positive SDF to maintain consistent winding.
+ s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
+ flip_mask = s_edges[:, 0] > 0
+ quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
+ quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
+ if grad_func is not None:
+ # when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients.
+ with torch.no_grad():
+ vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1)
+ quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
+ gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True)
+ gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True)
+ else:
+ quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
+ gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor(
+ 0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1)
+ gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor(
+ 1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1)
+ if not training:
+ mask = (gamma_02 > gamma_13).squeeze(1)
+ faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
+ faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
+ faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
+ faces = faces.reshape(-1, 3)
+ else:
+ vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
+ vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) +
+ torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2
+ vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) +
+ torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2
+ weight_sum = (gamma_02 + gamma_13) + 1e-8
+ vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) /
+ weight_sum.unsqueeze(-1)).squeeze(1)
+ vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
+ vd = torch.cat([vd, vd_center])
+ faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
+ faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
+ return vd, faces, s_edges, edge_indices
+
+ def _tetrahedralize(
+ self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
+ surf_cubes, training):
+ """
+ Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5.
+ """
+ occ_n = s_n < 0
+ occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
+ occ_sum = torch.sum(occ_fx8, -1)
+
+ inside_verts = x_nx3[occ_n]
+ mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1
+ mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0]
+ """
+ For each grid edge connecting two grid vertices with different
+ signs, we first form a four-sided pyramid by connecting one
+ of the grid vertices with four mesh vertices that correspond
+ to the grid edge and then subdivide the pyramid into two tetrahedra
+ """
+ inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[
+ s_edges < 0]]
+ if not training:
+ inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1)
+ else:
+ inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1)
+
+ tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1)
+ """
+ For each grid edge connecting two grid vertices with the
+ same sign, the tetrahedron is formed by the two grid vertices
+ and two vertices in consecutive adjacent cells
+ """
+ inside_cubes = (occ_sum == 8)
+ inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1)
+ inside_cubes_center_idx = torch.arange(
+ inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0]
+
+ surface_n_inside_cubes = surf_cubes | inside_cubes
+ edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13),
+ dtype=torch.long, device=x_nx3.device) * -1
+ surf_cubes = surf_cubes[surface_n_inside_cubes]
+ inside_cubes = inside_cubes[surface_n_inside_cubes]
+ edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12)
+ edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx
+
+ all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2)
+ unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
+ unique_edges = unique_edges.long()
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2
+ mask = mask_edges[_idx_map]
+ counts = counts[_idx_map]
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device)
+ idx_map = mapping[_idx_map]
+
+ group_mask = (counts == 4) & mask
+ group = idx_map.reshape(-1)[group_mask]
+ edge_indices, indices = torch.sort(group)
+ cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long,
+ device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask]
+ edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze(
+ 0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask]
+ # Identify the face shared by the adjacent cells.
+ cube_idx_4 = cube_idx[indices].reshape(-1, 4)
+ edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0]
+ shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1)
+ cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1)
+ # Identify an edge of the face with different signs and
+ # select the mesh vertex corresponding to the identified edge.
+ case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255
+ case_ids_expand[surf_cubes] = case_ids
+ cases = case_ids_expand[cube_idx_4x2]
+ quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2)
+ mask = (quad_edge == -1).sum(-1) == 0
+ inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2)
+ tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask]
+
+ tets = torch.cat([tets_surface, tets_inside])
+ vertices = torch.cat([vertices, inside_verts, inside_cubes_center])
+ return vertices, tets
diff --git a/src/models/geometry/rep_3d/flexicubes_geometry.py b/src/models/geometry/rep_3d/flexicubes_geometry.py
new file mode 100755
index 0000000000000000000000000000000000000000..bf050ee20361f78957839942f83fe77efde231b7
--- /dev/null
+++ b/src/models/geometry/rep_3d/flexicubes_geometry.py
@@ -0,0 +1,120 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+import numpy as np
+import os
+from . import Geometry
+from .flexicubes import FlexiCubes # replace later
+from .dmtet import sdf_reg_loss_batch
+import torch.nn.functional as F
+
+def get_center_boundary_index(grid_res, device):
+ v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
+ v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
+ center_indices = torch.nonzero(v.reshape(-1))
+
+ v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
+ v[:2, ...] = True
+ v[-2:, ...] = True
+ v[:, :2, ...] = True
+ v[:, -2:, ...] = True
+ v[:, :, :2] = True
+ v[:, :, -2:] = True
+ boundary_indices = torch.nonzero(v.reshape(-1))
+ return center_indices, boundary_indices
+
+###############################################################################
+# Geometry interface
+###############################################################################
+class FlexiCubesGeometry(Geometry):
+ def __init__(
+ self, grid_res=64, scale=2.0, device='cuda', renderer=None,
+ render_type='neural_render', args=None):
+ super(FlexiCubesGeometry, self).__init__()
+ self.grid_res = grid_res
+ self.device = device
+ self.args = args
+ self.fc = FlexiCubes(device, weight_scale=0.5)
+ self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
+ if isinstance(scale, list):
+ self.verts[:, 0] = self.verts[:, 0] * scale[0]
+ self.verts[:, 1] = self.verts[:, 1] * scale[1]
+ self.verts[:, 2] = self.verts[:, 2] * scale[1]
+ else:
+ self.verts = self.verts * scale
+
+ all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
+ self.all_edges = torch.unique(all_edges, dim=0)
+
+ # Parameters used for fix boundary sdf
+ self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
+ self.renderer = renderer
+ self.render_type = render_type
+
+ def getAABB(self):
+ return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
+
+ def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
+ if indices is None:
+ indices = self.indices
+
+ verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
+ beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
+ gamma_f=weight_n[:, 20], training=is_training
+ )
+ return verts, faces, v_reg_loss
+
+
+ def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
+ return_value = dict()
+ if self.render_type == 'neural_render':
+ tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal = self.renderer.render_mesh(
+ mesh_v_nx3.unsqueeze(dim=0),
+ mesh_f_fx3.int(),
+ camera_mv_bx4x4,
+ mesh_v_nx3.unsqueeze(dim=0),
+ resolution=resolution,
+ device=self.device,
+ hierarchical_mask=hierarchical_mask
+ )
+
+ return_value['tex_pos'] = tex_pos
+ return_value['mask'] = mask
+ return_value['hard_mask'] = hard_mask
+ return_value['rast'] = rast
+ return_value['v_pos_clip'] = v_pos_clip
+ return_value['mask_pyramid'] = mask_pyramid
+ return_value['depth'] = depth
+ return_value['normal'] = normal
+ else:
+ raise NotImplementedError
+
+ return return_value
+
+ def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
+ # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
+ v_list = []
+ f_list = []
+ n_batch = v_deformed_bxnx3.shape[0]
+ all_render_output = []
+ for i_batch in range(n_batch):
+ verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
+ v_list.append(verts_nx3)
+ f_list.append(faces_fx3)
+ render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
+ all_render_output.append(render_output)
+
+ # Concatenate all render output
+ return_keys = all_render_output[0].keys()
+ return_value = dict()
+ for k in return_keys:
+ value = [v[k] for v in all_render_output]
+ return_value[k] = value
+ # We can do concatenation outside of the render
+ return return_value
diff --git a/src/models/geometry/rep_3d/tables.py b/src/models/geometry/rep_3d/tables.py
new file mode 100755
index 0000000000000000000000000000000000000000..5873e7727b5595a1e4fbc3bd10ae5be8f3d06cca
--- /dev/null
+++ b/src/models/geometry/rep_3d/tables.py
@@ -0,0 +1,791 @@
+# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+dmc_table = [
+[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 8, 11, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 5, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 7, 8, 9, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 5, 7, 8, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 7, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 9, 10, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 7, 8, 9, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 7, 9, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 9, 10, 11, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 8, 10, 11, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 7, 8, 9, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 5, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 8, 9, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 5, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 5, 8, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 6, 7, 8, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 5, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 5, 6, 7, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 2, 3, 5, 6, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 9, 10, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 8, 9, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 6, 8, 11, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 6, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 9, 10, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 6, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1]],
+[[0, 2, 4, 5, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 5, 8, 10, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 6, 8, 9, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 6, 9, 11, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 5, 6, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 6, 7, 8, 10, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 5, 6, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 5, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 5, 6, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 8, 9, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 7, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 7, 9, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 8, 11, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 8, 9, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 7, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1]],
+[[1, 2, 4, 7, 9, 11, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 6, 9, 10, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 8, 11, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 6, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[6, 7, 8, 9, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 6, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 6, 7, 8, 10, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 6, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 7, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 6, 9, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 5, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 2, 3, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 5, 6, 7, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 6, 9, 11, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 6, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 6, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 6, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 6, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 8, 9, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 5, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 5, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 5, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 2, 3, 4, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 2, 3, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 5, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 2, 3, 4, 5, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 5, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 4, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 2, 3, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 5, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 4, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
+[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]]
+]
+num_vd_table = [0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2,
+2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2,
+1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 1, 1,
+1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 3, 4, 2,
+2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2,
+3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1,
+2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1,
+1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2,
+1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
+1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
+check_table = [
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 1, 0, 0, 194],
+[1, -1, 0, 0, 193],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 1, 0, 164],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, -1, 0, 161],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 0, 1, 152],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 0, 1, 145],
+[1, 0, 0, 1, 144],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 0, -1, 137],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 1, 0, 133],
+[1, 0, 1, 0, 132],
+[1, 1, 0, 0, 131],
+[1, 1, 0, 0, 130],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 0, 1, 100],
+[0, 0, 0, 0, 0],
+[1, 0, 0, 1, 98],
+[0, 0, 0, 0, 0],
+[1, 0, 0, 1, 96],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 1, 0, 88],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, -1, 0, 82],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 1, 0, 74],
+[0, 0, 0, 0, 0],
+[1, 0, 1, 0, 72],
+[0, 0, 0, 0, 0],
+[1, 0, 0, -1, 70],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, -1, 0, 0, 67],
+[0, 0, 0, 0, 0],
+[1, -1, 0, 0, 65],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 1, 0, 0, 56],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, -1, 0, 0, 52],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 1, 0, 0, 44],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 1, 0, 0, 40],
+[0, 0, 0, 0, 0],
+[1, 0, 0, -1, 38],
+[1, 0, -1, 0, 37],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, -1, 0, 33],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, -1, 0, 0, 28],
+[0, 0, 0, 0, 0],
+[1, 0, -1, 0, 26],
+[1, 0, 0, -1, 25],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, -1, 0, 0, 20],
+[0, 0, 0, 0, 0],
+[1, 0, -1, 0, 18],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 0, -1, 9],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[1, 0, 0, -1, 6],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0]
+]
+tet_table = [
+[-1, -1, -1, -1, -1, -1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[4, 4, 4, 4, 4, 4],
+[0, 0, 0, 0, 0, 0],
+[4, 0, 0, 4, 4, -1],
+[1, 1, 1, 1, 1, 1],
+[4, 4, 4, 4, 4, 4],
+[0, 4, 0, 4, 4, -1],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[5, 5, 5, 5, 5, 5],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 0, 2, -1, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[2, -1, 2, 4, 4, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 0, 2, 4, 4, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 4, 2, 4, 4, 2],
+[0, 4, 0, 4, 4, 0],
+[2, 0, 2, 0, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 5, 2, 5, 5, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 0, 2, 0, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[1, 1, 1, 1, 1, 1],
+[0, 1, 1, -1, 0, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[4, 1, 1, 4, 4, 1],
+[0, 1, 1, 0, 0, 1],
+[4, 0, 0, 4, 4, 0],
+[2, 2, 2, 2, 2, 2],
+[-1, 1, 1, 4, 4, 1],
+[0, 1, 1, 4, 4, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[5, 1, 1, 5, 5, 1],
+[0, 1, 1, 0, 0, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[8, 8, 8, 8, 8, 8],
+[1, 1, 1, 4, 4, 1],
+[0, 0, 0, 0, 0, 0],
+[4, 0, 0, 4, 4, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 4, 4, 1],
+[0, 4, 0, 4, 4, 0],
+[0, 0, 0, 0, 0, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 5, 5, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[5, 5, 5, 5, 5, 5],
+[6, 6, 6, 6, 6, 6],
+[6, -1, 0, 6, 0, 6],
+[6, 0, 0, 6, 0, 6],
+[6, 1, 1, 6, 1, 6],
+[4, 4, 4, 4, 4, 4],
+[0, 0, 0, 0, 0, 0],
+[4, 0, 0, 4, 4, 4],
+[1, 1, 1, 1, 1, 1],
+[6, 4, -1, 6, 4, 6],
+[6, 4, 0, 6, 4, 6],
+[6, 0, 0, 6, 0, 6],
+[6, 1, 1, 6, 1, 6],
+[5, 5, 5, 5, 5, 5],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 0, 2, 2, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 0, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 4, 2, 2, 4, 2],
+[0, 4, 0, 4, 4, 0],
+[2, 0, 2, 2, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[6, 1, 1, 6, -1, 6],
+[6, 1, 1, 6, 0, 6],
+[6, 0, 0, 6, 0, 6],
+[6, 2, 2, 6, 2, 6],
+[4, 1, 1, 4, 4, 1],
+[0, 1, 1, 0, 0, 1],
+[4, 0, 0, 4, 4, 4],
+[2, 2, 2, 2, 2, 2],
+[6, 1, 1, 6, 4, 6],
+[6, 1, 1, 6, 4, 6],
+[6, 0, 0, 6, 0, 6],
+[6, 2, 2, 6, 2, 6],
+[5, 1, 1, 5, 5, 1],
+[0, 1, 1, 0, 0, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[6, 6, 6, 6, 6, 6],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 1, 4, 1],
+[0, 4, 0, 4, 4, 0],
+[0, 0, 0, 0, 0, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 5, 0, 5, 0, 5],
+[5, 5, 5, 5, 5, 5],
+[5, 5, 5, 5, 5, 5],
+[0, 5, 0, 5, 0, 5],
+[-1, 5, 0, 5, 0, 5],
+[1, 5, 1, 5, 1, 5],
+[4, 5, -1, 5, 4, 5],
+[0, 5, 0, 5, 0, 5],
+[4, 5, 0, 5, 4, 5],
+[1, 5, 1, 5, 1, 5],
+[4, 4, 4, 4, 4, 4],
+[0, 4, 0, 4, 4, 4],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[6, 6, 6, 6, 6, 6],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[2, 5, 2, 5, -1, 5],
+[0, 5, 0, 5, 0, 5],
+[2, 5, 2, 5, 0, 5],
+[1, 5, 1, 5, 1, 5],
+[2, 5, 2, 5, 4, 5],
+[0, 5, 0, 5, 0, 5],
+[2, 5, 2, 5, 4, 5],
+[1, 5, 1, 5, 1, 5],
+[2, 4, 2, 4, 4, 2],
+[0, 4, 0, 4, 4, 4],
+[2, 0, 2, 0, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 6, 2, 6, 6, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 0, 2, 0, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[1, 1, 1, 1, 1, 1],
+[0, 1, 1, 1, 0, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[4, 1, 1, 1, 4, 1],
+[0, 1, 1, 1, 0, 1],
+[4, 0, 0, 4, 4, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[5, 5, 5, 5, 5, 5],
+[1, 1, 1, 1, 4, 1],
+[0, 0, 0, 0, 0, 0],
+[4, 0, 0, 4, 4, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 1, 1, 1],
+[6, 0, 0, 6, 0, 6],
+[0, 0, 0, 0, 0, 0],
+[6, 6, 6, 6, 6, 6],
+[5, 5, 5, 5, 5, 5],
+[5, 5, 0, 5, 0, 5],
+[5, 5, 0, 5, 0, 5],
+[5, 5, 1, 5, 1, 5],
+[4, 4, 4, 4, 4, 4],
+[0, 0, 0, 0, 0, 0],
+[4, 4, 0, 4, 4, 4],
+[1, 1, 1, 1, 1, 1],
+[4, 4, 4, 4, 4, 4],
+[4, 4, 0, 4, 4, 4],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[8, 8, 8, 8, 8, 8],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 0, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[4, 1, 1, 4, 4, 1],
+[2, 2, 2, 2, 2, 2],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[1, 1, 1, 1, 1, 1],
+[1, 1, 1, 1, 1, 1],
+[1, 1, 1, 1, 0, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[2, 4, 2, 4, 4, 2],
+[1, 1, 1, 1, 1, 1],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[2, 2, 2, 2, 2, 2],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[5, 5, 5, 5, 5, 5],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[4, 4, 4, 4, 4, 4],
+[1, 1, 1, 1, 1, 1],
+[0, 0, 0, 0, 0, 0],
+[0, 0, 0, 0, 0, 0],
+[12, 12, 12, 12, 12, 12]
+]
diff --git a/src/models/lrm.py b/src/models/lrm.py
new file mode 100755
index 0000000000000000000000000000000000000000..eea9ee3353d74fb60451fec87f6c2c30816f64ae
--- /dev/null
+++ b/src/models/lrm.py
@@ -0,0 +1,196 @@
+# Copyright (c) 2023, Zexin He
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# https://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import torch
+import torch.nn as nn
+import mcubes
+import nvdiffrast.torch as dr
+from einops import rearrange, repeat
+
+from .encoder.dino_wrapper import DinoWrapper
+from .decoder.transformer import TriplaneTransformer
+from .renderer.synthesizer import TriplaneSynthesizer
+from ..utils.mesh_util import xatlas_uvmap
+
+
+class InstantNeRF(nn.Module):
+ """
+ Full model of the large reconstruction model.
+ """
+ def __init__(
+ self,
+ encoder_freeze: bool = False,
+ encoder_model_name: str = 'facebook/dino-vitb16',
+ encoder_feat_dim: int = 768,
+ transformer_dim: int = 1024,
+ transformer_layers: int = 16,
+ transformer_heads: int = 16,
+ triplane_low_res: int = 32,
+ triplane_high_res: int = 64,
+ triplane_dim: int = 80,
+ rendering_samples_per_ray: int = 128,
+ ):
+ super().__init__()
+
+ # modules
+ self.encoder = DinoWrapper(
+ model_name=encoder_model_name,
+ freeze=encoder_freeze,
+ )
+
+ self.transformer = TriplaneTransformer(
+ inner_dim=transformer_dim,
+ num_layers=transformer_layers,
+ num_heads=transformer_heads,
+ image_feat_dim=encoder_feat_dim,
+ triplane_low_res=triplane_low_res,
+ triplane_high_res=triplane_high_res,
+ triplane_dim=triplane_dim,
+ )
+
+ self.synthesizer = TriplaneSynthesizer(
+ triplane_dim=triplane_dim,
+ samples_per_ray=rendering_samples_per_ray,
+ )
+
+ def forward_planes(self, images, cameras):
+ # images: [B, V, C_img, H_img, W_img]
+ # cameras: [B, V, 16]
+ B = images.shape[0]
+
+ # encode images
+ image_feats = self.encoder(images, cameras)
+ image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B)
+
+ # transformer generating planes
+ planes = self.transformer(image_feats)
+
+ return planes
+
+ def forward(self, images, cameras, render_cameras, render_size: int):
+ # images: [B, V, C_img, H_img, W_img]
+ # cameras: [B, V, 16]
+ # render_cameras: [B, M, D_cam_render]
+ # render_size: int
+ B, M = render_cameras.shape[:2]
+
+ planes = self.forward_planes(images, cameras)
+
+ # render target views
+ render_results = self.synthesizer(planes, render_cameras, render_size)
+
+ return {
+ 'planes': planes,
+ **render_results,
+ }
+
+ def get_texture_prediction(self, planes, tex_pos, hard_mask=None):
+ '''
+ Predict Texture given triplanes
+ :param planes: the triplane feature map
+ :param tex_pos: Position we want to query the texture field
+ :param hard_mask: 2D silhoueete of the rendered image
+ '''
+ tex_pos = torch.cat(tex_pos, dim=0)
+ if not hard_mask is None:
+ tex_pos = tex_pos * hard_mask.float()
+ batch_size = tex_pos.shape[0]
+ tex_pos = tex_pos.reshape(batch_size, -1, 3)
+ ###################
+ # We use mask to get the texture location (to save the memory)
+ if hard_mask is not None:
+ n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
+ sample_tex_pose_list = []
+ max_point = n_point_list.max()
+ expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
+ for i in range(tex_pos.shape[0]):
+ tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
+ if tex_pos_one_shape.shape[1] < max_point:
+ tex_pos_one_shape = torch.cat(
+ [tex_pos_one_shape, torch.zeros(
+ 1, max_point - tex_pos_one_shape.shape[1], 3,
+ device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
+ sample_tex_pose_list.append(tex_pos_one_shape)
+ tex_pos = torch.cat(sample_tex_pose_list, dim=0)
+
+ tex_feat = self.synthesizer.forward_points(planes, tex_pos)['rgb']
+
+ if hard_mask is not None:
+ final_tex_feat = torch.zeros(
+ planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
+ expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
+ for i in range(planes.shape[0]):
+ final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
+ tex_feat = final_tex_feat
+
+ return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1])
+
+ def extract_mesh(
+ self,
+ planes: torch.Tensor,
+ mesh_resolution: int = 256,
+ mesh_threshold: int = 10.0,
+ use_texture_map: bool = False,
+ texture_resolution: int = 1024,
+ **kwargs,
+ ):
+ '''
+ Extract a 3D mesh from triplane nerf. Only support batch_size 1.
+ :param planes: triplane features
+ :param mesh_resolution: marching cubes resolution
+ :param mesh_threshold: iso-surface threshold
+ :param use_texture_map: use texture map or vertex color
+ :param texture_resolution: the resolution of texture map
+ '''
+ assert planes.shape[0] == 1
+ device = planes.device
+
+ grid_out = self.synthesizer.forward_grid(
+ planes=planes,
+ grid_size=mesh_resolution,
+ )
+
+ vertices, faces = mcubes.marching_cubes(
+ grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(),
+ mesh_threshold,
+ )
+ vertices = vertices / (mesh_resolution - 1) * 2 - 1
+
+ if not use_texture_map:
+ # query vertex colors
+ vertices_tensor = torch.tensor(vertices, dtype=torch.float32, device=device).unsqueeze(0)
+ vertices_colors = self.synthesizer.forward_points(
+ planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy()
+ vertices_colors = (vertices_colors * 255).astype(np.uint8)
+
+ return vertices, faces, vertices_colors
+
+ # use x-atlas to get uv mapping for the mesh
+ vertices = torch.tensor(vertices, dtype=torch.float32, device=device)
+ faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device)
+
+ ctx = dr.RasterizeCudaContext(device=device)
+ uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
+ ctx, vertices, faces, resolution=texture_resolution)
+ tex_hard_mask = tex_hard_mask.float()
+
+ # query the texture field to get the RGB color for texture map
+ tex_feat = self.get_texture_prediction(
+ planes, [gb_pos], tex_hard_mask)
+ background_feature = torch.zeros_like(tex_feat)
+ img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask)
+ texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
+
+ return vertices, faces, uvs, mesh_tex_idx, texture_map
\ No newline at end of file
diff --git a/src/models/lrm_mesh.py b/src/models/lrm_mesh.py
new file mode 100755
index 0000000000000000000000000000000000000000..cb6e351bc8191de56178393ff677de1c32342cf3
--- /dev/null
+++ b/src/models/lrm_mesh.py
@@ -0,0 +1,382 @@
+# Copyright (c) 2023, Tencent Inc
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# https://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import torch
+import torch.nn as nn
+import nvdiffrast.torch as dr
+from einops import rearrange, repeat
+
+from .encoder.dino_wrapper import DinoWrapper
+from .decoder.transformer import TriplaneTransformer
+from .renderer.synthesizer_mesh import TriplaneSynthesizer
+from .geometry.camera.perspective_camera import PerspectiveCamera
+from .geometry.render.neural_render import NeuralRender
+from .geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry
+from ..utils.mesh_util import xatlas_uvmap
+
+
+class InstantMesh(nn.Module):
+ """
+ Full model of the large reconstruction model.
+ """
+ def __init__(
+ self,
+ encoder_freeze: bool = False,
+ encoder_model_name: str = 'facebook/dino-vitb16',
+ encoder_feat_dim: int = 768,
+ transformer_dim: int = 1024,
+ transformer_layers: int = 16,
+ transformer_heads: int = 16,
+ triplane_low_res: int = 32,
+ triplane_high_res: int = 64,
+ triplane_dim: int = 80,
+ rendering_samples_per_ray: int = 128,
+ grid_res: int = 128,
+ grid_scale: float = 2.0,
+ ):
+ super().__init__()
+
+ # attributes
+ self.grid_res = grid_res
+ self.grid_scale = grid_scale
+ self.deformation_multiplier = 4.0
+
+ # modules
+ self.encoder = DinoWrapper(
+ model_name=encoder_model_name,
+ freeze=encoder_freeze,
+ )
+
+ self.transformer = TriplaneTransformer(
+ inner_dim=transformer_dim,
+ num_layers=transformer_layers,
+ num_heads=transformer_heads,
+ image_feat_dim=encoder_feat_dim,
+ triplane_low_res=triplane_low_res,
+ triplane_high_res=triplane_high_res,
+ triplane_dim=triplane_dim,
+ )
+
+ self.synthesizer = TriplaneSynthesizer(
+ triplane_dim=triplane_dim,
+ samples_per_ray=rendering_samples_per_ray,
+ )
+
+ def init_flexicubes_geometry(self, device, fovy=50.0):
+ camera = PerspectiveCamera(fovy=fovy, device=device)
+ renderer = NeuralRender(device, camera_model=camera)
+ self.geometry = FlexiCubesGeometry(
+ grid_res=self.grid_res,
+ scale=self.grid_scale,
+ renderer=renderer,
+ render_type='neural_render',
+ device=device,
+ )
+
+ def forward_planes(self, images, cameras):
+ # images: [B, V, C_img, H_img, W_img]
+ # cameras: [B, V, 16]
+ B = images.shape[0]
+
+ # encode images
+ image_feats = self.encoder(images, cameras)
+ image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B)
+
+ # decode triplanes
+ planes = self.transformer(image_feats)
+
+ return planes
+
+ def get_sdf_deformation_prediction(self, planes):
+ '''
+ Predict SDF and deformation for tetrahedron vertices
+ :param planes: triplane feature map for the geometry
+ '''
+ init_position = self.geometry.verts.unsqueeze(0).expand(planes.shape[0], -1, -1)
+
+ # Step 1: predict the SDF and deformation
+ sdf, deformation, weight = torch.utils.checkpoint.checkpoint(
+ self.synthesizer.get_geometry_prediction,
+ planes,
+ init_position,
+ self.geometry.indices,
+ use_reentrant=False,
+ )
+
+ # Step 2: Normalize the deformation to avoid the flipped triangles.
+ deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation)
+ sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32)
+
+ ####
+ # Step 3: Fix some sdf if we observe empty shape (full positive or full negative)
+ sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1))
+ sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1)
+ pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1)
+ neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1)
+ zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0)
+ if torch.sum(zero_surface).item() > 0:
+ update_sdf = torch.zeros_like(sdf[0:1])
+ max_sdf = sdf.max()
+ min_sdf = sdf.min()
+ update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf) # greater than zero
+ update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf) # smaller than zero
+ new_sdf = torch.zeros_like(sdf)
+ for i_batch in range(zero_surface.shape[0]):
+ if zero_surface[i_batch]:
+ new_sdf[i_batch:i_batch + 1] += update_sdf
+ update_mask = (new_sdf == 0).float()
+ # Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative)
+ sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1)
+ sdf_reg_loss = sdf_reg_loss * zero_surface.float()
+ sdf = sdf * update_mask + new_sdf * (1 - update_mask)
+
+ # Step 4: Here we remove the gradient for the bad sdf (full positive or full negative)
+ final_sdf = []
+ final_def = []
+ for i_batch in range(zero_surface.shape[0]):
+ if zero_surface[i_batch]:
+ final_sdf.append(sdf[i_batch: i_batch + 1].detach())
+ final_def.append(deformation[i_batch: i_batch + 1].detach())
+ else:
+ final_sdf.append(sdf[i_batch: i_batch + 1])
+ final_def.append(deformation[i_batch: i_batch + 1])
+ sdf = torch.cat(final_sdf, dim=0)
+ deformation = torch.cat(final_def, dim=0)
+ return sdf, deformation, sdf_reg_loss, weight
+
+ def get_geometry_prediction(self, planes=None):
+ '''
+ Function to generate mesh with give triplanes
+ :param planes: triplane features
+ '''
+ # Step 1: first get the sdf and deformation value for each vertices in the tetrahedon grid.
+ sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes)
+ v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation
+ tets = self.geometry.indices
+ n_batch = planes.shape[0]
+ v_list = []
+ f_list = []
+ flexicubes_surface_reg_list = []
+
+ # Step 2: Using marching tet to obtain the mesh
+ for i_batch in range(n_batch):
+ verts, faces, flexicubes_surface_reg = self.geometry.get_mesh(
+ v_deformed[i_batch],
+ sdf[i_batch].squeeze(dim=-1),
+ with_uv=False,
+ indices=tets,
+ weight_n=weight[i_batch].squeeze(dim=-1),
+ is_training=self.training,
+ )
+ flexicubes_surface_reg_list.append(flexicubes_surface_reg)
+ v_list.append(verts)
+ f_list.append(faces)
+
+ flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean()
+ flexicubes_weight_reg = (weight ** 2).mean()
+
+ return v_list, f_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg)
+
+ def get_texture_prediction(self, planes, tex_pos, hard_mask=None):
+ '''
+ Predict Texture given triplanes
+ :param planes: the triplane feature map
+ :param tex_pos: Position we want to query the texture field
+ :param hard_mask: 2D silhoueete of the rendered image
+ '''
+ tex_pos = torch.cat(tex_pos, dim=0)
+ if not hard_mask is None:
+ tex_pos = tex_pos * hard_mask.float()
+ batch_size = tex_pos.shape[0]
+ tex_pos = tex_pos.reshape(batch_size, -1, 3)
+ ###################
+ # We use mask to get the texture location (to save the memory)
+ if hard_mask is not None:
+ n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
+ sample_tex_pose_list = []
+ max_point = n_point_list.max()
+ expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
+ for i in range(tex_pos.shape[0]):
+ tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
+ if tex_pos_one_shape.shape[1] < max_point:
+ tex_pos_one_shape = torch.cat(
+ [tex_pos_one_shape, torch.zeros(
+ 1, max_point - tex_pos_one_shape.shape[1], 3,
+ device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
+ sample_tex_pose_list.append(tex_pos_one_shape)
+ tex_pos = torch.cat(sample_tex_pose_list, dim=0)
+
+ tex_feat = torch.utils.checkpoint.checkpoint(
+ self.synthesizer.get_texture_prediction,
+ planes,
+ tex_pos,
+ use_reentrant=False,
+ )
+
+ if hard_mask is not None:
+ final_tex_feat = torch.zeros(
+ planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
+ expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
+ for i in range(planes.shape[0]):
+ final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
+ tex_feat = final_tex_feat
+
+ return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1])
+
+ def render_mesh(self, mesh_v, mesh_f, cam_mv, render_size=256):
+ '''
+ Function to render a generated mesh with nvdiffrast
+ :param mesh_v: List of vertices for the mesh
+ :param mesh_f: List of faces for the mesh
+ :param cam_mv: 4x4 rotation matrix
+ :return:
+ '''
+ return_value_list = []
+ for i_mesh in range(len(mesh_v)):
+ return_value = self.geometry.render_mesh(
+ mesh_v[i_mesh],
+ mesh_f[i_mesh].int(),
+ cam_mv[i_mesh],
+ resolution=render_size,
+ hierarchical_mask=False
+ )
+ return_value_list.append(return_value)
+
+ return_keys = return_value_list[0].keys()
+ return_value = dict()
+ for k in return_keys:
+ value = [v[k] for v in return_value_list]
+ return_value[k] = value
+
+ mask = torch.cat(return_value['mask'], dim=0)
+ hard_mask = torch.cat(return_value['hard_mask'], dim=0)
+ tex_pos = return_value['tex_pos']
+ depth = torch.cat(return_value['depth'], dim=0)
+ normal = torch.cat(return_value['normal'], dim=0)
+ return mask, hard_mask, tex_pos, depth, normal
+
+ def forward_geometry(self, planes, render_cameras, render_size=256):
+ '''
+ Main function of our Generator. It first generate 3D mesh, then render it into 2D image
+ with given `render_cameras`.
+ :param planes: triplane features
+ :param render_cameras: cameras to render generated 3D shape
+ '''
+ B, NV = render_cameras.shape[:2]
+
+ # Generate 3D mesh first
+ mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
+
+ # Render the mesh into 2D image (get 3d position of each image plane)
+ cam_mv = render_cameras
+ run_n_view = cam_mv.shape[1]
+ antilias_mask, hard_mask, tex_pos, depth, normal = self.render_mesh(mesh_v, mesh_f, cam_mv, render_size=render_size)
+
+ tex_hard_mask = hard_mask
+ tex_pos = [torch.cat([pos[i_view:i_view + 1] for i_view in range(run_n_view)], dim=2) for pos in tex_pos]
+ tex_hard_mask = torch.cat(
+ [torch.cat(
+ [tex_hard_mask[i * run_n_view + i_view: i * run_n_view + i_view + 1]
+ for i_view in range(run_n_view)], dim=2)
+ for i in range(planes.shape[0])], dim=0)
+
+ # Querying the texture field to predict the texture feature for each pixel on the image
+ tex_feat = self.get_texture_prediction(planes, tex_pos, tex_hard_mask)
+ background_feature = torch.ones_like(tex_feat) # white background
+
+ # Merge them together
+ img_feat = tex_feat * tex_hard_mask + background_feature * (1 - tex_hard_mask)
+
+ # We should split it back to the original image shape
+ img_feat = torch.cat(
+ [torch.cat(
+ [img_feat[i:i + 1, :, render_size * i_view: render_size * (i_view + 1)]
+ for i_view in range(run_n_view)], dim=0) for i in range(len(tex_pos))], dim=0)
+
+ img = img_feat.clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
+ antilias_mask = antilias_mask.permute(0, 3, 1, 2).unflatten(0, (B, NV))
+ depth = -depth.permute(0, 3, 1, 2).unflatten(0, (B, NV)) # transform negative depth to positive
+ normal = normal.permute(0, 3, 1, 2).unflatten(0, (B, NV))
+
+ out = {
+ 'img': img,
+ 'mask': antilias_mask,
+ 'depth': depth,
+ 'normal': normal,
+ 'sdf': sdf,
+ 'mesh_v': mesh_v,
+ 'mesh_f': mesh_f,
+ 'sdf_reg_loss': sdf_reg_loss,
+ }
+ return out
+
+ def forward(self, images, cameras, render_cameras, render_size: int):
+ # images: [B, V, C_img, H_img, W_img]
+ # cameras: [B, V, 16]
+ # render_cameras: [B, M, D_cam_render]
+ # render_size: int
+ B, M = render_cameras.shape[:2]
+
+ planes = self.forward_planes(images, cameras)
+ out = self.forward_geometry(planes, render_cameras, render_size=render_size)
+
+ return {
+ 'planes': planes,
+ **out
+ }
+
+ def extract_mesh(
+ self,
+ planes: torch.Tensor,
+ use_texture_map: bool = False,
+ texture_resolution: int = 1024,
+ **kwargs,
+ ):
+ '''
+ Extract a 3D mesh from FlexiCubes. Only support batch_size 1.
+ :param planes: triplane features
+ :param use_texture_map: use texture map or vertex color
+ :param texture_resolution: the resolution of texure map
+ '''
+ assert planes.shape[0] == 1
+ device = planes.device
+
+ # predict geometry first
+ mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
+ vertices, faces = mesh_v[0], mesh_f[0]
+
+ if not use_texture_map:
+ # query vertex colors
+ vertices_tensor = vertices.unsqueeze(0)
+ vertices_colors = self.synthesizer.get_texture_prediction(
+ planes, vertices_tensor).clamp(0, 1).squeeze(0).cpu().numpy()
+ vertices_colors = (vertices_colors * 255).astype(np.uint8)
+
+ return vertices.cpu().numpy(), faces.cpu().numpy(), vertices_colors
+
+ # use x-atlas to get uv mapping for the mesh
+ ctx = dr.RasterizeCudaContext(device=device)
+ uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
+ self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution)
+ tex_hard_mask = tex_hard_mask.float()
+
+ # query the texture field to get the RGB color for texture map
+ tex_feat = self.get_texture_prediction(
+ planes, [gb_pos], tex_hard_mask)
+ background_feature = torch.zeros_like(tex_feat)
+ img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask)
+ texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
+
+ return vertices, faces, uvs, mesh_tex_idx, texture_map
\ No newline at end of file
diff --git a/src/models/renderer/__init__.py b/src/models/renderer/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..2c772e4fa331c678cfff50884be94d7d31835b34
--- /dev/null
+++ b/src/models/renderer/__init__.py
@@ -0,0 +1,9 @@
+# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
+#
+# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
+# property and proprietary rights in and to this material, related
+# documentation and any modifications thereto. Any use, reproduction,
+# disclosure or distribution of this material and related documentation
+# without an express license agreement from NVIDIA CORPORATION or
+# its affiliates is strictly prohibited.
diff --git a/src/models/renderer/synthesizer.py b/src/models/renderer/synthesizer.py
new file mode 100755
index 0000000000000000000000000000000000000000..8db9fbdb1703b566117d227c8e4eef04157ccc93
--- /dev/null
+++ b/src/models/renderer/synthesizer.py
@@ -0,0 +1,203 @@
+# ORIGINAL LICENSE
+# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
+#
+# Modified by Jiale Xu
+# The modifications are subject to the same license as the original.
+
+
+import itertools
+import torch
+import torch.nn as nn
+
+from .utils.renderer import ImportanceRenderer
+from .utils.ray_sampler import RaySampler
+
+
+class OSGDecoder(nn.Module):
+ """
+ Triplane decoder that gives RGB and sigma values from sampled features.
+ Using ReLU here instead of Softplus in the original implementation.
+
+ Reference:
+ EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112
+ """
+ def __init__(self, n_features: int,
+ hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU):
+ super().__init__()
+ self.net = nn.Sequential(
+ nn.Linear(3 * n_features, hidden_dim),
+ activation(),
+ *itertools.chain(*[[
+ nn.Linear(hidden_dim, hidden_dim),
+ activation(),
+ ] for _ in range(num_layers - 2)]),
+ nn.Linear(hidden_dim, 1 + 3),
+ )
+ # init all bias to zero
+ for m in self.modules():
+ if isinstance(m, nn.Linear):
+ nn.init.zeros_(m.bias)
+
+ def forward(self, sampled_features, ray_directions):
+ # Aggregate features by mean
+ # sampled_features = sampled_features.mean(1)
+ # Aggregate features by concatenation
+ _N, n_planes, _M, _C = sampled_features.shape
+ sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
+ x = sampled_features
+
+ N, M, C = x.shape
+ x = x.contiguous().view(N*M, C)
+
+ x = self.net(x)
+ x = x.view(N, M, -1)
+ rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
+ sigma = x[..., 0:1]
+
+ return {'rgb': rgb, 'sigma': sigma}
+
+
+class TriplaneSynthesizer(nn.Module):
+ """
+ Synthesizer that renders a triplane volume with planes and a camera.
+
+ Reference:
+ EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19
+ """
+
+ DEFAULT_RENDERING_KWARGS = {
+ 'ray_start': 'auto',
+ 'ray_end': 'auto',
+ 'box_warp': 2.,
+ 'white_back': True,
+ 'disparity_space_sampling': False,
+ 'clamp_mode': 'softplus',
+ 'sampler_bbox_min': -1.,
+ 'sampler_bbox_max': 1.,
+ }
+
+ def __init__(self, triplane_dim: int, samples_per_ray: int):
+ super().__init__()
+
+ # attributes
+ self.triplane_dim = triplane_dim
+ self.rendering_kwargs = {
+ **self.DEFAULT_RENDERING_KWARGS,
+ 'depth_resolution': samples_per_ray // 2,
+ 'depth_resolution_importance': samples_per_ray // 2,
+ }
+
+ # renderings
+ self.renderer = ImportanceRenderer()
+ self.ray_sampler = RaySampler()
+
+ # modules
+ self.decoder = OSGDecoder(n_features=triplane_dim)
+
+ def forward(self, planes, cameras, render_size=128, crop_params=None):
+ # planes: (N, 3, D', H', W')
+ # cameras: (N, M, D_cam)
+ # render_size: int
+ assert planes.shape[0] == cameras.shape[0], "Batch size mismatch for planes and cameras"
+ N, M = cameras.shape[:2]
+
+ cam2world_matrix = cameras[..., :16].view(N, M, 4, 4)
+ intrinsics = cameras[..., 16:25].view(N, M, 3, 3)
+
+ # Create a batch of rays for volume rendering
+ ray_origins, ray_directions = self.ray_sampler(
+ cam2world_matrix=cam2world_matrix.reshape(-1, 4, 4),
+ intrinsics=intrinsics.reshape(-1, 3, 3),
+ render_size=render_size,
+ )
+ assert N*M == ray_origins.shape[0], "Batch size mismatch for ray_origins"
+ assert ray_origins.dim() == 3, "ray_origins should be 3-dimensional"
+
+ # Crop rays if crop_params is available
+ if crop_params is not None:
+ ray_origins = ray_origins.reshape(N*M, render_size, render_size, 3)
+ ray_directions = ray_directions.reshape(N*M, render_size, render_size, 3)
+ i, j, h, w = crop_params
+ ray_origins = ray_origins[:, i:i+h, j:j+w, :].reshape(N*M, -1, 3)
+ ray_directions = ray_directions[:, i:i+h, j:j+w, :].reshape(N*M, -1, 3)
+
+ # Perform volume rendering
+ rgb_samples, depth_samples, weights_samples = self.renderer(
+ planes.repeat_interleave(M, dim=0), self.decoder, ray_origins, ray_directions, self.rendering_kwargs,
+ )
+
+ # Reshape into 'raw' neural-rendered image
+ if crop_params is not None:
+ Himg, Wimg = crop_params[2:]
+ else:
+ Himg = Wimg = render_size
+ rgb_images = rgb_samples.permute(0, 2, 1).reshape(N, M, rgb_samples.shape[-1], Himg, Wimg).contiguous()
+ depth_images = depth_samples.permute(0, 2, 1).reshape(N, M, 1, Himg, Wimg)
+ weight_images = weights_samples.permute(0, 2, 1).reshape(N, M, 1, Himg, Wimg)
+
+ out = {
+ 'images_rgb': rgb_images,
+ 'images_depth': depth_images,
+ 'images_weight': weight_images,
+ }
+ return out
+
+ def forward_grid(self, planes, grid_size: int, aabb: torch.Tensor = None):
+ # planes: (N, 3, D', H', W')
+ # grid_size: int
+ # aabb: (N, 2, 3)
+ if aabb is None:
+ aabb = torch.tensor([
+ [self.rendering_kwargs['sampler_bbox_min']] * 3,
+ [self.rendering_kwargs['sampler_bbox_max']] * 3,
+ ], device=planes.device, dtype=planes.dtype).unsqueeze(0).repeat(planes.shape[0], 1, 1)
+ assert planes.shape[0] == aabb.shape[0], "Batch size mismatch for planes and aabb"
+ N = planes.shape[0]
+
+ # create grid points for triplane query
+ grid_points = []
+ for i in range(N):
+ grid_points.append(torch.stack(torch.meshgrid(
+ torch.linspace(aabb[i, 0, 0], aabb[i, 1, 0], grid_size, device=planes.device),
+ torch.linspace(aabb[i, 0, 1], aabb[i, 1, 1], grid_size, device=planes.device),
+ torch.linspace(aabb[i, 0, 2], aabb[i, 1, 2], grid_size, device=planes.device),
+ indexing='ij',
+ ), dim=-1).reshape(-1, 3))
+ cube_grid = torch.stack(grid_points, dim=0).to(planes.device)
+
+ features = self.forward_points(planes, cube_grid)
+
+ # reshape into grid
+ features = {
+ k: v.reshape(N, grid_size, grid_size, grid_size, -1)
+ for k, v in features.items()
+ }
+ return features
+
+ def forward_points(self, planes, points: torch.Tensor, chunk_size: int = 2**20):
+ # planes: (N, 3, D', H', W')
+ # points: (N, P, 3)
+ N, P = points.shape[:2]
+
+ # query triplane in chunks
+ outs = []
+ for i in range(0, points.shape[1], chunk_size):
+ chunk_points = points[:, i:i+chunk_size]
+
+ # query triplane
+ chunk_out = self.renderer.run_model_activated(
+ planes=planes,
+ decoder=self.decoder,
+ sample_coordinates=chunk_points,
+ sample_directions=torch.zeros_like(chunk_points),
+ options=self.rendering_kwargs,
+ )
+ outs.append(chunk_out)
+
+ # concatenate the outputs
+ point_features = {
+ k: torch.cat([out[k] for out in outs], dim=1)
+ for k in outs[0].keys()
+ }
+ return point_features
diff --git a/src/models/renderer/synthesizer_mesh.py b/src/models/renderer/synthesizer_mesh.py
new file mode 100755
index 0000000000000000000000000000000000000000..dc31838315b33781560b3623c030443eeae24147
--- /dev/null
+++ b/src/models/renderer/synthesizer_mesh.py
@@ -0,0 +1,141 @@
+# ORIGINAL LICENSE
+# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
+#
+# Modified by Jiale Xu
+# The modifications are subject to the same license as the original.
+
+import itertools
+import torch
+import torch.nn as nn
+
+from .utils.renderer import generate_planes, project_onto_planes, sample_from_planes
+
+
+class OSGDecoder(nn.Module):
+ """
+ Triplane decoder that gives RGB and sigma values from sampled features.
+ Using ReLU here instead of Softplus in the original implementation.
+
+ Reference:
+ EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112
+ """
+ def __init__(self, n_features: int,
+ hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU):
+ super().__init__()
+
+ self.net_sdf = nn.Sequential(
+ nn.Linear(3 * n_features, hidden_dim),
+ activation(),
+ *itertools.chain(*[[
+ nn.Linear(hidden_dim, hidden_dim),
+ activation(),
+ ] for _ in range(num_layers - 2)]),
+ nn.Linear(hidden_dim, 1),
+ )
+ self.net_rgb = nn.Sequential(
+ nn.Linear(3 * n_features, hidden_dim),
+ activation(),
+ *itertools.chain(*[[
+ nn.Linear(hidden_dim, hidden_dim),
+ activation(),
+ ] for _ in range(num_layers - 2)]),
+ nn.Linear(hidden_dim, 3),
+ )
+ self.net_deformation = nn.Sequential(
+ nn.Linear(3 * n_features, hidden_dim),
+ activation(),
+ *itertools.chain(*[[
+ nn.Linear(hidden_dim, hidden_dim),
+ activation(),
+ ] for _ in range(num_layers - 2)]),
+ nn.Linear(hidden_dim, 3),
+ )
+ self.net_weight = nn.Sequential(
+ nn.Linear(8 * 3 * n_features, hidden_dim),
+ activation(),
+ *itertools.chain(*[[
+ nn.Linear(hidden_dim, hidden_dim),
+ activation(),
+ ] for _ in range(num_layers - 2)]),
+ nn.Linear(hidden_dim, 21),
+ )
+
+ # init all bias to zero
+ for m in self.modules():
+ if isinstance(m, nn.Linear):
+ nn.init.zeros_(m.bias)
+
+ def get_geometry_prediction(self, sampled_features, flexicubes_indices):
+ _N, n_planes, _M, _C = sampled_features.shape
+ sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
+
+ sdf = self.net_sdf(sampled_features)
+ deformation = self.net_deformation(sampled_features)
+
+ grid_features = torch.index_select(input=sampled_features, index=flexicubes_indices.reshape(-1), dim=1)
+ grid_features = grid_features.reshape(
+ sampled_features.shape[0], flexicubes_indices.shape[0], flexicubes_indices.shape[1] * sampled_features.shape[-1])
+ weight = self.net_weight(grid_features) * 0.1
+
+ return sdf, deformation, weight
+
+ def get_texture_prediction(self, sampled_features):
+ _N, n_planes, _M, _C = sampled_features.shape
+ sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
+
+ rgb = self.net_rgb(sampled_features)
+ rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
+
+ return rgb
+
+
+class TriplaneSynthesizer(nn.Module):
+ """
+ Synthesizer that renders a triplane volume with planes and a camera.
+
+ Reference:
+ EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19
+ """
+
+ DEFAULT_RENDERING_KWARGS = {
+ 'ray_start': 'auto',
+ 'ray_end': 'auto',
+ 'box_warp': 2.,
+ 'white_back': True,
+ 'disparity_space_sampling': False,
+ 'clamp_mode': 'softplus',
+ 'sampler_bbox_min': -1.,
+ 'sampler_bbox_max': 1.,
+ }
+
+ def __init__(self, triplane_dim: int, samples_per_ray: int):
+ super().__init__()
+
+ # attributes
+ self.triplane_dim = triplane_dim
+ self.rendering_kwargs = {
+ **self.DEFAULT_RENDERING_KWARGS,
+ 'depth_resolution': samples_per_ray // 2,
+ 'depth_resolution_importance': samples_per_ray // 2,
+ }
+
+ # modules
+ self.plane_axes = generate_planes()
+ self.decoder = OSGDecoder(n_features=triplane_dim)
+
+ def get_geometry_prediction(self, planes, sample_coordinates, flexicubes_indices):
+ plane_axes = self.plane_axes.to(planes.device)
+ sampled_features = sample_from_planes(
+ plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])
+
+ sdf, deformation, weight = self.decoder.get_geometry_prediction(sampled_features, flexicubes_indices)
+ return sdf, deformation, weight
+
+ def get_texture_prediction(self, planes, sample_coordinates):
+ plane_axes = self.plane_axes.to(planes.device)
+ sampled_features = sample_from_planes(
+ plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])
+
+ rgb = self.decoder.get_texture_prediction(sampled_features)
+ return rgb
diff --git a/src/models/renderer/utils/__init__.py b/src/models/renderer/utils/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..2c772e4fa331c678cfff50884be94d7d31835b34
--- /dev/null
+++ b/src/models/renderer/utils/__init__.py
@@ -0,0 +1,9 @@
+# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
+#
+# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
+# property and proprietary rights in and to this material, related
+# documentation and any modifications thereto. Any use, reproduction,
+# disclosure or distribution of this material and related documentation
+# without an express license agreement from NVIDIA CORPORATION or
+# its affiliates is strictly prohibited.
diff --git a/src/models/renderer/utils/math_utils.py b/src/models/renderer/utils/math_utils.py
new file mode 100755
index 0000000000000000000000000000000000000000..4cf9d2b811e0acbc7923bc9126e010b52cb1a8af
--- /dev/null
+++ b/src/models/renderer/utils/math_utils.py
@@ -0,0 +1,118 @@
+# MIT License
+
+# Copyright (c) 2022 Petr Kellnhofer
+
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+
+import torch
+
+def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor:
+ """
+ Left-multiplies MxM @ NxM. Returns NxM.
+ """
+ res = torch.matmul(vectors4, matrix.T)
+ return res
+
+
+def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor:
+ """
+ Normalize vector lengths.
+ """
+ return vectors / (torch.norm(vectors, dim=-1, keepdim=True))
+
+def torch_dot(x: torch.Tensor, y: torch.Tensor):
+ """
+ Dot product of two tensors.
+ """
+ return (x * y).sum(-1)
+
+
+def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length):
+ """
+ Author: Petr Kellnhofer
+ Intersects rays with the [-1, 1] NDC volume.
+ Returns min and max distance of entry.
+ Returns -1 for no intersection.
+ https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
+ """
+ o_shape = rays_o.shape
+ rays_o = rays_o.detach().reshape(-1, 3)
+ rays_d = rays_d.detach().reshape(-1, 3)
+
+
+ bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)]
+ bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)]
+ bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device)
+ is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device)
+
+ # Precompute inverse for stability.
+ invdir = 1 / rays_d
+ sign = (invdir < 0).long()
+
+ # Intersect with YZ plane.
+ tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0]
+ tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0]
+
+ # Intersect with XZ plane.
+ tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1]
+ tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1]
+
+ # Resolve parallel rays.
+ is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False
+
+ # Use the shortest intersection.
+ tmin = torch.max(tmin, tymin)
+ tmax = torch.min(tmax, tymax)
+
+ # Intersect with XY plane.
+ tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2]
+ tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2]
+
+ # Resolve parallel rays.
+ is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False
+
+ # Use the shortest intersection.
+ tmin = torch.max(tmin, tzmin)
+ tmax = torch.min(tmax, tzmax)
+
+ # Mark invalid.
+ tmin[torch.logical_not(is_valid)] = -1
+ tmax[torch.logical_not(is_valid)] = -2
+
+ return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1)
+
+
+def linspace(start: torch.Tensor, stop: torch.Tensor, num: int):
+ """
+ Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive.
+ Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch.
+ """
+ # create a tensor of 'num' steps from 0 to 1
+ steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1)
+
+ # reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings
+ # - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript
+ # "cannot statically infer the expected size of a list in this contex", hence the code below
+ for i in range(start.ndim):
+ steps = steps.unsqueeze(-1)
+
+ # the output starts at 'start' and increments until 'stop' in each dimension
+ out = start[None] + steps * (stop - start)[None]
+
+ return out
diff --git a/src/models/renderer/utils/ray_marcher.py b/src/models/renderer/utils/ray_marcher.py
new file mode 100755
index 0000000000000000000000000000000000000000..ea1db43478de703509cdd04c684f92f8e283c5ad
--- /dev/null
+++ b/src/models/renderer/utils/ray_marcher.py
@@ -0,0 +1,72 @@
+# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
+#
+# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
+# property and proprietary rights in and to this material, related
+# documentation and any modifications thereto. Any use, reproduction,
+# disclosure or distribution of this material and related documentation
+# without an express license agreement from NVIDIA CORPORATION or
+# its affiliates is strictly prohibited.
+#
+# Modified by Jiale Xu
+# The modifications are subject to the same license as the original.
+
+
+"""
+The ray marcher takes the raw output of the implicit representation and uses the volume rendering equation to produce composited colors and depths.
+Based off of the implementation in MipNeRF (this one doesn't do any cone tracing though!)
+"""
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class MipRayMarcher2(nn.Module):
+ def __init__(self, activation_factory):
+ super().__init__()
+ self.activation_factory = activation_factory
+
+ def run_forward(self, colors, densities, depths, rendering_options, normals=None):
+ dtype = colors.dtype
+ deltas = depths[:, :, 1:] - depths[:, :, :-1]
+ colors_mid = (colors[:, :, :-1] + colors[:, :, 1:]) / 2
+ densities_mid = (densities[:, :, :-1] + densities[:, :, 1:]) / 2
+ depths_mid = (depths[:, :, :-1] + depths[:, :, 1:]) / 2
+
+ # using factory mode for better usability
+ densities_mid = self.activation_factory(rendering_options)(densities_mid).to(dtype)
+
+ density_delta = densities_mid * deltas
+
+ alpha = 1 - torch.exp(-density_delta).to(dtype)
+
+ alpha_shifted = torch.cat([torch.ones_like(alpha[:, :, :1]), 1-alpha + 1e-10], -2)
+ weights = alpha * torch.cumprod(alpha_shifted, -2)[:, :, :-1]
+ weights = weights.to(dtype)
+
+ composite_rgb = torch.sum(weights * colors_mid, -2)
+ weight_total = weights.sum(2)
+ # composite_depth = torch.sum(weights * depths_mid, -2) / weight_total
+ composite_depth = torch.sum(weights * depths_mid, -2)
+
+ # clip the composite to min/max range of depths
+ composite_depth = torch.nan_to_num(composite_depth, float('inf')).to(dtype)
+ composite_depth = torch.clamp(composite_depth, torch.min(depths), torch.max(depths))
+
+ if rendering_options.get('white_back', False):
+ composite_rgb = composite_rgb + 1 - weight_total
+
+ # rendered value scale is 0-1, comment out original mipnerf scaling
+ # composite_rgb = composite_rgb * 2 - 1 # Scale to (-1, 1)
+
+ return composite_rgb, composite_depth, weights
+
+
+ def forward(self, colors, densities, depths, rendering_options, normals=None):
+ if normals is not None:
+ composite_rgb, composite_depth, composite_normals, weights = self.run_forward(colors, densities, depths, rendering_options, normals)
+ return composite_rgb, composite_depth, composite_normals, weights
+
+ composite_rgb, composite_depth, weights = self.run_forward(colors, densities, depths, rendering_options)
+ return composite_rgb, composite_depth, weights
diff --git a/src/models/renderer/utils/ray_sampler.py b/src/models/renderer/utils/ray_sampler.py
new file mode 100755
index 0000000000000000000000000000000000000000..ae5151dda467e826ce346986bd486d4465c906f2
--- /dev/null
+++ b/src/models/renderer/utils/ray_sampler.py
@@ -0,0 +1,141 @@
+# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
+#
+# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
+# property and proprietary rights in and to this material, related
+# documentation and any modifications thereto. Any use, reproduction,
+# disclosure or distribution of this material and related documentation
+# without an express license agreement from NVIDIA CORPORATION or
+# its affiliates is strictly prohibited.
+#
+# Modified by Jiale Xu
+# The modifications are subject to the same license as the original.
+
+
+"""
+The ray sampler is a module that takes in camera matrices and resolution and batches of rays.
+Expects cam2world matrices that use the OpenCV camera coordinate system conventions.
+"""
+
+import torch
+
+class RaySampler(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None
+
+
+ def forward(self, cam2world_matrix, intrinsics, render_size):
+ """
+ Create batches of rays and return origins and directions.
+
+ cam2world_matrix: (N, 4, 4)
+ intrinsics: (N, 3, 3)
+ render_size: int
+
+ ray_origins: (N, M, 3)
+ ray_dirs: (N, M, 2)
+ """
+
+ dtype = cam2world_matrix.dtype
+ device = cam2world_matrix.device
+ N, M = cam2world_matrix.shape[0], render_size**2
+ cam_locs_world = cam2world_matrix[:, :3, 3]
+ fx = intrinsics[:, 0, 0]
+ fy = intrinsics[:, 1, 1]
+ cx = intrinsics[:, 0, 2]
+ cy = intrinsics[:, 1, 2]
+ sk = intrinsics[:, 0, 1]
+
+ uv = torch.stack(torch.meshgrid(
+ torch.arange(render_size, dtype=dtype, device=device),
+ torch.arange(render_size, dtype=dtype, device=device),
+ indexing='ij',
+ ))
+ uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
+ uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)
+
+ x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size)
+ y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size)
+ z_cam = torch.ones((N, M), dtype=dtype, device=device)
+
+ x_lift = (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam
+ y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam
+
+ cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1).to(dtype)
+
+ _opencv2blender = torch.tensor([
+ [1, 0, 0, 0],
+ [0, -1, 0, 0],
+ [0, 0, -1, 0],
+ [0, 0, 0, 1],
+ ], dtype=dtype, device=device).unsqueeze(0).repeat(N, 1, 1)
+
+ cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender)
+
+ world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3]
+
+ ray_dirs = world_rel_points - cam_locs_world[:, None, :]
+ ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2).to(dtype)
+
+ ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)
+
+ return ray_origins, ray_dirs
+
+
+class OrthoRaySampler(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None
+
+
+ def forward(self, cam2world_matrix, ortho_scale, render_size):
+ """
+ Create batches of rays and return origins and directions.
+
+ cam2world_matrix: (N, 4, 4)
+ ortho_scale: float
+ render_size: int
+
+ ray_origins: (N, M, 3)
+ ray_dirs: (N, M, 3)
+ """
+
+ N, M = cam2world_matrix.shape[0], render_size**2
+
+ uv = torch.stack(torch.meshgrid(
+ torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device),
+ torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device),
+ indexing='ij',
+ ))
+ uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
+ uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)
+
+ x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size)
+ y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size)
+ z_cam = torch.zeros((N, M), device=cam2world_matrix.device)
+
+ x_lift = (x_cam - 0.5) * ortho_scale
+ y_lift = (y_cam - 0.5) * ortho_scale
+
+ cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1)
+
+ _opencv2blender = torch.tensor([
+ [1, 0, 0, 0],
+ [0, -1, 0, 0],
+ [0, 0, -1, 0],
+ [0, 0, 0, 1],
+ ], dtype=torch.float32, device=cam2world_matrix.device).unsqueeze(0).repeat(N, 1, 1)
+
+ cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender)
+
+ ray_origins = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3]
+
+ ray_dirs_cam = torch.stack([
+ torch.zeros((N, M), device=cam2world_matrix.device),
+ torch.zeros((N, M), device=cam2world_matrix.device),
+ torch.ones((N, M), device=cam2world_matrix.device),
+ ], dim=-1)
+ ray_dirs = torch.bmm(cam2world_matrix[:, :3, :3], ray_dirs_cam.permute(0, 2, 1)).permute(0, 2, 1)
+
+ return ray_origins, ray_dirs
diff --git a/src/models/renderer/utils/renderer.py b/src/models/renderer/utils/renderer.py
new file mode 100755
index 0000000000000000000000000000000000000000..95c4c728efbd0283b8ddd7dc6a1b28d1510efa97
--- /dev/null
+++ b/src/models/renderer/utils/renderer.py
@@ -0,0 +1,323 @@
+# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
+#
+# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
+# property and proprietary rights in and to this material, related
+# documentation and any modifications thereto. Any use, reproduction,
+# disclosure or distribution of this material and related documentation
+# without an express license agreement from NVIDIA CORPORATION or
+# its affiliates is strictly prohibited.
+#
+# Modified by Jiale Xu
+# The modifications are subject to the same license as the original.
+
+
+"""
+The renderer is a module that takes in rays, decides where to sample along each
+ray, and computes pixel colors using the volume rendering equation.
+"""
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from .ray_marcher import MipRayMarcher2
+from . import math_utils
+
+
+def generate_planes():
+ """
+ Defines planes by the three vectors that form the "axes" of the
+ plane. Should work with arbitrary number of planes and planes of
+ arbitrary orientation.
+
+ Bugfix reference: https://github.com/NVlabs/eg3d/issues/67
+ """
+ return torch.tensor([[[1, 0, 0],
+ [0, 1, 0],
+ [0, 0, 1]],
+ [[1, 0, 0],
+ [0, 0, 1],
+ [0, 1, 0]],
+ [[0, 0, 1],
+ [0, 1, 0],
+ [1, 0, 0]]], dtype=torch.float32)
+
+def project_onto_planes(planes, coordinates):
+ """
+ Does a projection of a 3D point onto a batch of 2D planes,
+ returning 2D plane coordinates.
+
+ Takes plane axes of shape n_planes, 3, 3
+ # Takes coordinates of shape N, M, 3
+ # returns projections of shape N*n_planes, M, 2
+ """
+ N, M, C = coordinates.shape
+ n_planes, _, _ = planes.shape
+ coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
+ inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
+ projections = torch.bmm(coordinates, inv_planes)
+ return projections[..., :2]
+
+def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None):
+ assert padding_mode == 'zeros'
+ N, n_planes, C, H, W = plane_features.shape
+ _, M, _ = coordinates.shape
+ plane_features = plane_features.view(N*n_planes, C, H, W)
+ dtype = plane_features.dtype
+
+ coordinates = (2/box_warp) * coordinates # add specific box bounds
+
+ projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1)
+ output_features = torch.nn.functional.grid_sample(
+ plane_features,
+ projected_coordinates.to(dtype),
+ mode=mode,
+ padding_mode=padding_mode,
+ align_corners=False,
+ ).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
+ return output_features
+
+def sample_from_3dgrid(grid, coordinates):
+ """
+ Expects coordinates in shape (batch_size, num_points_per_batch, 3)
+ Expects grid in shape (1, channels, H, W, D)
+ (Also works if grid has batch size)
+ Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
+ """
+ batch_size, n_coords, n_dims = coordinates.shape
+ sampled_features = torch.nn.functional.grid_sample(
+ grid.expand(batch_size, -1, -1, -1, -1),
+ coordinates.reshape(batch_size, 1, 1, -1, n_dims),
+ mode='bilinear',
+ padding_mode='zeros',
+ align_corners=False,
+ )
+ N, C, H, W, D = sampled_features.shape
+ sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C)
+ return sampled_features
+
+class ImportanceRenderer(torch.nn.Module):
+ """
+ Modified original version to filter out-of-box samples as TensoRF does.
+
+ Reference:
+ TensoRF: https://github.com/apchenstu/TensoRF/blob/main/models/tensorBase.py#L277
+ """
+ def __init__(self):
+ super().__init__()
+ self.activation_factory = self._build_activation_factory()
+ self.ray_marcher = MipRayMarcher2(self.activation_factory)
+ self.plane_axes = generate_planes()
+
+ def _build_activation_factory(self):
+ def activation_factory(options: dict):
+ if options['clamp_mode'] == 'softplus':
+ return lambda x: F.softplus(x - 1) # activation bias of -1 makes things initialize better
+ else:
+ assert False, "Renderer only supports `clamp_mode`=`softplus`!"
+ return activation_factory
+
+ def _forward_pass(self, depths: torch.Tensor, ray_directions: torch.Tensor, ray_origins: torch.Tensor,
+ planes: torch.Tensor, decoder: nn.Module, rendering_options: dict):
+ """
+ Additional filtering is applied to filter out-of-box samples.
+ Modifications made by Zexin He.
+ """
+
+ # context related variables
+ batch_size, num_rays, samples_per_ray, _ = depths.shape
+ device = depths.device
+
+ # define sample points with depths
+ sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
+ sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
+
+ # filter out-of-box samples
+ mask_inbox = \
+ (rendering_options['sampler_bbox_min'] <= sample_coordinates) & \
+ (sample_coordinates <= rendering_options['sampler_bbox_max'])
+ mask_inbox = mask_inbox.all(-1)
+
+ # forward model according to all samples
+ _out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
+
+ # set out-of-box samples to zeros(rgb) & -inf(sigma)
+ SAFE_GUARD = 3
+ DATA_TYPE = _out['sigma'].dtype
+ colors_pass = torch.zeros(batch_size, num_rays * samples_per_ray, 3, device=device, dtype=DATA_TYPE)
+ densities_pass = torch.nan_to_num(torch.full((batch_size, num_rays * samples_per_ray, 1), -float('inf'), device=device, dtype=DATA_TYPE)) / SAFE_GUARD
+ colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][mask_inbox], _out['sigma'][mask_inbox]
+
+ # reshape back
+ colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1])
+ densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1])
+
+ return colors_pass, densities_pass
+
+ def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options):
+ # self.plane_axes = self.plane_axes.to(ray_origins.device)
+
+ if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto':
+ ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp'])
+ is_ray_valid = ray_end > ray_start
+ if torch.any(is_ray_valid).item():
+ ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
+ ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
+ depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
+ else:
+ # Create stratified depth samples
+ depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
+
+ # Coarse Pass
+ colors_coarse, densities_coarse = self._forward_pass(
+ depths=depths_coarse, ray_directions=ray_directions, ray_origins=ray_origins,
+ planes=planes, decoder=decoder, rendering_options=rendering_options)
+
+ # Fine Pass
+ N_importance = rendering_options['depth_resolution_importance']
+ if N_importance > 0:
+ _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
+
+ depths_fine = self.sample_importance(depths_coarse, weights, N_importance)
+
+ colors_fine, densities_fine = self._forward_pass(
+ depths=depths_fine, ray_directions=ray_directions, ray_origins=ray_origins,
+ planes=planes, decoder=decoder, rendering_options=rendering_options)
+
+ all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
+ depths_fine, colors_fine, densities_fine)
+
+ rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
+ else:
+ rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
+
+ return rgb_final, depth_final, weights.sum(2)
+
+ def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
+ plane_axes = self.plane_axes.to(planes.device)
+ sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
+
+ out = decoder(sampled_features, sample_directions)
+ if options.get('density_noise', 0) > 0:
+ out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
+ return out
+
+ def run_model_activated(self, planes, decoder, sample_coordinates, sample_directions, options):
+ out = self.run_model(planes, decoder, sample_coordinates, sample_directions, options)
+ out['sigma'] = self.activation_factory(options)(out['sigma'])
+ return out
+
+ def sort_samples(self, all_depths, all_colors, all_densities):
+ _, indices = torch.sort(all_depths, dim=-2)
+ all_depths = torch.gather(all_depths, -2, indices)
+ all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
+ all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
+ return all_depths, all_colors, all_densities
+
+ def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2, normals1=None, normals2=None):
+ all_depths = torch.cat([depths1, depths2], dim = -2)
+ all_colors = torch.cat([colors1, colors2], dim = -2)
+ all_densities = torch.cat([densities1, densities2], dim = -2)
+
+ if normals1 is not None and normals2 is not None:
+ all_normals = torch.cat([normals1, normals2], dim = -2)
+ else:
+ all_normals = None
+
+ _, indices = torch.sort(all_depths, dim=-2)
+ all_depths = torch.gather(all_depths, -2, indices)
+ all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
+ all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
+
+ if all_normals is not None:
+ all_normals = torch.gather(all_normals, -2, indices.expand(-1, -1, -1, all_normals.shape[-1]))
+ return all_depths, all_colors, all_normals, all_densities
+
+ return all_depths, all_colors, all_densities
+
+ def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
+ """
+ Return depths of approximately uniformly spaced samples along rays.
+ """
+ N, M, _ = ray_origins.shape
+ if disparity_space_sampling:
+ depths_coarse = torch.linspace(0,
+ 1,
+ depth_resolution,
+ device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
+ depth_delta = 1/(depth_resolution - 1)
+ depths_coarse += torch.rand_like(depths_coarse) * depth_delta
+ depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
+ else:
+ if type(ray_start) == torch.Tensor:
+ depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3)
+ depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
+ depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None]
+ else:
+ depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
+ depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
+ depths_coarse += torch.rand_like(depths_coarse) * depth_delta
+
+ return depths_coarse
+
+ def sample_importance(self, z_vals, weights, N_importance):
+ """
+ Return depths of importance sampled points along rays. See NeRF importance sampling for more.
+ """
+ with torch.no_grad():
+ batch_size, num_rays, samples_per_ray, _ = z_vals.shape
+
+ z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
+ weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
+
+ # smooth weights
+ weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1), 2, 1, padding=1)
+ weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
+ weights = weights + 0.01
+
+ z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
+ importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
+ N_importance).detach().reshape(batch_size, num_rays, N_importance, 1)
+ return importance_z_vals
+
+ def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
+ """
+ Sample @N_importance samples from @bins with distribution defined by @weights.
+ Inputs:
+ bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
+ weights: (N_rays, N_samples_)
+ N_importance: the number of samples to draw from the distribution
+ det: deterministic or not
+ eps: a small number to prevent division by zero
+ Outputs:
+ samples: the sampled samples
+ """
+ N_rays, N_samples_ = weights.shape
+ weights = weights + eps # prevent division by zero (don't do inplace op!)
+ pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
+ cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
+ cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
+ # padded to 0~1 inclusive
+
+ if det:
+ u = torch.linspace(0, 1, N_importance, device=bins.device)
+ u = u.expand(N_rays, N_importance)
+ else:
+ u = torch.rand(N_rays, N_importance, device=bins.device)
+ u = u.contiguous()
+
+ inds = torch.searchsorted(cdf, u, right=True)
+ below = torch.clamp_min(inds-1, 0)
+ above = torch.clamp_max(inds, N_samples_)
+
+ inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
+ cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
+ bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
+
+ denom = cdf_g[...,1]-cdf_g[...,0]
+ denom[denom 0 and radius > 0
+
+ elevation = np.deg2rad(elevation)
+
+ camera_positions = []
+ for i in range(M):
+ azimuth = 2 * np.pi * i / M
+ x = radius * np.cos(elevation) * np.cos(azimuth)
+ y = radius * np.cos(elevation) * np.sin(azimuth)
+ z = radius * np.sin(elevation)
+ camera_positions.append([x, y, z])
+ camera_positions = np.array(camera_positions)
+ camera_positions = torch.from_numpy(camera_positions).float()
+ extrinsics = center_looking_at_camera_pose(camera_positions)
+ return extrinsics
+
+
+def FOV_to_intrinsics(fov, device='cpu'):
+ """
+ Creates a 3x3 camera intrinsics matrix from the camera field of view, specified in degrees.
+ Note the intrinsics are returned as normalized by image size, rather than in pixel units.
+ Assumes principal point is at image center.
+ """
+ focal_length = 0.5 / np.tan(np.deg2rad(fov) * 0.5)
+ intrinsics = torch.tensor([[focal_length, 0, 0.5], [0, focal_length, 0.5], [0, 0, 1]], device=device)
+ return intrinsics
+
+
+def get_zero123plus_input_cameras(batch_size=1, radius=4.0, fov=30.0):
+ """
+ Get the input camera parameters.
+ """
+ azimuths = np.array([30, 90, 150, 210, 270, 330]).astype(float)
+ elevations = np.array([20, -10, 20, -10, 20, -10]).astype(float)
+
+ c2ws = spherical_camera_pose(azimuths, elevations, radius)
+ c2ws = c2ws.float().flatten(-2)
+
+ Ks = FOV_to_intrinsics(fov).unsqueeze(0).repeat(6, 1, 1).float().flatten(-2)
+
+ extrinsics = c2ws[:, :12]
+ intrinsics = torch.stack([Ks[:, 0], Ks[:, 4], Ks[:, 2], Ks[:, 5]], dim=-1)
+ cameras = torch.cat([extrinsics, intrinsics], dim=-1)
+
+ return cameras.unsqueeze(0).repeat(batch_size, 1, 1)
diff --git a/src/utils/infer_util.py b/src/utils/infer_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..89cd078214afcc0e3dadafea5fbbb9ac005ea476
--- /dev/null
+++ b/src/utils/infer_util.py
@@ -0,0 +1,84 @@
+import os
+import imageio
+import rembg
+import torch
+import numpy as np
+import PIL.Image
+from PIL import Image
+from typing import Any
+
+
+def remove_background(image: PIL.Image.Image,
+ rembg_session: Any = None,
+ force: bool = False,
+ **rembg_kwargs,
+) -> PIL.Image.Image:
+ do_remove = True
+ if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
+ do_remove = False
+ do_remove = do_remove or force
+ if do_remove:
+ image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
+ return image
+
+
+def resize_foreground(
+ image: PIL.Image.Image,
+ ratio: float,
+) -> PIL.Image.Image:
+ image = np.array(image)
+ assert image.shape[-1] == 4
+ alpha = np.where(image[..., 3] > 0)
+ y1, y2, x1, x2 = (
+ alpha[0].min(),
+ alpha[0].max(),
+ alpha[1].min(),
+ alpha[1].max(),
+ )
+ # crop the foreground
+ fg = image[y1:y2, x1:x2]
+ # pad to square
+ size = max(fg.shape[0], fg.shape[1])
+ ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
+ ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
+ new_image = np.pad(
+ fg,
+ ((ph0, ph1), (pw0, pw1), (0, 0)),
+ mode="constant",
+ constant_values=((0, 0), (0, 0), (0, 0)),
+ )
+
+ # compute padding according to the ratio
+ new_size = int(new_image.shape[0] / ratio)
+ # pad to size, double side
+ ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
+ ph1, pw1 = new_size - size - ph0, new_size - size - pw0
+ new_image = np.pad(
+ new_image,
+ ((ph0, ph1), (pw0, pw1), (0, 0)),
+ mode="constant",
+ constant_values=((0, 0), (0, 0), (0, 0)),
+ )
+ new_image = PIL.Image.fromarray(new_image)
+ return new_image
+
+
+def images_to_video(
+ images: torch.Tensor,
+ output_path: str,
+ fps: int = 30,
+) -> None:
+ # images: (N, C, H, W)
+ video_dir = os.path.dirname(output_path)
+ video_name = os.path.basename(output_path)
+ os.makedirs(video_dir, exist_ok=True)
+
+ frames = []
+ for i in range(len(images)):
+ frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
+ assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
+ f"Frame shape mismatch: {frame.shape} vs {images.shape}"
+ assert frame.min() >= 0 and frame.max() <= 255, \
+ f"Frame value out of range: {frame.min()} ~ {frame.max()}"
+ frames.append(frame)
+ imageio.mimwrite(output_path, np.stack(frames), fps=fps, quality=10)
\ No newline at end of file
diff --git a/src/utils/mesh_util.py b/src/utils/mesh_util.py
new file mode 100755
index 0000000000000000000000000000000000000000..33b40dd7a34759ba81fe7037ee075882ad7a25bf
--- /dev/null
+++ b/src/utils/mesh_util.py
@@ -0,0 +1,165 @@
+# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+#
+# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
+
+import torch
+import xatlas
+import trimesh
+import cv2
+import numpy as np
+import nvdiffrast.torch as dr
+from PIL import Image
+
+
+def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fname):
+ mesh = trimesh.Trimesh(
+ vertices=pointnp_px3,
+ faces=facenp_fx3,
+ vertex_colors=colornp_px3,
+ )
+ mesh.export(fname, 'obj')
+
+
+def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname):
+ import os
+ fol, na = os.path.split(fname)
+ na, _ = os.path.splitext(na)
+
+ matname = '%s/%s.mtl' % (fol, na)
+ fid = open(matname, 'w')
+ fid.write('newmtl material_0\n')
+ fid.write('Kd 1 1 1\n')
+ fid.write('Ka 0 0 0\n')
+ fid.write('Ks 0.4 0.4 0.4\n')
+ fid.write('Ns 10\n')
+ fid.write('illum 2\n')
+ fid.write('map_Kd %s.png\n' % na)
+ fid.close()
+ ####
+
+ fid = open(fname, 'w')
+ fid.write('mtllib %s.mtl\n' % na)
+
+ for pidx, p in enumerate(pointnp_px3):
+ pp = p
+ fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2]))
+
+ for pidx, p in enumerate(tcoords_px2):
+ pp = p
+ fid.write('vt %f %f\n' % (pp[0], pp[1]))
+
+ fid.write('usemtl material_0\n')
+ for i, f in enumerate(facenp_fx3):
+ f1 = f + 1
+ f2 = facetex_fx3[i] + 1
+ fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
+ fid.close()
+
+ # save texture map
+ lo, hi = 0, 1
+ img = np.asarray(texmap_hxwx3, dtype=np.float32)
+ img = (img - lo) * (255 / (hi - lo))
+ img = img.clip(0, 255)
+ mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True)
+ mask = (mask <= 3.0).astype(np.float32)
+ kernel = np.ones((3, 3), 'uint8')
+ dilate_img = cv2.dilate(img, kernel, iterations=1)
+ img = img * (1 - mask) + dilate_img * mask
+ img = img.clip(0, 255).astype(np.uint8)
+ Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png')
+
+
+def loadobj(meshfile):
+ v = []
+ f = []
+ meshfp = open(meshfile, 'r')
+ for line in meshfp.readlines():
+ data = line.strip().split(' ')
+ data = [da for da in data if len(da) > 0]
+ if len(data) != 4:
+ continue
+ if data[0] == 'v':
+ v.append([float(d) for d in data[1:]])
+ if data[0] == 'f':
+ data = [da.split('/')[0] for da in data]
+ f.append([int(d) for d in data[1:]])
+ meshfp.close()
+
+ # torch need int64
+ facenp_fx3 = np.array(f, dtype=np.int64) - 1
+ pointnp_px3 = np.array(v, dtype=np.float32)
+ return pointnp_px3, facenp_fx3
+
+
+def loadobjtex(meshfile):
+ v = []
+ vt = []
+ f = []
+ ft = []
+ meshfp = open(meshfile, 'r')
+ for line in meshfp.readlines():
+ data = line.strip().split(' ')
+ data = [da for da in data if len(da) > 0]
+ if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)):
+ continue
+ if data[0] == 'v':
+ assert len(data) == 4
+
+ v.append([float(d) for d in data[1:]])
+ if data[0] == 'vt':
+ if len(data) == 3 or len(data) == 4:
+ vt.append([float(d) for d in data[1:3]])
+ if data[0] == 'f':
+ data = [da.split('/') for da in data]
+ if len(data) == 4:
+ f.append([int(d[0]) for d in data[1:]])
+ ft.append([int(d[1]) for d in data[1:]])
+ elif len(data) == 5:
+ idx1 = [1, 2, 3]
+ data1 = [data[i] for i in idx1]
+ f.append([int(d[0]) for d in data1])
+ ft.append([int(d[1]) for d in data1])
+ idx2 = [1, 3, 4]
+ data2 = [data[i] for i in idx2]
+ f.append([int(d[0]) for d in data2])
+ ft.append([int(d[1]) for d in data2])
+ meshfp.close()
+
+ # torch need int64
+ facenp_fx3 = np.array(f, dtype=np.int64) - 1
+ ftnp_fx3 = np.array(ft, dtype=np.int64) - 1
+ pointnp_px3 = np.array(v, dtype=np.float32)
+ uvs = np.array(vt, dtype=np.float32)
+ return pointnp_px3, facenp_fx3, uvs, ftnp_fx3
+
+
+# ==============================================================================================
+def interpolate(attr, rast, attr_idx, rast_db=None):
+ return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all')
+
+
+def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution):
+ vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy())
+
+ # Convert to tensors
+ indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
+
+ uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device)
+ mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device)
+ # mesh_v_tex. ture
+ uv_clip = uvs[None, ...] * 2.0 - 1.0
+
+ # pad to four component coordinate
+ uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1)
+
+ # rasterize
+ rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution))
+
+ # Interpolate world space position
+ gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int())
+ mask = rast[..., 3:4] > 0
+ return uvs, mesh_tex_idx, gb_pos, mask
diff --git a/src/utils/train_util.py b/src/utils/train_util.py
new file mode 100755
index 0000000000000000000000000000000000000000..2e65421bffa8cc42c1517e86f2dfd8183caf52ab
--- /dev/null
+++ b/src/utils/train_util.py
@@ -0,0 +1,26 @@
+import importlib
+
+
+def count_params(model, verbose=False):
+ total_params = sum(p.numel() for p in model.parameters())
+ if verbose:
+ print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
+ return total_params
+
+
+def instantiate_from_config(config):
+ if not "target" in config:
+ if config == '__is_first_stage__':
+ return None
+ elif config == "__is_unconditional__":
+ return None
+ raise KeyError("Expected key `target` to instantiate.")
+ return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
diff --git a/zero123plus/pipeline.py b/zero123plus/pipeline.py
new file mode 100755
index 0000000000000000000000000000000000000000..0088218346b36f07662d051670e51c658df59f1f
--- /dev/null
+++ b/zero123plus/pipeline.py
@@ -0,0 +1,406 @@
+from typing import Any, Dict, Optional
+from diffusers.models import AutoencoderKL, UNet2DConditionModel
+from diffusers.schedulers import KarrasDiffusionSchedulers
+
+import numpy
+import torch
+import torch.nn as nn
+import torch.utils.checkpoint
+import torch.distributed
+import transformers
+from collections import OrderedDict
+from PIL import Image
+from torchvision import transforms
+from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
+
+import diffusers
+from diffusers import (
+ AutoencoderKL,
+ DDPMScheduler,
+ DiffusionPipeline,
+ EulerAncestralDiscreteScheduler,
+ UNet2DConditionModel,
+ ImagePipelineOutput
+)
+from diffusers.image_processor import VaeImageProcessor
+from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
+from diffusers.utils.import_utils import is_xformers_available
+
+
+def to_rgb_image(maybe_rgba: Image.Image):
+ if maybe_rgba.mode == 'RGB':
+ return maybe_rgba
+ elif maybe_rgba.mode == 'RGBA':
+ rgba = maybe_rgba
+ img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
+ img = Image.fromarray(img, 'RGB')
+ img.paste(rgba, mask=rgba.getchannel('A'))
+ return img
+ else:
+ raise ValueError("Unsupported image type.", maybe_rgba.mode)
+
+
+class ReferenceOnlyAttnProc(torch.nn.Module):
+ def __init__(
+ self,
+ chained_proc,
+ enabled=False,
+ name=None
+ ) -> None:
+ super().__init__()
+ self.enabled = enabled
+ self.chained_proc = chained_proc
+ self.name = name
+
+ def __call__(
+ self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
+ mode="w", ref_dict: dict = None, is_cfg_guidance = False
+ ) -> Any:
+ if encoder_hidden_states is None:
+ encoder_hidden_states = hidden_states
+ if self.enabled and is_cfg_guidance:
+ res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
+ hidden_states = hidden_states[1:]
+ encoder_hidden_states = encoder_hidden_states[1:]
+ if self.enabled:
+ if mode == 'w':
+ ref_dict[self.name] = encoder_hidden_states
+ elif mode == 'r':
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
+ elif mode == 'm':
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
+ else:
+ assert False, mode
+ res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
+ if self.enabled and is_cfg_guidance:
+ res = torch.cat([res0, res])
+ return res
+
+
+class RefOnlyNoisedUNet(torch.nn.Module):
+ def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
+ super().__init__()
+ self.unet = unet
+ self.train_sched = train_sched
+ self.val_sched = val_sched
+
+ unet_lora_attn_procs = dict()
+ for name, _ in unet.attn_processors.items():
+ if torch.__version__ >= '2.0':
+ default_attn_proc = AttnProcessor2_0()
+ elif is_xformers_available():
+ default_attn_proc = XFormersAttnProcessor()
+ else:
+ default_attn_proc = AttnProcessor()
+ unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
+ default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
+ )
+ unet.set_attn_processor(unet_lora_attn_procs)
+
+ def __getattr__(self, name: str):
+ try:
+ return super().__getattr__(name)
+ except AttributeError:
+ return getattr(self.unet, name)
+
+ def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
+ if is_cfg_guidance:
+ encoder_hidden_states = encoder_hidden_states[1:]
+ class_labels = class_labels[1:]
+ self.unet(
+ noisy_cond_lat, timestep,
+ encoder_hidden_states=encoder_hidden_states,
+ class_labels=class_labels,
+ cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
+ **kwargs
+ )
+
+ def forward(
+ self, sample, timestep, encoder_hidden_states, class_labels=None,
+ *args, cross_attention_kwargs,
+ down_block_res_samples=None, mid_block_res_sample=None,
+ **kwargs
+ ):
+ cond_lat = cross_attention_kwargs['cond_lat']
+ is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
+ noise = torch.randn_like(cond_lat)
+ if self.training:
+ noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
+ noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
+ else:
+ noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
+ noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
+ ref_dict = {}
+ self.forward_cond(
+ noisy_cond_lat, timestep,
+ encoder_hidden_states, class_labels,
+ ref_dict, is_cfg_guidance, **kwargs
+ )
+ weight_dtype = self.unet.dtype
+ return self.unet(
+ sample, timestep,
+ encoder_hidden_states, *args,
+ class_labels=class_labels,
+ cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
+ down_block_additional_residuals=[
+ sample.to(dtype=weight_dtype) for sample in down_block_res_samples
+ ] if down_block_res_samples is not None else None,
+ mid_block_additional_residual=(
+ mid_block_res_sample.to(dtype=weight_dtype)
+ if mid_block_res_sample is not None else None
+ ),
+ **kwargs
+ )
+
+
+def scale_latents(latents):
+ latents = (latents - 0.22) * 0.75
+ return latents
+
+
+def unscale_latents(latents):
+ latents = latents / 0.75 + 0.22
+ return latents
+
+
+def scale_image(image):
+ image = image * 0.5 / 0.8
+ return image
+
+
+def unscale_image(image):
+ image = image / 0.5 * 0.8
+ return image
+
+
+class DepthControlUNet(torch.nn.Module):
+ def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None:
+ super().__init__()
+ self.unet = unet
+ if controlnet is None:
+ self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
+ else:
+ self.controlnet = controlnet
+ DefaultAttnProc = AttnProcessor2_0
+ if is_xformers_available():
+ DefaultAttnProc = XFormersAttnProcessor
+ self.controlnet.set_attn_processor(DefaultAttnProc())
+ self.conditioning_scale = conditioning_scale
+
+ def __getattr__(self, name: str):
+ try:
+ return super().__getattr__(name)
+ except AttributeError:
+ return getattr(self.unet, name)
+
+ def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
+ cross_attention_kwargs = dict(cross_attention_kwargs)
+ control_depth = cross_attention_kwargs.pop('control_depth')
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
+ sample,
+ timestep,
+ encoder_hidden_states=encoder_hidden_states,
+ controlnet_cond=control_depth,
+ conditioning_scale=self.conditioning_scale,
+ return_dict=False,
+ )
+ return self.unet(
+ sample,
+ timestep,
+ encoder_hidden_states=encoder_hidden_states,
+ down_block_res_samples=down_block_res_samples,
+ mid_block_res_sample=mid_block_res_sample,
+ cross_attention_kwargs=cross_attention_kwargs
+ )
+
+
+class ModuleListDict(torch.nn.Module):
+ def __init__(self, procs: dict) -> None:
+ super().__init__()
+ self.keys = sorted(procs.keys())
+ self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
+
+ def __getitem__(self, key):
+ return self.values[self.keys.index(key)]
+
+
+class SuperNet(torch.nn.Module):
+ def __init__(self, state_dict: Dict[str, torch.Tensor]):
+ super().__init__()
+ state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
+ self.layers = torch.nn.ModuleList(state_dict.values())
+ self.mapping = dict(enumerate(state_dict.keys()))
+ self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
+
+ # .processor for unet, .self_attn for text encoder
+ self.split_keys = [".processor", ".self_attn"]
+
+ # we add a hook to state_dict() and load_state_dict() so that the
+ # naming fits with `unet.attn_processors`
+ def map_to(module, state_dict, *args, **kwargs):
+ new_state_dict = {}
+ for key, value in state_dict.items():
+ num = int(key.split(".")[1]) # 0 is always "layers"
+ new_key = key.replace(f"layers.{num}", module.mapping[num])
+ new_state_dict[new_key] = value
+
+ return new_state_dict
+
+ def remap_key(key, state_dict):
+ for k in self.split_keys:
+ if k in key:
+ return key.split(k)[0] + k
+ return key.split('.')[0]
+
+ def map_from(module, state_dict, *args, **kwargs):
+ all_keys = list(state_dict.keys())
+ for key in all_keys:
+ replace_key = remap_key(key, state_dict)
+ new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
+ state_dict[new_key] = state_dict[key]
+ del state_dict[key]
+
+ self._register_state_dict_hook(map_to)
+ self._register_load_state_dict_pre_hook(map_from, with_module=True)
+
+
+class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
+ tokenizer: transformers.CLIPTokenizer
+ text_encoder: transformers.CLIPTextModel
+ vision_encoder: transformers.CLIPVisionModelWithProjection
+
+ feature_extractor_clip: transformers.CLIPImageProcessor
+ unet: UNet2DConditionModel
+ scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
+
+ vae: AutoencoderKL
+ ramping: nn.Linear
+
+ feature_extractor_vae: transformers.CLIPImageProcessor
+
+ depth_transforms_multi = transforms.Compose([
+ transforms.ToTensor(),
+ transforms.Normalize([0.5], [0.5])
+ ])
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: CLIPTextModel,
+ tokenizer: CLIPTokenizer,
+ unet: UNet2DConditionModel,
+ scheduler: KarrasDiffusionSchedulers,
+ vision_encoder: transformers.CLIPVisionModelWithProjection,
+ feature_extractor_clip: CLIPImageProcessor,
+ feature_extractor_vae: CLIPImageProcessor,
+ ramping_coefficients: Optional[list] = None,
+ safety_checker=None,
+ ):
+ DiffusionPipeline.__init__(self)
+
+ self.register_modules(
+ vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
+ unet=unet, scheduler=scheduler, safety_checker=None,
+ vision_encoder=vision_encoder,
+ feature_extractor_clip=feature_extractor_clip,
+ feature_extractor_vae=feature_extractor_vae
+ )
+ self.register_to_config(ramping_coefficients=ramping_coefficients)
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
+
+ def prepare(self):
+ train_sched = DDPMScheduler.from_config(self.scheduler.config)
+ if isinstance(self.unet, UNet2DConditionModel):
+ self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
+
+ def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0):
+ self.prepare()
+ self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
+ return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
+
+ def encode_condition_image(self, image: torch.Tensor):
+ image = self.vae.encode(image).latent_dist.sample()
+ return image
+
+ @torch.no_grad()
+ def __call__(
+ self,
+ image: Image.Image = None,
+ prompt = "",
+ *args,
+ num_images_per_prompt: Optional[int] = 1,
+ guidance_scale=4.0,
+ depth_image: Image.Image = None,
+ output_type: Optional[str] = "pil",
+ width=640,
+ height=960,
+ num_inference_steps=28,
+ return_dict=True,
+ **kwargs
+ ):
+ self.prepare()
+ if image is None:
+ raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
+ assert not isinstance(image, torch.Tensor)
+ image = to_rgb_image(image)
+ image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
+ image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
+ if depth_image is not None and hasattr(self.unet, "controlnet"):
+ depth_image = to_rgb_image(depth_image)
+ depth_image = self.depth_transforms_multi(depth_image).to(
+ device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
+ )
+ image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
+ image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
+ cond_lat = self.encode_condition_image(image)
+ if guidance_scale > 1:
+ negative_lat = self.encode_condition_image(torch.zeros_like(image))
+ cond_lat = torch.cat([negative_lat, cond_lat])
+ encoded = self.vision_encoder(image_2, output_hidden_states=False)
+ global_embeds = encoded.image_embeds
+ global_embeds = global_embeds.unsqueeze(-2)
+
+ if hasattr(self, "encode_prompt"):
+ encoder_hidden_states = self.encode_prompt(
+ prompt,
+ self.device,
+ num_images_per_prompt,
+ False
+ )[0]
+ else:
+ encoder_hidden_states = self._encode_prompt(
+ prompt,
+ self.device,
+ num_images_per_prompt,
+ False
+ )
+ ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
+ encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
+ cak = dict(cond_lat=cond_lat)
+ if hasattr(self.unet, "controlnet"):
+ cak['control_depth'] = depth_image
+ latents: torch.Tensor = super().__call__(
+ None,
+ *args,
+ cross_attention_kwargs=cak,
+ guidance_scale=guidance_scale,
+ num_images_per_prompt=num_images_per_prompt,
+ prompt_embeds=encoder_hidden_states,
+ num_inference_steps=num_inference_steps,
+ output_type='latent',
+ width=width,
+ height=height,
+ **kwargs
+ ).images
+ latents = unscale_latents(latents)
+ if not output_type == "latent":
+ image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
+ else:
+ image = latents
+
+ image = self.image_processor.postprocess(image, output_type=output_type)
+ if not return_dict:
+ return (image,)
+
+ return ImagePipelineOutput(images=image)