diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..ed8ebf583f771da9150c35db3955987b7d757904 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +__pycache__ \ No newline at end of file diff --git a/README.md b/README.md index 7662aba1723ba588f4c4d06076ca18d10eaba4aa..651b4b00fb8fe39860c309736e620ba97d6b39f0 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,7 @@ sdk: gradio sdk_version: 4.25.0 app_file: app.py pinned: false -license: mit +license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/app.py b/app.py new file mode 100755 index 0000000000000000000000000000000000000000..5fd9db8da9c246dd5e56134130225e8df95f702b --- /dev/null +++ b/app.py @@ -0,0 +1,349 @@ +import os +import imageio +import numpy as np +import torch +import rembg +from PIL import Image +from torchvision.transforms import v2 +from pytorch_lightning import seed_everything +from omegaconf import OmegaConf +from einops import rearrange, repeat +from tqdm import tqdm +from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler + +from src.utils.train_util import instantiate_from_config +from src.utils.camera_util import ( + FOV_to_intrinsics, + get_zero123plus_input_cameras, + get_circular_camera_poses, +) +from src.utils.mesh_util import save_obj +from src.utils.infer_util import remove_background, resize_foreground, images_to_video + +import tempfile +from functools import partial + +from huggingface_hub import hf_hub_download +import spaces + + +def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): + """ + Get the rendering camera parameters. + """ + c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) + if is_flexicubes: + cameras = torch.linalg.inv(c2ws) + cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) + else: + extrinsics = c2ws.flatten(-2) + intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) + cameras = torch.cat([extrinsics, intrinsics], dim=-1) + cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) + return cameras + + +def images_to_video(images, output_path, fps=30): + # images: (N, C, H, W) + os.makedirs(os.path.dirname(output_path), exist_ok=True) + frames = [] + for i in range(images.shape[0]): + frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) + assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ + f"Frame shape mismatch: {frame.shape} vs {images.shape}" + assert frame.min() >= 0 and frame.max() <= 255, \ + f"Frame value out of range: {frame.min()} ~ {frame.max()}" + frames.append(frame) + imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') + + +############################################################################### +# Configuration. +############################################################################### + +config_path = 'configs/instant-mesh-large-eval.yaml' +config = OmegaConf.load(config_path) +config_name = os.path.basename(config_path).replace('.yaml', '') +model_config = config.model_config +infer_config = config.infer_config + +IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False + +device = torch.device('cuda') + +# load diffusion model +print('Loading diffusion model ...') +pipeline = DiffusionPipeline.from_pretrained( + "sudo-ai/zero123plus-v1.2", + custom_pipeline="zero123plus", + torch_dtype=torch.float16, +) +pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( + pipeline.scheduler.config, timestep_spacing='trailing' +) + +# load custom white-background UNet +unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") +state_dict = torch.load(unet_ckpt_path, map_location='cpu') +pipeline.unet.load_state_dict(state_dict, strict=True) + +pipeline = pipeline.to(device) + +# load reconstruction model +print('Loading reconstruction model ...') +model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") +model = instantiate_from_config(model_config) +state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] +state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} +model.load_state_dict(state_dict, strict=True) + +model = model.to(device) +if IS_FLEXICUBES: + model.init_flexicubes_geometry(device) +model = model.eval() + +print('Loading Finished!') + + +def check_input_image(input_image): + if input_image is None: + raise gr.Error("No image uploaded!") + + +def preprocess(input_image, do_remove_background): + + rembg_session = rembg.new_session() if do_remove_background else None + + if do_remove_background: + input_image = remove_background(input_image, rembg_session) + input_image = resize_foreground(input_image, 0.85) + + return input_image + + +@spaces.GPU +def generate_mvs(input_image, sample_steps, sample_seed): + + seed_everything(sample_seed) + + # sampling + z123_image = pipeline( + input_image, + num_inference_steps=sample_steps + ).images[0] + + show_image = np.asarray(z123_image, dtype=np.uint8) + show_image = torch.from_numpy(show_image) # (960, 640, 3) + show_image = rearrange(show_image, '(n h) (m w) c -> (m h) (n w) c', n=3, m=2) + show_image = Image.fromarray(show_image.numpy()) + + return z123_image, show_image + + +@spaces.GPU +def make_mesh(mesh_fpath, planes): + + mesh_basename = os.path.basename(mesh_fpath).split('.')[0] + mesh_dirname = os.path.dirname(mesh_fpath) + mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") + + with torch.no_grad(): + + # get mesh + mesh_out = model.extract_mesh( + planes, + use_texture_map=False, + **infer_config, + ) + + vertices, faces, vertex_colors = mesh_out + vertices = vertices[:, [0, 2, 1]] + vertices[:, -1] *= -1 + + save_obj(vertices, faces, vertex_colors, mesh_fpath) + + print(f"Mesh saved to {mesh_fpath}") + + return mesh_fpath + + +@spaces.GPU +def make3d(images): + + images = np.asarray(images, dtype=np.float32) / 255.0 + images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) + images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) + + input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=2.5).to(device) + render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) + + images = images.unsqueeze(0).to(device) + images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) + + mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name + print(mesh_fpath) + mesh_basename = os.path.basename(mesh_fpath).split('.')[0] + mesh_dirname = os.path.dirname(mesh_fpath) + video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") + + with torch.no_grad(): + # get triplane + planes = model.forward_planes(images, input_cameras) + + # get video + chunk_size = 20 if IS_FLEXICUBES else 1 + render_size = 384 + + frames = [] + for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): + if IS_FLEXICUBES: + frame = model.forward_geometry( + planes, + render_cameras[:, i:i+chunk_size], + render_size=render_size, + )['img'] + else: + frame = model.synthesizer( + planes, + cameras=render_cameras[:, i:i+chunk_size], + render_size=render_size, + )['images_rgb'] + frames.append(frame) + frames = torch.cat(frames, dim=1) + + images_to_video( + frames[0], + video_fpath, + fps=30, + ) + + print(f"Video saved to {video_fpath}") + + mesh_fpath = make_mesh(mesh_fpath, planes) + + return video_fpath, mesh_fpath + + +import gradio as gr + +_HEADER_ = ''' +

Official 🤗 Gradio demo for + +InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models +. +

+''' + +_LINKS_ = ''' +

Code is available at GitHub

+

Report is available at ArXiv

+''' + +_CITE_ = r""" +```bibtex +@article{xu2024instantmesh, + title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, + author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, + journal={arXiv preprint arXiv:2404.07191}, + year={2024} +} +``` +""" + + +with gr.Blocks() as demo: + gr.Markdown(_HEADER_) + with gr.Row(variant="panel"): + with gr.Column(): + with gr.Row(): + input_image = gr.Image( + label="Input Image", + image_mode="RGBA", + sources="upload", + width=256, + height=256, + type="pil", + elem_id="content_image", + ) + processed_image = gr.Image( + label="Processed Image", + image_mode="RGBA", + width=256, + height=256, + type="pil", + interactive=False + ) + with gr.Row(): + with gr.Group(): + do_remove_background = gr.Checkbox( + label="Remove Background", value=True + ) + sample_seed = gr.Number(value=42, label="Seed (Try a different value if the result is unsatisfying)", precision=0) + + sample_steps = gr.Slider( + label="Sample Steps", + minimum=30, + maximum=75, + value=75, + step=5 + ) + + with gr.Row(): + submit = gr.Button("Generate", elem_id="generate", variant="primary") + + with gr.Row(variant="panel"): + gr.Examples( + examples=[ + os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) + ], + inputs=[input_image], + label="Examples", + examples_per_page=20 + ) + + with gr.Column(): + + with gr.Row(): + + with gr.Column(): + mv_show_images = gr.Image( + label="Generated Multi-views", + type="pil", + width=379, + interactive=False + ) + + with gr.Column(): + output_video = gr.Video( + label="video", format="mp4", + width=379, + autoplay=True, + interactive=False + ) + + with gr.Row(): + output_model_obj = gr.Model3D( + label="Output Model (OBJ Format)", + width=768, + interactive=False, + ) + gr.Markdown(_LINKS_) + gr.Markdown(_CITE_) + + mv_images = gr.State() + + submit.click(fn=check_input_image, inputs=[input_image]).success( + fn=preprocess, + inputs=[input_image, do_remove_background], + outputs=[processed_image], + ).success( + fn=generate_mvs, + inputs=[processed_image, sample_steps, sample_seed], + outputs=[mv_images, mv_show_images], + ).success( + fn=make3d, + inputs=[mv_images], + outputs=[output_video, output_model_obj] + ) + +demo.launch() \ No newline at end of file diff --git a/configs/instant-mesh-base.yaml b/configs/instant-mesh-base.yaml new file mode 100755 index 0000000000000000000000000000000000000000..ad4f4c0cd0d3c6f4d3038b657a41dab82c048dd1 --- /dev/null +++ b/configs/instant-mesh-base.yaml @@ -0,0 +1,22 @@ +model_config: + target: src.models.lrm_mesh.InstantMesh + params: + encoder_feat_dim: 768 + encoder_freeze: false + encoder_model_name: facebook/dino-vitb16 + transformer_dim: 1024 + transformer_layers: 12 + transformer_heads: 16 + triplane_low_res: 32 + triplane_high_res: 64 + triplane_dim: 40 + rendering_samples_per_ray: 96 + grid_res: 128 + grid_scale: 2.1 + + +infer_config: + unet_path: ckpts/diffusion_pytorch_model.bin + model_path: ckpts/instant_mesh_base.ckpt + texture_resolution: 1024 + render_resolution: 512 \ No newline at end of file diff --git a/configs/instant-mesh-large.yaml b/configs/instant-mesh-large.yaml new file mode 100755 index 0000000000000000000000000000000000000000..e296bc89f6d0d0649136ba2ce0e34490f76a5e41 --- /dev/null +++ b/configs/instant-mesh-large.yaml @@ -0,0 +1,22 @@ +model_config: + target: src.models.lrm_mesh.InstantMesh + params: + encoder_feat_dim: 768 + encoder_freeze: false + encoder_model_name: facebook/dino-vitb16 + transformer_dim: 1024 + transformer_layers: 16 + transformer_heads: 16 + triplane_low_res: 32 + triplane_high_res: 64 + triplane_dim: 80 + rendering_samples_per_ray: 128 + grid_res: 128 + grid_scale: 2.1 + + +infer_config: + unet_path: ckpts/diffusion_pytorch_model.bin + model_path: ckpts/instant_mesh_large.ckpt + texture_resolution: 1024 + render_resolution: 512 \ No newline at end of file diff --git a/configs/instant-nerf-base.yaml b/configs/instant-nerf-base.yaml new file mode 100755 index 0000000000000000000000000000000000000000..ded3d484751127d430891fc28eb2de664aecd5e1 --- /dev/null +++ b/configs/instant-nerf-base.yaml @@ -0,0 +1,21 @@ +model_config: + target: src.models.lrm.InstantNeRF + params: + encoder_feat_dim: 768 + encoder_freeze: false + encoder_model_name: facebook/dino-vitb16 + transformer_dim: 1024 + transformer_layers: 12 + transformer_heads: 16 + triplane_low_res: 32 + triplane_high_res: 64 + triplane_dim: 40 + rendering_samples_per_ray: 96 + + +infer_config: + unet_path: ckpts/diffusion_pytorch_model.bin + model_path: ckpts/instant_nerf_base.ckpt + mesh_threshold: 10.0 + mesh_resolution: 256 + render_resolution: 384 \ No newline at end of file diff --git a/configs/instant-nerf-large.yaml b/configs/instant-nerf-large.yaml new file mode 100755 index 0000000000000000000000000000000000000000..57494b69d74ee78dca2e2cead2ef68ddfd0fd531 --- /dev/null +++ b/configs/instant-nerf-large.yaml @@ -0,0 +1,21 @@ +model_config: + target: src.models.lrm.InstantNeRF + params: + encoder_feat_dim: 768 + encoder_freeze: false + encoder_model_name: facebook/dino-vitb16 + transformer_dim: 1024 + transformer_layers: 16 + transformer_heads: 16 + triplane_low_res: 32 + triplane_high_res: 64 + triplane_dim: 80 + rendering_samples_per_ray: 128 + + +infer_config: + unet_path: ckpts/diffusion_pytorch_model.bin + model_path: ckpts/instant_nerf_large.ckpt + mesh_threshold: 10.0 + mesh_resolution: 256 + render_resolution: 384 \ No newline at end of file diff --git a/examples/bird.jpg b/examples/bird.jpg new file mode 100755 index 0000000000000000000000000000000000000000..ac70a36ebefb87fb283f3bb95d07fe71700702a3 Binary files /dev/null and b/examples/bird.jpg differ diff --git a/examples/bubble_mart_blue.png b/examples/bubble_mart_blue.png new file mode 100755 index 0000000000000000000000000000000000000000..af870322d4a8a2f237546fbea9560bb8e5f50364 Binary files /dev/null and b/examples/bubble_mart_blue.png differ diff --git a/examples/cake.jpg b/examples/cake.jpg new file mode 100755 index 0000000000000000000000000000000000000000..2648c3fb4381e1173ebe42f003d47e45d4cb7816 Binary files /dev/null and b/examples/cake.jpg differ diff --git a/examples/cartoon_dinosaur.png b/examples/cartoon_dinosaur.png new file mode 100755 index 0000000000000000000000000000000000000000..598964626b767eb6470a28a68537c091fc5de2f8 Binary files /dev/null and b/examples/cartoon_dinosaur.png differ diff --git a/examples/cartoon_girl.jpg b/examples/cartoon_girl.jpg new file mode 100755 index 0000000000000000000000000000000000000000..0664c7bb99a569faee449482ece59e3c32f06642 Binary files /dev/null and b/examples/cartoon_girl.jpg differ diff --git a/examples/chair_comfort.jpg b/examples/chair_comfort.jpg new file mode 100755 index 0000000000000000000000000000000000000000..918347fe51773d7ecaa7fb929274db8d7d5d3e19 Binary files /dev/null and b/examples/chair_comfort.jpg differ diff --git a/examples/chair_wood.jpg b/examples/chair_wood.jpg new file mode 100755 index 0000000000000000000000000000000000000000..bc60569896fb02a46185aabb85086890f0f400d7 Binary files /dev/null and b/examples/chair_wood.jpg differ diff --git a/examples/chest.jpg b/examples/chest.jpg new file mode 100755 index 0000000000000000000000000000000000000000..26ae0b145887e43b850d298b94fe54828e909492 Binary files /dev/null and b/examples/chest.jpg differ diff --git a/examples/cube.png b/examples/cube.png new file mode 100644 index 0000000000000000000000000000000000000000..38a4636cb0febd8ff38f09448de47ca4e524ccf1 Binary files /dev/null and b/examples/cube.png differ diff --git a/examples/extinguisher.png b/examples/extinguisher.png new file mode 100755 index 0000000000000000000000000000000000000000..98f43a66718d49980e61d466b652bfca0a7ae9df Binary files /dev/null and b/examples/extinguisher.png differ diff --git a/examples/fruit_bycycle.jpg b/examples/fruit_bycycle.jpg new file mode 100755 index 0000000000000000000000000000000000000000..4695b19dc1078776f5e10b055c7fffcedbb984d3 Binary files /dev/null and b/examples/fruit_bycycle.jpg differ diff --git a/examples/fruit_elephant.jpg b/examples/fruit_elephant.jpg new file mode 100755 index 0000000000000000000000000000000000000000..ef8eaf3b88ae0a38272b34802fe40032055afa58 Binary files /dev/null and b/examples/fruit_elephant.jpg differ diff --git a/examples/genshin_building.png b/examples/genshin_building.png new file mode 100755 index 0000000000000000000000000000000000000000..00b6a949d01283e1ae30fac4bd6040e13f18a055 Binary files /dev/null and b/examples/genshin_building.png differ diff --git a/examples/house2.jpg b/examples/house2.jpg new file mode 100755 index 0000000000000000000000000000000000000000..2eb8d63a6b91d5b16e729710c8b703aa5c11f9e5 Binary files /dev/null and b/examples/house2.jpg differ diff --git a/examples/kunkun.png b/examples/kunkun.png new file mode 100755 index 0000000000000000000000000000000000000000..806c188eccfe9b2ad787d83ec979eee09a813127 Binary files /dev/null and b/examples/kunkun.png differ diff --git a/examples/mushroom_teapot.jpg b/examples/mushroom_teapot.jpg new file mode 100755 index 0000000000000000000000000000000000000000..a6c767354305f5467a4c0d5f199eee2a120f4501 Binary files /dev/null and b/examples/mushroom_teapot.jpg differ diff --git a/examples/pikachu.png b/examples/pikachu.png new file mode 100755 index 0000000000000000000000000000000000000000..e7579c16957a3e13b80d53cf0a41ddfdfd47b92d Binary files /dev/null and b/examples/pikachu.png differ diff --git a/examples/pistol.png b/examples/pistol.png new file mode 100755 index 0000000000000000000000000000000000000000..7b814e7f43e69815d7d923e0cdcf7c02ca75249c Binary files /dev/null and b/examples/pistol.png differ diff --git a/examples/plant.jpg b/examples/plant.jpg new file mode 100755 index 0000000000000000000000000000000000000000..3519c1639c3f837d9f1147cba1172e6aaab25a23 Binary files /dev/null and b/examples/plant.jpg differ diff --git a/examples/robot.jpg b/examples/robot.jpg new file mode 100755 index 0000000000000000000000000000000000000000..929450fba69a20389f39d46cb51d27facc1bba6d Binary files /dev/null and b/examples/robot.jpg differ diff --git a/examples/sea_turtle.png b/examples/sea_turtle.png new file mode 100755 index 0000000000000000000000000000000000000000..27c3e2a9c7d44cb33914422b410ef41cf6591433 Binary files /dev/null and b/examples/sea_turtle.png differ diff --git a/examples/skating_shoe.jpg b/examples/skating_shoe.jpg new file mode 100755 index 0000000000000000000000000000000000000000..5f21cb1d43e9d42d2836118963fc1d2874523748 Binary files /dev/null and b/examples/skating_shoe.jpg differ diff --git a/examples/sorting_board.png b/examples/sorting_board.png new file mode 100755 index 0000000000000000000000000000000000000000..a40fb8362afce0e323dd4517bba784cc652f5f6c Binary files /dev/null and b/examples/sorting_board.png differ diff --git a/examples/sword.png b/examples/sword.png new file mode 100755 index 0000000000000000000000000000000000000000..3068cb9bdbbd9ed3c0a143fd5c741abbc58508e3 Binary files /dev/null and b/examples/sword.png differ diff --git a/examples/toy_car.jpg b/examples/toy_car.jpg new file mode 100755 index 0000000000000000000000000000000000000000..ffa72aa6c1510e200e5d640461b779d2e7bf4997 Binary files /dev/null and b/examples/toy_car.jpg differ diff --git a/examples/toyduck.png b/examples/toyduck.png new file mode 100644 index 0000000000000000000000000000000000000000..b08372317bd892362a665ceadd2e8ddf40f26198 Binary files /dev/null and b/examples/toyduck.png differ diff --git a/examples/watermelon.png b/examples/watermelon.png new file mode 100755 index 0000000000000000000000000000000000000000..52b39917abcbd2f1eef9b7c8cf9aa602bddde1bf Binary files /dev/null and b/examples/watermelon.png differ diff --git a/examples/whitedog.png b/examples/whitedog.png new file mode 100755 index 0000000000000000000000000000000000000000..16c598a8133643898408ea806b69d5b18c53be7d Binary files /dev/null and b/examples/whitedog.png differ diff --git a/examples/x_cube.jpg b/examples/x_cube.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c05d020f888945c81f516d47ace9887c9fe6e998 Binary files /dev/null and b/examples/x_cube.jpg differ diff --git a/examples/x_teapot.jpg b/examples/x_teapot.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4e1cb46c5541dcc4ea544864e2eeebd42dfcb18a Binary files /dev/null and b/examples/x_teapot.jpg differ diff --git a/examples/x_toyduck.jpg b/examples/x_toyduck.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5e60d43bd76d7511e44568c4f9bba2a11a1a4f04 Binary files /dev/null and b/examples/x_toyduck.jpg differ diff --git a/requirements.txt b/requirements.txt new file mode 100755 index 0000000000000000000000000000000000000000..1851076ab0faf7f5973adfd305d52040d6a2217f --- /dev/null +++ b/requirements.txt @@ -0,0 +1,21 @@ +pytorch-lightning==2.1.2 +einops +omegaconf +deepspeed +torchmetrics +webdataset +accelerate +tensorboard +PyMCubes +trimesh +rembg +transformers==4.34.1 +diffusers==0.19.3 +bitsandbytes +imageio[ffmpeg] +xatlas +plyfile +xformers==0.0.22.post7 +git+https://github.com/NVlabs/nvdiffrast/ +torch-scatter -f https://data.pyg.org/whl/torch-2.1.0+cu121.html +huggingface-hub \ No newline at end of file diff --git a/src/__init__.py b/src/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/data/__init__.py b/src/data/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/data/objaverse.py b/src/data/objaverse.py new file mode 100755 index 0000000000000000000000000000000000000000..dd27f86c2469e74da28e27929929d84cd1718965 --- /dev/null +++ b/src/data/objaverse.py @@ -0,0 +1,329 @@ +import os, sys +import math +import json +import importlib +from pathlib import Path + +import cv2 +import random +import numpy as np +from PIL import Image +import webdataset as wds +import pytorch_lightning as pl + +import torch +import torch.nn.functional as F +from torch.utils.data import Dataset +from torch.utils.data import DataLoader +from torch.utils.data.distributed import DistributedSampler +from torchvision import transforms + +from src.utils.train_util import instantiate_from_config +from src.utils.camera_util import ( + FOV_to_intrinsics, + center_looking_at_camera_pose, + get_surrounding_views, +) + + +class DataModuleFromConfig(pl.LightningDataModule): + def __init__( + self, + batch_size=8, + num_workers=4, + train=None, + validation=None, + test=None, + **kwargs, + ): + super().__init__() + + self.batch_size = batch_size + self.num_workers = num_workers + + self.dataset_configs = dict() + if train is not None: + self.dataset_configs['train'] = train + if validation is not None: + self.dataset_configs['validation'] = validation + if test is not None: + self.dataset_configs['test'] = test + + def setup(self, stage): + + if stage in ['fit']: + self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs) + else: + raise NotImplementedError + + def train_dataloader(self): + + sampler = DistributedSampler(self.datasets['train']) + return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler) + + def val_dataloader(self): + + sampler = DistributedSampler(self.datasets['validation']) + return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler) + + def test_dataloader(self): + + return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) + + +class ObjaverseData(Dataset): + def __init__(self, + root_dir='objaverse/', + meta_fname='valid_paths.json', + input_image_dir='rendering_random_32views', + target_image_dir='rendering_random_32views', + input_view_num=6, + target_view_num=2, + total_view_n=32, + fov=50, + camera_rotation=True, + validation=False, + ): + self.root_dir = Path(root_dir) + self.input_image_dir = input_image_dir + self.target_image_dir = target_image_dir + + self.input_view_num = input_view_num + self.target_view_num = target_view_num + self.total_view_n = total_view_n + self.fov = fov + self.camera_rotation = camera_rotation + + with open(os.path.join(root_dir, meta_fname)) as f: + filtered_dict = json.load(f) + paths = filtered_dict['good_objs'] + self.paths = paths + + self.depth_scale = 4.0 + + total_objects = len(self.paths) + print('============= length of dataset %d =============' % len(self.paths)) + + def __len__(self): + return len(self.paths) + + def load_im(self, path, color): + ''' + replace background pixel with random color in rendering + ''' + pil_img = Image.open(path) + + image = np.asarray(pil_img, dtype=np.float32) / 255. + alpha = image[:, :, 3:] + image = image[:, :, :3] * alpha + color * (1 - alpha) + + image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() + alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() + return image, alpha + + def __getitem__(self, index): + # load data + while True: + input_image_path = os.path.join(self.root_dir, self.input_image_dir, self.paths[index]) + target_image_path = os.path.join(self.root_dir, self.target_image_dir, self.paths[index]) + + indices = np.random.choice(range(self.total_view_n), self.input_view_num + self.target_view_num, replace=False) + input_indices = indices[:self.input_view_num] + target_indices = indices[self.input_view_num:] + + '''background color, default: white''' + bg_white = [1., 1., 1.] + bg_black = [0., 0., 0.] + + image_list = [] + alpha_list = [] + depth_list = [] + normal_list = [] + pose_list = [] + + try: + input_cameras = np.load(os.path.join(input_image_path, 'cameras.npz'))['cam_poses'] + for idx in input_indices: + image, alpha = self.load_im(os.path.join(input_image_path, '%03d.png' % idx), bg_white) + normal, _ = self.load_im(os.path.join(input_image_path, '%03d_normal.png' % idx), bg_black) + depth = cv2.imread(os.path.join(input_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale + depth = torch.from_numpy(depth).unsqueeze(0) + pose = input_cameras[idx] + pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0) + + image_list.append(image) + alpha_list.append(alpha) + depth_list.append(depth) + normal_list.append(normal) + pose_list.append(pose) + + target_cameras = np.load(os.path.join(target_image_path, 'cameras.npz'))['cam_poses'] + for idx in target_indices: + image, alpha = self.load_im(os.path.join(target_image_path, '%03d.png' % idx), bg_white) + normal, _ = self.load_im(os.path.join(target_image_path, '%03d_normal.png' % idx), bg_black) + depth = cv2.imread(os.path.join(target_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale + depth = torch.from_numpy(depth).unsqueeze(0) + pose = target_cameras[idx] + pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0) + + image_list.append(image) + alpha_list.append(alpha) + depth_list.append(depth) + normal_list.append(normal) + pose_list.append(pose) + + except Exception as e: + print(e) + index = np.random.randint(0, len(self.paths)) + continue + + break + + images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W) + alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W) + depths = torch.stack(depth_list, dim=0).float() # (6+V, 1, H, W) + normals = torch.stack(normal_list, dim=0).float() # (6+V, 3, H, W) + w2cs = torch.from_numpy(np.stack(pose_list, axis=0)).float() # (6+V, 4, 4) + c2ws = torch.linalg.inv(w2cs).float() + + normals = normals * 2.0 - 1.0 + normals = F.normalize(normals, dim=1) + normals = (normals + 1.0) / 2.0 + normals = torch.lerp(torch.zeros_like(normals), normals, alphas) + + # random rotation along z axis + if self.camera_rotation: + degree = np.random.uniform(0, math.pi * 2) + rot = torch.tensor([ + [np.cos(degree), -np.sin(degree), 0, 0], + [np.sin(degree), np.cos(degree), 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1], + ]).unsqueeze(0).float() + c2ws = torch.matmul(rot, c2ws) + + # rotate normals + N, _, H, W = normals.shape + normals = normals * 2.0 - 1.0 + normals = torch.matmul(rot[:, :3, :3], normals.view(N, 3, -1)).view(N, 3, H, W) + normals = F.normalize(normals, dim=1) + normals = (normals + 1.0) / 2.0 + normals = torch.lerp(torch.zeros_like(normals), normals, alphas) + + # random scaling + if np.random.rand() < 0.5: + scale = np.random.uniform(0.8, 1.0) + c2ws[:, :3, 3] *= scale + depths *= scale + + # instrinsics of perspective cameras + K = FOV_to_intrinsics(self.fov) + Ks = K.unsqueeze(0).repeat(self.input_view_num + self.target_view_num, 1, 1).float() + + data = { + 'input_images': images[:self.input_view_num], # (6, 3, H, W) + 'input_alphas': alphas[:self.input_view_num], # (6, 1, H, W) + 'input_depths': depths[:self.input_view_num], # (6, 1, H, W) + 'input_normals': normals[:self.input_view_num], # (6, 3, H, W) + 'input_c2ws': c2ws_input[:self.input_view_num], # (6, 4, 4) + 'input_Ks': Ks[:self.input_view_num], # (6, 3, 3) + + # lrm generator input and supervision + 'target_images': images[self.input_view_num:], # (V, 3, H, W) + 'target_alphas': alphas[self.input_view_num:], # (V, 1, H, W) + 'target_depths': depths[self.input_view_num:], # (V, 1, H, W) + 'target_normals': normals[self.input_view_num:], # (V, 3, H, W) + 'target_c2ws': c2ws[self.input_view_num:], # (V, 4, 4) + 'target_Ks': Ks[self.input_view_num:], # (V, 3, 3) + + 'depth_available': 1, + } + return data + + +class ValidationData(Dataset): + def __init__(self, + root_dir='objaverse/', + input_view_num=6, + input_image_size=256, + fov=50, + ): + self.root_dir = Path(root_dir) + self.input_view_num = input_view_num + self.input_image_size = input_image_size + self.fov = fov + + self.paths = sorted(os.listdir(self.root_dir)) + print('============= length of dataset %d =============' % len(self.paths)) + + cam_distance = 2.5 + azimuths = np.array([30, 90, 150, 210, 270, 330]) + elevations = np.array([30, -20, 30, -20, 30, -20]) + azimuths = np.deg2rad(azimuths) + elevations = np.deg2rad(elevations) + + x = cam_distance * np.cos(elevations) * np.cos(azimuths) + y = cam_distance * np.cos(elevations) * np.sin(azimuths) + z = cam_distance * np.sin(elevations) + + cam_locations = np.stack([x, y, z], axis=-1) + cam_locations = torch.from_numpy(cam_locations).float() + c2ws = center_looking_at_camera_pose(cam_locations) + self.c2ws = c2ws.float() + self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float() + + render_c2ws = get_surrounding_views(M=8, radius=cam_distance) + render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1) + self.render_c2ws = render_c2ws.float() + self.render_Ks = render_Ks.float() + + def __len__(self): + return len(self.paths) + + def load_im(self, path, color): + ''' + replace background pixel with random color in rendering + ''' + pil_img = Image.open(path) + pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC) + + image = np.asarray(pil_img, dtype=np.float32) / 255. + if image.shape[-1] == 4: + alpha = image[:, :, 3:] + image = image[:, :, :3] * alpha + color * (1 - alpha) + else: + alpha = np.ones_like(image[:, :, :1]) + + image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() + alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() + return image, alpha + + def __getitem__(self, index): + # load data + input_image_path = os.path.join(self.root_dir, self.paths[index]) + + '''background color, default: white''' + # color = np.random.uniform(0.48, 0.52) + bkg_color = [1.0, 1.0, 1.0] + + image_list = [] + alpha_list = [] + + for idx in range(self.input_view_num): + image, alpha = self.load_im(os.path.join(input_image_path, f'{idx:03d}.png'), bkg_color) + image_list.append(image) + alpha_list.append(alpha) + + images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W) + alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W) + + data = { + 'input_images': images, # (6, 3, H, W) + 'input_alphas': alphas, # (6, 1, H, W) + 'input_c2ws': self.c2ws, # (6, 4, 4) + 'input_Ks': self.Ks, # (6, 3, 3) + + 'render_c2ws': self.render_c2ws, + 'render_Ks': self.render_Ks, + } + return data diff --git a/src/model.py b/src/model.py new file mode 100755 index 0000000000000000000000000000000000000000..584a6dcc59a641104f8942e7f4b4fc225e551f6a --- /dev/null +++ b/src/model.py @@ -0,0 +1,310 @@ +import os +import numpy as np +import torch +import torch.nn.functional as F +from torchvision.transforms import v2 +from torchvision.utils import make_grid, save_image +from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity +import pytorch_lightning as pl +from einops import rearrange, repeat + +from src.utils.train_util import instantiate_from_config + + +class MVRecon(pl.LightningModule): + def __init__( + self, + lrm_generator_config, + lrm_path=None, + input_size=256, + render_size=192, + ): + super(MVRecon, self).__init__() + + self.input_size = input_size + self.render_size = render_size + + # init modules + self.lrm_generator = instantiate_from_config(lrm_generator_config) + if lrm_path is not None: + lrm_ckpt = torch.load(lrm_path) + self.lrm_generator.load_state_dict(lrm_ckpt['weights'], strict=False) + + self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg') + + self.validation_step_outputs = [] + + def on_fit_start(self): + if self.global_rank == 0: + os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) + os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) + + def prepare_batch_data(self, batch): + lrm_generator_input = {} + render_gt = {} # for supervision + + # input images + images = batch['input_images'] + images = v2.functional.resize( + images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) + + lrm_generator_input['images'] = images.to(self.device) + + # input cameras and render cameras + input_c2ws = batch['input_c2ws'].flatten(-2) + input_Ks = batch['input_Ks'].flatten(-2) + target_c2ws = batch['target_c2ws'].flatten(-2) + target_Ks = batch['target_Ks'].flatten(-2) + render_cameras_input = torch.cat([input_c2ws, input_Ks], dim=-1) + render_cameras_target = torch.cat([target_c2ws, target_Ks], dim=-1) + render_cameras = torch.cat([render_cameras_input, render_cameras_target], dim=1) + + input_extrinsics = input_c2ws[:, :, :12] + input_intrinsics = torch.stack([ + input_Ks[:, :, 0], input_Ks[:, :, 4], + input_Ks[:, :, 2], input_Ks[:, :, 5], + ], dim=-1) + cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) + + # add noise to input cameras + cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02 + + lrm_generator_input['cameras'] = cameras.to(self.device) + lrm_generator_input['render_cameras'] = render_cameras.to(self.device) + + # target images + target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1) + target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1) + target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1) + + # random crop + render_size = np.random.randint(self.render_size, 513) + target_images = v2.functional.resize( + target_images, render_size, interpolation=3, antialias=True).clamp(0, 1) + target_depths = v2.functional.resize( + target_depths, render_size, interpolation=0, antialias=True) + target_alphas = v2.functional.resize( + target_alphas, render_size, interpolation=0, antialias=True) + + crop_params = v2.RandomCrop.get_params( + target_images, output_size=(self.render_size, self.render_size)) + target_images = v2.functional.crop(target_images, *crop_params) + target_depths = v2.functional.crop(target_depths, *crop_params)[:, :, 0:1] + target_alphas = v2.functional.crop(target_alphas, *crop_params)[:, :, 0:1] + + lrm_generator_input['render_size'] = render_size + lrm_generator_input['crop_params'] = crop_params + + render_gt['target_images'] = target_images.to(self.device) + render_gt['target_depths'] = target_depths.to(self.device) + render_gt['target_alphas'] = target_alphas.to(self.device) + + return lrm_generator_input, render_gt + + def prepare_validation_batch_data(self, batch): + lrm_generator_input = {} + + # input images + images = batch['input_images'] + images = v2.functional.resize( + images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) + + lrm_generator_input['images'] = images.to(self.device) + + input_c2ws = batch['input_c2ws'].flatten(-2) + input_Ks = batch['input_Ks'].flatten(-2) + + input_extrinsics = input_c2ws[:, :, :12] + input_intrinsics = torch.stack([ + input_Ks[:, :, 0], input_Ks[:, :, 4], + input_Ks[:, :, 2], input_Ks[:, :, 5], + ], dim=-1) + cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) + + lrm_generator_input['cameras'] = cameras.to(self.device) + + render_c2ws = batch['render_c2ws'].flatten(-2) + render_Ks = batch['render_Ks'].flatten(-2) + render_cameras = torch.cat([render_c2ws, render_Ks], dim=-1) + + lrm_generator_input['render_cameras'] = render_cameras.to(self.device) + lrm_generator_input['render_size'] = 384 + lrm_generator_input['crop_params'] = None + + return lrm_generator_input + + def forward_lrm_generator( + self, + images, + cameras, + render_cameras, + render_size=192, + crop_params=None, + chunk_size=1, + ): + planes = torch.utils.checkpoint.checkpoint( + self.lrm_generator.forward_planes, + images, + cameras, + use_reentrant=False, + ) + frames = [] + for i in range(0, render_cameras.shape[1], chunk_size): + frames.append( + torch.utils.checkpoint.checkpoint( + self.lrm_generator.synthesizer, + planes, + cameras=render_cameras[:, i:i+chunk_size], + render_size=render_size, + crop_params=crop_params, + use_reentrant=False + ) + ) + frames = { + k: torch.cat([r[k] for r in frames], dim=1) + for k in frames[0].keys() + } + return frames + + def forward(self, lrm_generator_input): + images = lrm_generator_input['images'] + cameras = lrm_generator_input['cameras'] + render_cameras = lrm_generator_input['render_cameras'] + render_size = lrm_generator_input['render_size'] + crop_params = lrm_generator_input['crop_params'] + + out = self.forward_lrm_generator( + images, + cameras, + render_cameras, + render_size=render_size, + crop_params=crop_params, + chunk_size=1, + ) + render_images = torch.clamp(out['images_rgb'], 0.0, 1.0) + render_depths = out['images_depth'] + render_alphas = torch.clamp(out['images_weight'], 0.0, 1.0) + + out = { + 'render_images': render_images, + 'render_depths': render_depths, + 'render_alphas': render_alphas, + } + return out + + def training_step(self, batch, batch_idx): + lrm_generator_input, render_gt = self.prepare_batch_data(batch) + + render_out = self.forward(lrm_generator_input) + + loss, loss_dict = self.compute_loss(render_out, render_gt) + + self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) + + if self.global_step % 1000 == 0 and self.global_rank == 0: + B, N, C, H, W = render_gt['target_images'].shape + N_in = lrm_generator_input['images'].shape[1] + + input_images = v2.functional.resize( + lrm_generator_input['images'], (H, W), interpolation=3, antialias=True).clamp(0, 1) + input_images = torch.cat( + [input_images, torch.ones(B, N-N_in, C, H, W).to(input_images)], dim=1) + + input_images = rearrange( + input_images, 'b n c h w -> b c h (n w)') + target_images = rearrange( + render_gt['target_images'], 'b n c h w -> b c h (n w)') + render_images = rearrange( + render_out['render_images'], 'b n c h w -> b c h (n w)') + target_alphas = rearrange( + repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + render_alphas = rearrange( + repeat(render_out['render_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + target_depths = rearrange( + repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + render_depths = rearrange( + repeat(render_out['render_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + MAX_DEPTH = torch.max(target_depths) + target_depths = target_depths / MAX_DEPTH * target_alphas + render_depths = render_depths / MAX_DEPTH + + grid = torch.cat([ + input_images, + target_images, render_images, + target_alphas, render_alphas, + target_depths, render_depths, + ], dim=-2) + grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1)) + + save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')) + + return loss + + def compute_loss(self, render_out, render_gt): + # NOTE: the rgb value range of OpenLRM is [0, 1] + render_images = render_out['render_images'] + target_images = render_gt['target_images'].to(render_images) + render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 + target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 + + loss_mse = F.mse_loss(render_images, target_images) + loss_lpips = 2.0 * self.lpips(render_images, target_images) + + render_alphas = render_out['render_alphas'] + target_alphas = render_gt['target_alphas'] + loss_mask = F.mse_loss(render_alphas, target_alphas) + + loss = loss_mse + loss_lpips + loss_mask + + prefix = 'train' + loss_dict = {} + loss_dict.update({f'{prefix}/loss_mse': loss_mse}) + loss_dict.update({f'{prefix}/loss_lpips': loss_lpips}) + loss_dict.update({f'{prefix}/loss_mask': loss_mask}) + loss_dict.update({f'{prefix}/loss': loss}) + + return loss, loss_dict + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + lrm_generator_input = self.prepare_validation_batch_data(batch) + + render_out = self.forward(lrm_generator_input) + render_images = render_out['render_images'] + render_images = rearrange(render_images, 'b n c h w -> b c h (n w)') + + self.validation_step_outputs.append(render_images) + + def on_validation_epoch_end(self): + images = torch.cat(self.validation_step_outputs, dim=-1) + + all_images = self.all_gather(images) + all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') + + if self.global_rank == 0: + image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png') + + grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1)) + save_image(grid, image_path) + print(f"Saved image to {image_path}") + + self.validation_step_outputs.clear() + + def configure_optimizers(self): + lr = self.learning_rate + + params = [] + + lrm_params_fast, lrm_params_slow = [], [] + for n, p in self.lrm_generator.named_parameters(): + if 'adaLN_modulation' in n or 'camera_embedder' in n: + lrm_params_fast.append(p) + else: + lrm_params_slow.append(p) + params.append({"params": lrm_params_fast, "lr": lr, "weight_decay": 0.01 }) + params.append({"params": lrm_params_slow, "lr": lr / 10.0, "weight_decay": 0.01 }) + + optimizer = torch.optim.AdamW(params, lr=lr, betas=(0.90, 0.95)) + scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4) + + return {'optimizer': optimizer, 'lr_scheduler': scheduler} diff --git a/src/model_mesh.py b/src/model_mesh.py new file mode 100755 index 0000000000000000000000000000000000000000..99945a0b410242a71678ad0034bf38315a34571b --- /dev/null +++ b/src/model_mesh.py @@ -0,0 +1,325 @@ +import os +import numpy as np +import torch +import torch.nn.functional as F +from torchvision.transforms import v2 +from torchvision.utils import make_grid, save_image +from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity +import pytorch_lightning as pl +from einops import rearrange, repeat + +from src.utils.train_util import instantiate_from_config + + +# Regulrarization loss for FlexiCubes +def sdf_reg_loss_batch(sdf, all_edges): + sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2) + mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) + sdf_f1x6x2 = sdf_f1x6x2[mask] + sdf_diff = F.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \ + F.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()) + return sdf_diff + + +class MVRecon(pl.LightningModule): + def __init__( + self, + lrm_generator_config, + input_size=256, + render_size=512, + init_ckpt=None, + ): + super(MVRecon, self).__init__() + + self.input_size = input_size + self.render_size = render_size + + # init modules + self.lrm_generator = instantiate_from_config(lrm_generator_config) + + self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg') + + # Load weights from pretrained MVRecon model, and use the mlp + # weights to initialize the weights of sdf and rgb mlps. + if init_ckpt is not None: + sd = torch.load(init_ckpt, map_location='cpu')['state_dict'] + sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')} + sd_fc = {} + for k, v in sd.items(): + if k.startswith('lrm_generator.synthesizer.decoder.net.'): + if k.startswith('lrm_generator.synthesizer.decoder.net.6.'): # last layer + # Here we assume the density filed's isosurface threshold is t, + # we reverse the sign of density filed to initialize SDF field. + # -(w*x + b - t) = (-w)*x + (t - b) + if 'weight' in k: + sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1] + else: + sd_fc[k.replace('net.', 'net_sdf.')] = 3.0 - v[0:1] + sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4] + else: + sd_fc[k.replace('net.', 'net_sdf.')] = v + sd_fc[k.replace('net.', 'net_rgb.')] = v + else: + sd_fc[k] = v + sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()} + # missing `net_deformation` and `net_weight` parameters + self.lrm_generator.load_state_dict(sd_fc, strict=False) + print(f'Loaded weights from {init_ckpt}') + + self.validation_step_outputs = [] + + def on_fit_start(self): + device = torch.device(f'cuda:{self.global_rank}') + self.lrm_generator.init_flexicubes_geometry(device) + if self.global_rank == 0: + os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) + os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) + + def prepare_batch_data(self, batch): + lrm_generator_input = {} + render_gt = {} + + # input images + images = batch['input_images'] + images = v2.functional.resize( + images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) + + lrm_generator_input['images'] = images.to(self.device) + + # input cameras and render cameras + input_c2ws = batch['input_c2ws'] + input_Ks = batch['input_Ks'] + target_c2ws = batch['target_c2ws'] + + render_c2ws = torch.cat([input_c2ws, target_c2ws], dim=1) + render_w2cs = torch.linalg.inv(render_c2ws) + + input_extrinsics = input_c2ws.flatten(-2) + input_extrinsics = input_extrinsics[:, :, :12] + input_intrinsics = input_Ks.flatten(-2) + input_intrinsics = torch.stack([ + input_intrinsics[:, :, 0], input_intrinsics[:, :, 4], + input_intrinsics[:, :, 2], input_intrinsics[:, :, 5], + ], dim=-1) + cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) + + # add noise to input_cameras + cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02 + + lrm_generator_input['cameras'] = cameras.to(self.device) + lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) + + # target images + target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1) + target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1) + target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1) + target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1) + + render_size = self.render_size + target_images = v2.functional.resize( + target_images, render_size, interpolation=3, antialias=True).clamp(0, 1) + target_depths = v2.functional.resize( + target_depths, render_size, interpolation=0, antialias=True) + target_alphas = v2.functional.resize( + target_alphas, render_size, interpolation=0, antialias=True) + target_normals = v2.functional.resize( + target_normals, render_size, interpolation=3, antialias=True) + + lrm_generator_input['render_size'] = render_size + + render_gt['target_images'] = target_images.to(self.device) + render_gt['target_depths'] = target_depths.to(self.device) + render_gt['target_alphas'] = target_alphas.to(self.device) + render_gt['target_normals'] = target_normals.to(self.device) + + return lrm_generator_input, render_gt + + def prepare_validation_batch_data(self, batch): + lrm_generator_input = {} + + # input images + images = batch['input_images'] + images = v2.functional.resize( + images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) + + lrm_generator_input['images'] = images.to(self.device) + + # input cameras + input_c2ws = batch['input_c2ws'].flatten(-2) + input_Ks = batch['input_Ks'].flatten(-2) + + input_extrinsics = input_c2ws[:, :, :12] + input_intrinsics = torch.stack([ + input_Ks[:, :, 0], input_Ks[:, :, 4], + input_Ks[:, :, 2], input_Ks[:, :, 5], + ], dim=-1) + cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) + + lrm_generator_input['cameras'] = cameras.to(self.device) + + # render cameras + render_c2ws = batch['render_c2ws'] + render_w2cs = torch.linalg.inv(render_c2ws) + + lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) + lrm_generator_input['render_size'] = 384 + + return lrm_generator_input + + def forward_lrm_generator(self, images, cameras, render_cameras, render_size=512): + planes = torch.utils.checkpoint.checkpoint( + self.lrm_generator.forward_planes, + images, + cameras, + use_reentrant=False, + ) + out = self.lrm_generator.forward_geometry( + planes, + render_cameras, + render_size, + ) + return out + + def forward(self, lrm_generator_input): + images = lrm_generator_input['images'] + cameras = lrm_generator_input['cameras'] + render_cameras = lrm_generator_input['render_cameras'] + render_size = lrm_generator_input['render_size'] + + out = self.forward_lrm_generator( + images, cameras, render_cameras, render_size=render_size) + + return out + + def training_step(self, batch, batch_idx): + lrm_generator_input, render_gt = self.prepare_batch_data(batch) + + render_out = self.forward(lrm_generator_input) + + loss, loss_dict = self.compute_loss(render_out, render_gt) + + self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) + + if self.global_step % 1000 == 0 and self.global_rank == 0: + B, N, C, H, W = render_gt['target_images'].shape + N_in = lrm_generator_input['images'].shape[1] + + target_images = rearrange( + render_gt['target_images'], 'b n c h w -> b c h (n w)') + render_images = rearrange( + render_out['img'], 'b n c h w -> b c h (n w)') + target_alphas = rearrange( + repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + render_alphas = rearrange( + repeat(render_out['mask'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + target_depths = rearrange( + repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + render_depths = rearrange( + repeat(render_out['depth'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + target_normals = rearrange( + render_gt['target_normals'], 'b n c h w -> b c h (n w)') + render_normals = rearrange( + render_out['normal'], 'b n c h w -> b c h (n w)') + MAX_DEPTH = torch.max(target_depths) + target_depths = target_depths / MAX_DEPTH * target_alphas + render_depths = render_depths / MAX_DEPTH + + grid = torch.cat([ + target_images, render_images, + target_alphas, render_alphas, + target_depths, render_depths, + target_normals, render_normals, + ], dim=-2) + grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1)) + + image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png') + save_image(grid, image_path) + print(f"Saved image to {image_path}") + + return loss + + def compute_loss(self, render_out, render_gt): + # NOTE: the rgb value range of OpenLRM is [0, 1] + render_images = render_out['img'] + target_images = render_gt['target_images'].to(render_images) + render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 + target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 + loss_mse = F.mse_loss(render_images, target_images) + loss_lpips = 2.0 * self.lpips(render_images, target_images) + + render_alphas = render_out['mask'] + target_alphas = render_gt['target_alphas'] + loss_mask = F.mse_loss(render_alphas, target_alphas) + + render_depths = render_out['depth'] + target_depths = render_gt['target_depths'] + loss_depth = 0.5 * F.l1_loss(render_depths[target_alphas>0], target_depths[target_alphas>0]) + + render_normals = render_out['normal'] * 2.0 - 1.0 + target_normals = render_gt['target_normals'] * 2.0 - 1.0 + similarity = (render_normals * target_normals).sum(dim=-3).abs() + normal_mask = target_alphas.squeeze(-3) + loss_normal = 1 - similarity[normal_mask>0].mean() + loss_normal = 0.2 * loss_normal + + # flexicubes regularization loss + sdf = render_out['sdf'] + sdf_reg_loss = render_out['sdf_reg_loss'] + sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01 + _, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss + flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5 + flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1 + + loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg + + loss = loss_mse + loss_lpips + loss_mask + loss_normal + loss_reg + + prefix = 'train' + loss_dict = {} + loss_dict.update({f'{prefix}/loss_mse': loss_mse}) + loss_dict.update({f'{prefix}/loss_lpips': loss_lpips}) + loss_dict.update({f'{prefix}/loss_mask': loss_mask}) + loss_dict.update({f'{prefix}/loss_normal': loss_normal}) + loss_dict.update({f'{prefix}/loss_depth': loss_depth}) + loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy}) + loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg}) + loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg}) + loss_dict.update({f'{prefix}/loss': loss}) + + return loss, loss_dict + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + lrm_generator_input = self.prepare_validation_batch_data(batch) + + render_out = self.forward(lrm_generator_input) + render_images = render_out['img'] + render_images = rearrange(render_images, 'b n c h w -> b c h (n w)') + + self.validation_step_outputs.append(render_images) + + def on_validation_epoch_end(self): + images = torch.cat(self.validation_step_outputs, dim=-1) + + all_images = self.all_gather(images) + all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') + + if self.global_rank == 0: + image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png') + + grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1)) + save_image(grid, image_path) + print(f"Saved image to {image_path}") + + self.validation_step_outputs.clear() + + def configure_optimizers(self): + lr = self.learning_rate + + optimizer = torch.optim.AdamW( + self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01) + scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0) + + return {'optimizer': optimizer, 'lr_scheduler': scheduler} \ No newline at end of file diff --git a/src/models/__init__.py b/src/models/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/models/decoder/__init__.py b/src/models/decoder/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/models/decoder/transformer.py b/src/models/decoder/transformer.py new file mode 100755 index 0000000000000000000000000000000000000000..d8e628c0bf589ee827908c894b93cc107f1c58b9 --- /dev/null +++ b/src/models/decoder/transformer.py @@ -0,0 +1,123 @@ +# Copyright (c) 2023, Zexin He +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch +import torch.nn as nn + + +class BasicTransformerBlock(nn.Module): + """ + Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. + """ + # use attention from torch.nn.MultiHeadAttention + # Block contains a cross-attention layer, a self-attention layer, and a MLP + def __init__( + self, + inner_dim: int, + cond_dim: int, + num_heads: int, + eps: float, + attn_drop: float = 0., + attn_bias: bool = False, + mlp_ratio: float = 4., + mlp_drop: float = 0., + ): + super().__init__() + + self.norm1 = nn.LayerNorm(inner_dim) + self.cross_attn = nn.MultiheadAttention( + embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, + dropout=attn_drop, bias=attn_bias, batch_first=True) + self.norm2 = nn.LayerNorm(inner_dim) + self.self_attn = nn.MultiheadAttention( + embed_dim=inner_dim, num_heads=num_heads, + dropout=attn_drop, bias=attn_bias, batch_first=True) + self.norm3 = nn.LayerNorm(inner_dim) + self.mlp = nn.Sequential( + nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), + nn.GELU(), + nn.Dropout(mlp_drop), + nn.Linear(int(inner_dim * mlp_ratio), inner_dim), + nn.Dropout(mlp_drop), + ) + + def forward(self, x, cond): + # x: [N, L, D] + # cond: [N, L_cond, D_cond] + x = x + self.cross_attn(self.norm1(x), cond, cond)[0] + before_sa = self.norm2(x) + x = x + self.self_attn(before_sa, before_sa, before_sa)[0] + x = x + self.mlp(self.norm3(x)) + return x + + +class TriplaneTransformer(nn.Module): + """ + Transformer with condition that generates a triplane representation. + + Reference: + Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486 + """ + def __init__( + self, + inner_dim: int, + image_feat_dim: int, + triplane_low_res: int, + triplane_high_res: int, + triplane_dim: int, + num_layers: int, + num_heads: int, + eps: float = 1e-6, + ): + super().__init__() + + # attributes + self.triplane_low_res = triplane_low_res + self.triplane_high_res = triplane_high_res + self.triplane_dim = triplane_dim + + # modules + # initialize pos_embed with 1/sqrt(dim) * N(0, 1) + self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5) + self.layers = nn.ModuleList([ + BasicTransformerBlock( + inner_dim=inner_dim, cond_dim=image_feat_dim, num_heads=num_heads, eps=eps) + for _ in range(num_layers) + ]) + self.norm = nn.LayerNorm(inner_dim, eps=eps) + self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0) + + def forward(self, image_feats): + # image_feats: [N, L_cond, D_cond] + + N = image_feats.shape[0] + H = W = self.triplane_low_res + L = 3 * H * W + + x = self.pos_embed.repeat(N, 1, 1) # [N, L, D] + for layer in self.layers: + x = layer(x, image_feats) + x = self.norm(x) + + # separate each plane and apply deconv + x = x.view(N, 3, H, W, -1) + x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W] + x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W] + x = self.deconv(x) # [3*N, D', H', W'] + x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W'] + x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W'] + x = x.contiguous() + + return x diff --git a/src/models/encoder/__init__.py b/src/models/encoder/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/models/encoder/dino.py b/src/models/encoder/dino.py new file mode 100755 index 0000000000000000000000000000000000000000..684444cab2a13979bcd5688069e9f7729d4ca784 --- /dev/null +++ b/src/models/encoder/dino.py @@ -0,0 +1,550 @@ +# coding=utf-8 +# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ViT model.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +from torch import nn + +from transformers.activations import ACT2FN +from transformers.modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, +) +from transformers import PreTrainedModel, ViTConfig +from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer + + +class ViTEmbeddings(nn.Module): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + """ + + def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None + self.patch_embeddings = ViTPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + num_positions = self.position_embeddings.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, 0] + patch_pos_embed = self.position_embeddings[:, 1:] + dim = embeddings.shape[-1] + h0 = height // self.config.patch_size + w0 = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + h0, w0 = h0 + 0.1, w0 + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), + mode="bicubic", + align_corners=False, + ) + assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward( + self, + pixel_values: torch.Tensor, + bool_masked_pos: Optional[torch.BoolTensor] = None, + interpolate_pos_encoding: bool = False, + ) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) + + if bool_masked_pos is not None: + seq_length = embeddings.shape[1] + mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) + # replace the masked visual tokens by mask_tokens + mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + # add the [CLS] token to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +class ViTPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + if not interpolate_pos_encoding: + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +class ViTSelfAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +class ViTSelfOutput(nn.Module): + """ + The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +class ViTAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.attention = ViTSelfAttention(config) + self.output = ViTSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class ViTIntermediate(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +class ViTOutput(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +def modulate(x, shift, scale): + return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) + + +class ViTLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ViTAttention(config) + self.intermediate = ViTIntermediate(config) + self.output = ViTOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.adaLN_modulation = nn.Sequential( + nn.SiLU(), + nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=True) + ) + nn.init.constant_(self.adaLN_modulation[-1].weight, 0) + nn.init.constant_(self.adaLN_modulation[-1].bias, 0) + + def forward( + self, + hidden_states: torch.Tensor, + adaln_input: torch.Tensor = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + shift_msa, scale_msa, shift_mlp, scale_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) + + self_attention_outputs = self.attention( + modulate(self.layernorm_before(hidden_states), shift_msa, scale_msa), # in ViT, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = modulate(self.layernorm_after(hidden_states), shift_mlp, scale_mlp) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +class ViTEncoder(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + adaln_input: torch.Tensor = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + adaln_input, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, adaln_input, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class ViTPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + _no_split_modules = ["ViTEmbeddings", "ViTLayer"] + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, ViTEmbeddings): + module.position_embeddings.data = nn.init.trunc_normal_( + module.position_embeddings.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.position_embeddings.dtype) + + module.cls_token.data = nn.init.trunc_normal_( + module.cls_token.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.cls_token.dtype) + + +class ViTModel(ViTPreTrainedModel): + def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): + super().__init__(config) + self.config = config + + self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) + self.encoder = ViTEncoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pooler = ViTPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> ViTPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + adaln_input: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) + expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype + if pixel_values.dtype != expected_dtype: + pixel_values = pixel_values.to(expected_dtype) + + embedding_output = self.embeddings( + pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding + ) + + encoder_outputs = self.encoder( + embedding_output, + adaln_input=adaln_input, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class ViTPooler(nn.Module): + def __init__(self, config: ViTConfig): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output \ No newline at end of file diff --git a/src/models/encoder/dino_wrapper.py b/src/models/encoder/dino_wrapper.py new file mode 100755 index 0000000000000000000000000000000000000000..e84fd51e7dfcfd1a969b763f5a49aeb7f608e6f9 --- /dev/null +++ b/src/models/encoder/dino_wrapper.py @@ -0,0 +1,80 @@ +# Copyright (c) 2023, Zexin He +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch.nn as nn +from transformers import ViTImageProcessor +from einops import rearrange, repeat +from .dino import ViTModel + + +class DinoWrapper(nn.Module): + """ + Dino v1 wrapper using huggingface transformer implementation. + """ + def __init__(self, model_name: str, freeze: bool = True): + super().__init__() + self.model, self.processor = self._build_dino(model_name) + self.camera_embedder = nn.Sequential( + nn.Linear(16, self.model.config.hidden_size, bias=True), + nn.SiLU(), + nn.Linear(self.model.config.hidden_size, self.model.config.hidden_size, bias=True) + ) + if freeze: + self._freeze() + + def forward(self, image, camera): + # image: [B, N, C, H, W] + # camera: [B, N, D] + # RGB image with [0,1] scale and properly sized + if image.ndim == 5: + image = rearrange(image, 'b n c h w -> (b n) c h w') + dtype = image.dtype + inputs = self.processor( + images=image.float(), + return_tensors="pt", + do_rescale=False, + do_resize=False, + ).to(self.model.device).to(dtype) + # embed camera + N = camera.shape[1] + camera_embeddings = self.camera_embedder(camera) + camera_embeddings = rearrange(camera_embeddings, 'b n d -> (b n) d') + embeddings = camera_embeddings + # This resampling of positional embedding uses bicubic interpolation + outputs = self.model(**inputs, adaln_input=embeddings, interpolate_pos_encoding=True) + last_hidden_states = outputs.last_hidden_state + return last_hidden_states + + def _freeze(self): + print(f"======== Freezing DinoWrapper ========") + self.model.eval() + for name, param in self.model.named_parameters(): + param.requires_grad = False + + @staticmethod + def _build_dino(model_name: str, proxy_error_retries: int = 3, proxy_error_cooldown: int = 5): + import requests + try: + model = ViTModel.from_pretrained(model_name, add_pooling_layer=False) + processor = ViTImageProcessor.from_pretrained(model_name) + return model, processor + except requests.exceptions.ProxyError as err: + if proxy_error_retries > 0: + print(f"Huggingface ProxyError: Retrying in {proxy_error_cooldown} seconds...") + import time + time.sleep(proxy_error_cooldown) + return DinoWrapper._build_dino(model_name, proxy_error_retries - 1, proxy_error_cooldown) + else: + raise err diff --git a/src/models/geometry/__init__.py b/src/models/geometry/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..89e9a6c2fffe82a55693885dae78c1a630924389 --- /dev/null +++ b/src/models/geometry/__init__.py @@ -0,0 +1,7 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. diff --git a/src/models/geometry/camera/__init__.py b/src/models/geometry/camera/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..c5c7082e47c65a08e25489b3c3fd010d07ad9758 --- /dev/null +++ b/src/models/geometry/camera/__init__.py @@ -0,0 +1,16 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +from torch import nn + + +class Camera(nn.Module): + def __init__(self): + super(Camera, self).__init__() + pass diff --git a/src/models/geometry/camera/perspective_camera.py b/src/models/geometry/camera/perspective_camera.py new file mode 100755 index 0000000000000000000000000000000000000000..7dcab0d2a321a77a5d3c2d4c3f40ba2cc32f6dfa --- /dev/null +++ b/src/models/geometry/camera/perspective_camera.py @@ -0,0 +1,35 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +from . import Camera +import numpy as np + + +def projection(x=0.1, n=1.0, f=50.0, near_plane=None): + if near_plane is None: + near_plane = n + return np.array( + [[n / x, 0, 0, 0], + [0, n / -x, 0, 0], + [0, 0, -(f + near_plane) / (f - near_plane), -(2 * f * near_plane) / (f - near_plane)], + [0, 0, -1, 0]]).astype(np.float32) + + +class PerspectiveCamera(Camera): + def __init__(self, fovy=49.0, device='cuda'): + super(PerspectiveCamera, self).__init__() + self.device = device + focal = np.tan(fovy / 180.0 * np.pi * 0.5) + self.proj_mtx = torch.from_numpy(projection(x=focal, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0) + + def project(self, points_bxnx4): + out = torch.matmul( + points_bxnx4, + torch.transpose(self.proj_mtx, 1, 2)) + return out diff --git a/src/models/geometry/render/__init__.py b/src/models/geometry/render/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..483cfabbf395853f1ca3e67b856d5f17b9889d1b --- /dev/null +++ b/src/models/geometry/render/__init__.py @@ -0,0 +1,8 @@ +import torch + +class Renderer(): + def __init__(self): + pass + + def forward(self): + pass \ No newline at end of file diff --git a/src/models/geometry/render/neural_render.py b/src/models/geometry/render/neural_render.py new file mode 100755 index 0000000000000000000000000000000000000000..473464480125c050ee6dba973450678a197145fb --- /dev/null +++ b/src/models/geometry/render/neural_render.py @@ -0,0 +1,121 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import torch.nn.functional as F +import nvdiffrast.torch as dr +from . import Renderer + +_FG_LUT = None + + +def interpolate(attr, rast, attr_idx, rast_db=None): + return dr.interpolate( + attr.contiguous(), rast, attr_idx, rast_db=rast_db, + diff_attrs=None if rast_db is None else 'all') + + +def xfm_points(points, matrix, use_python=True): + '''Transform points. + Args: + points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] + matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] + use_python: Use PyTorch's torch.matmul (for validation) + Returns: + Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. + ''' + out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2)) + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN" + return out + + +def dot(x, y): + return torch.sum(x * y, -1, keepdim=True) + + +def compute_vertex_normal(v_pos, t_pos_idx): + i0 = t_pos_idx[:, 0] + i1 = t_pos_idx[:, 1] + i2 = t_pos_idx[:, 2] + + v0 = v_pos[i0, :] + v1 = v_pos[i1, :] + v2 = v_pos[i2, :] + + face_normals = torch.cross(v1 - v0, v2 - v0) + + # Splat face normals to vertices + v_nrm = torch.zeros_like(v_pos) + v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) + v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) + v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) + + # Normalize, replace zero (degenerated) normals with some default value + v_nrm = torch.where( + dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) + ) + v_nrm = F.normalize(v_nrm, dim=1) + assert torch.all(torch.isfinite(v_nrm)) + + return v_nrm + + +class NeuralRender(Renderer): + def __init__(self, device='cuda', camera_model=None): + super(NeuralRender, self).__init__() + self.device = device + self.ctx = dr.RasterizeCudaContext(device=device) + self.projection_mtx = None + self.camera = camera_model + + def render_mesh( + self, + mesh_v_pos_bxnx3, + mesh_t_pos_idx_fx3, + camera_mv_bx4x4, + mesh_v_feat_bxnxd, + resolution=256, + spp=1, + device='cuda', + hierarchical_mask=False + ): + assert not hierarchical_mask + + mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4 + v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates + v_pos_clip = self.camera.project(v_pos) # Projection in the camera + + v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates + + # Render the image, + # Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render + num_layers = 1 + mask_pyramid = None + assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes + mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos + + with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler: + for _ in range(num_layers): + rast, db = peeler.rasterize_next_layer() + gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3) + + hard_mask = torch.clamp(rast[..., -1:], 0, 1) + antialias_mask = dr.antialias( + hard_mask.clone().contiguous(), rast, v_pos_clip, + mesh_t_pos_idx_fx3) + + depth = gb_feat[..., -2:-1] + ori_mesh_feature = gb_feat[..., :-4] + + normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3) + normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3) + normal = F.normalize(normal, dim=-1) + normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background + + return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal diff --git a/src/models/geometry/rep_3d/__init__.py b/src/models/geometry/rep_3d/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..a3d5628a8433298477d1963f92578d47106b4a0f --- /dev/null +++ b/src/models/geometry/rep_3d/__init__.py @@ -0,0 +1,18 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import numpy as np + + +class Geometry(): + def __init__(self): + pass + + def forward(self): + pass diff --git a/src/models/geometry/rep_3d/dmtet.py b/src/models/geometry/rep_3d/dmtet.py new file mode 100755 index 0000000000000000000000000000000000000000..b6a709380abac0bbf66fd1c8582485f3982223e4 --- /dev/null +++ b/src/models/geometry/rep_3d/dmtet.py @@ -0,0 +1,504 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import numpy as np +import os +from . import Geometry +from .dmtet_utils import get_center_boundary_index +import torch.nn.functional as F + + +############################################################################### +# DMTet utility functions +############################################################################### +def create_mt_variable(device): + triangle_table = torch.tensor( + [ + [-1, -1, -1, -1, -1, -1], + [1, 0, 2, -1, -1, -1], + [4, 0, 3, -1, -1, -1], + [1, 4, 2, 1, 3, 4], + [3, 1, 5, -1, -1, -1], + [2, 3, 0, 2, 5, 3], + [1, 4, 0, 1, 5, 4], + [4, 2, 5, -1, -1, -1], + [4, 5, 2, -1, -1, -1], + [4, 1, 0, 4, 5, 1], + [3, 2, 0, 3, 5, 2], + [1, 3, 5, -1, -1, -1], + [4, 1, 2, 4, 3, 1], + [3, 0, 4, -1, -1, -1], + [2, 0, 1, -1, -1, -1], + [-1, -1, -1, -1, -1, -1] + ], dtype=torch.long, device=device) + + num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device) + base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device) + v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device)) + return triangle_table, num_triangles_table, base_tet_edges, v_id + + +def sort_edges(edges_ex2): + with torch.no_grad(): + order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long() + order = order.unsqueeze(dim=1) + a = torch.gather(input=edges_ex2, index=order, dim=1) + b = torch.gather(input=edges_ex2, index=1 - order, dim=1) + return torch.stack([a, b], -1) + + +############################################################################### +# marching tetrahedrons (differentiable) +############################################################################### + +def marching_tets(pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id): + with torch.no_grad(): + occ_n = sdf_n > 0 + occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) + occ_sum = torch.sum(occ_fx4, -1) + valid_tets = (occ_sum > 0) & (occ_sum < 4) + occ_sum = occ_sum[valid_tets] + + # find all vertices + all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2) + all_edges = sort_edges(all_edges) + unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) + + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device) + idx_map = mapping[idx_map] # map edges to verts + + interp_v = unique_edges[mask_edges] # .long() + edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) + edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) + edges_to_interp_sdf[:, -1] *= -1 + + denominator = edges_to_interp_sdf.sum(1, keepdim=True) + + edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator + verts = (edges_to_interp * edges_to_interp_sdf).sum(1) + + idx_map = idx_map.reshape(-1, 6) + + tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) + num_triangles = num_triangles_table[tetindex] + + # Generate triangle indices + faces = torch.cat( + ( + torch.gather( + input=idx_map[num_triangles == 1], dim=1, + index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3), + torch.gather( + input=idx_map[num_triangles == 2], dim=1, + index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3), + ), dim=0) + return verts, faces + + +def create_tetmesh_variables(device='cuda'): + tet_table = torch.tensor( + [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], + [0, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1], + [1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1], + [1, 0, 8, 7, 0, 5, 8, 7, 0, 5, 6, 8], + [2, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1], + [2, 0, 9, 7, 0, 4, 9, 7, 0, 4, 6, 9], + [2, 1, 9, 5, 1, 4, 9, 5, 1, 4, 8, 9], + [6, 0, 1, 2, 6, 1, 2, 8, 6, 8, 2, 9], + [3, 6, 8, 9, -1, -1, -1, -1, -1, -1, -1, -1], + [3, 0, 9, 8, 0, 4, 9, 8, 0, 4, 5, 9], + [3, 1, 9, 6, 1, 4, 9, 6, 1, 4, 7, 9], + [5, 0, 1, 3, 5, 1, 3, 7, 5, 7, 3, 9], + [3, 2, 8, 6, 2, 5, 8, 6, 2, 5, 7, 8], + [4, 0, 2, 3, 4, 2, 3, 7, 4, 7, 3, 8], + [4, 1, 2, 3, 4, 2, 3, 5, 4, 5, 3, 6], + [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], dtype=torch.long, device=device) + num_tets_table = torch.tensor([0, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 0], dtype=torch.long, device=device) + return tet_table, num_tets_table + + +def marching_tets_tetmesh( + pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id, + return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None): + with torch.no_grad(): + occ_n = sdf_n > 0 + occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) + occ_sum = torch.sum(occ_fx4, -1) + valid_tets = (occ_sum > 0) & (occ_sum < 4) + occ_sum = occ_sum[valid_tets] + + # find all vertices + all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2) + all_edges = sort_edges(all_edges) + unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) + + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device) + idx_map = mapping[idx_map] # map edges to verts + + interp_v = unique_edges[mask_edges] # .long() + edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) + edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) + edges_to_interp_sdf[:, -1] *= -1 + + denominator = edges_to_interp_sdf.sum(1, keepdim=True) + + edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator + verts = (edges_to_interp * edges_to_interp_sdf).sum(1) + + idx_map = idx_map.reshape(-1, 6) + + tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) + num_triangles = num_triangles_table[tetindex] + + # Generate triangle indices + faces = torch.cat( + ( + torch.gather( + input=idx_map[num_triangles == 1], dim=1, + index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3), + torch.gather( + input=idx_map[num_triangles == 2], dim=1, + index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3), + ), dim=0) + if not return_tet_mesh: + return verts, faces + occupied_verts = ori_v[occ_n] + mapping = torch.ones((pos_nx3.shape[0]), dtype=torch.long, device="cuda") * -1 + mapping[occ_n] = torch.arange(occupied_verts.shape[0], device="cuda") + tet_fx4 = mapping[tet_fx4.reshape(-1)].reshape((-1, 4)) + + idx_map = torch.cat([tet_fx4[valid_tets] + verts.shape[0], idx_map], -1) # t x 10 + tet_verts = torch.cat([verts, occupied_verts], 0) + num_tets = num_tets_table[tetindex] + + tets = torch.cat( + ( + torch.gather(input=idx_map[num_tets == 1], dim=1, index=tet_table[tetindex[num_tets == 1]][:, :4]).reshape( + -1, + 4), + torch.gather(input=idx_map[num_tets == 3], dim=1, index=tet_table[tetindex[num_tets == 3]][:, :12]).reshape( + -1, + 4), + ), dim=0) + # add fully occupied tets + fully_occupied = occ_fx4.sum(-1) == 4 + tet_fully_occupied = tet_fx4[fully_occupied] + verts.shape[0] + tets = torch.cat([tets, tet_fully_occupied]) + + return verts, faces, tet_verts, tets + + +############################################################################### +# Compact tet grid +############################################################################### + +def compact_tets(pos_nx3, sdf_n, tet_fx4): + with torch.no_grad(): + # Find surface tets + occ_n = sdf_n > 0 + occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) + occ_sum = torch.sum(occ_fx4, -1) + valid_tets = (occ_sum > 0) & (occ_sum < 4) # one value per tet, these are the surface tets + + valid_vtx = tet_fx4[valid_tets].reshape(-1) + unique_vtx, idx_map = torch.unique(valid_vtx, dim=0, return_inverse=True) + new_pos = pos_nx3[unique_vtx] + new_sdf = sdf_n[unique_vtx] + new_tets = idx_map.reshape(-1, 4) + return new_pos, new_sdf, new_tets + + +############################################################################### +# Subdivide volume +############################################################################### + +def batch_subdivide_volume(tet_pos_bxnx3, tet_bxfx4, grid_sdf): + device = tet_pos_bxnx3.device + # get new verts + tet_fx4 = tet_bxfx4[0] + edges = [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3] + all_edges = tet_fx4[:, edges].reshape(-1, 2) + all_edges = sort_edges(all_edges) + unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) + idx_map = idx_map + tet_pos_bxnx3.shape[1] + all_values = torch.cat([tet_pos_bxnx3, grid_sdf], -1) + mid_points_pos = all_values[:, unique_edges.reshape(-1)].reshape( + all_values.shape[0], -1, 2, + all_values.shape[-1]).mean(2) + new_v = torch.cat([all_values, mid_points_pos], 1) + new_v, new_sdf = new_v[..., :3], new_v[..., 3] + + # get new tets + + idx_a, idx_b, idx_c, idx_d = tet_fx4[:, 0], tet_fx4[:, 1], tet_fx4[:, 2], tet_fx4[:, 3] + idx_ab = idx_map[0::6] + idx_ac = idx_map[1::6] + idx_ad = idx_map[2::6] + idx_bc = idx_map[3::6] + idx_bd = idx_map[4::6] + idx_cd = idx_map[5::6] + + tet_1 = torch.stack([idx_a, idx_ab, idx_ac, idx_ad], dim=1) + tet_2 = torch.stack([idx_b, idx_bc, idx_ab, idx_bd], dim=1) + tet_3 = torch.stack([idx_c, idx_ac, idx_bc, idx_cd], dim=1) + tet_4 = torch.stack([idx_d, idx_ad, idx_cd, idx_bd], dim=1) + tet_5 = torch.stack([idx_ab, idx_ac, idx_ad, idx_bd], dim=1) + tet_6 = torch.stack([idx_ab, idx_ac, idx_bd, idx_bc], dim=1) + tet_7 = torch.stack([idx_cd, idx_ac, idx_bd, idx_ad], dim=1) + tet_8 = torch.stack([idx_cd, idx_ac, idx_bc, idx_bd], dim=1) + + tet_np = torch.cat([tet_1, tet_2, tet_3, tet_4, tet_5, tet_6, tet_7, tet_8], dim=0) + tet_np = tet_np.reshape(1, -1, 4).expand(tet_pos_bxnx3.shape[0], -1, -1) + tet = tet_np.long().to(device) + + return new_v, tet, new_sdf + + +############################################################################### +# Adjacency +############################################################################### +def tet_to_tet_adj_sparse(tet_tx4): + # include self connection!!!!!!!!!!!!!!!!!!! + with torch.no_grad(): + t = tet_tx4.shape[0] + device = tet_tx4.device + idx_array = torch.LongTensor( + [0, 1, 2, + 1, 0, 3, + 2, 3, 0, + 3, 2, 1]).to(device).reshape(4, 3).unsqueeze(0).expand(t, -1, -1) # (t, 4, 3) + + # get all faces + all_faces = torch.gather(input=tet_tx4.unsqueeze(1).expand(-1, 4, -1), index=idx_array, dim=-1).reshape( + -1, + 3) # (tx4, 3) + all_faces_tet_idx = torch.arange(t, device=device).unsqueeze(-1).expand(-1, 4).reshape(-1) + # sort and group + all_faces_sorted, _ = torch.sort(all_faces, dim=1) + + all_faces_unique, inverse_indices, counts = torch.unique( + all_faces_sorted, dim=0, return_counts=True, + return_inverse=True) + tet_face_fx3 = all_faces_unique[counts == 2] + counts = counts[inverse_indices] # tx4 + valid = (counts == 2) + + group = inverse_indices[valid] + # print (inverse_indices.shape, group.shape, all_faces_tet_idx.shape) + _, indices = torch.sort(group) + all_faces_tet_idx_grouped = all_faces_tet_idx[valid][indices] + tet_face_tetidx_fx2 = torch.stack([all_faces_tet_idx_grouped[::2], all_faces_tet_idx_grouped[1::2]], dim=-1) + + tet_adj_idx = torch.cat([tet_face_tetidx_fx2, torch.flip(tet_face_tetidx_fx2, [1])]) + adj_self = torch.arange(t, device=tet_tx4.device) + adj_self = torch.stack([adj_self, adj_self], -1) + tet_adj_idx = torch.cat([tet_adj_idx, adj_self]) + + tet_adj_idx = torch.unique(tet_adj_idx, dim=0) + values = torch.ones( + tet_adj_idx.shape[0], device=tet_tx4.device).float() + adj_sparse = torch.sparse.FloatTensor( + tet_adj_idx.t(), values, torch.Size([t, t])) + + # normalization + neighbor_num = 1.0 / torch.sparse.sum( + adj_sparse, dim=1).to_dense() + values = torch.index_select(neighbor_num, 0, tet_adj_idx[:, 0]) + adj_sparse = torch.sparse.FloatTensor( + tet_adj_idx.t(), values, torch.Size([t, t])) + return adj_sparse + + +############################################################################### +# Compact grid +############################################################################### + +def get_tet_bxfx4x3(bxnxz, bxfx4): + n_batch, z = bxnxz.shape[0], bxnxz.shape[2] + gather_input = bxnxz.unsqueeze(2).expand( + n_batch, bxnxz.shape[1], 4, z) + gather_index = bxfx4.unsqueeze(-1).expand( + n_batch, bxfx4.shape[1], 4, z).long() + tet_bxfx4xz = torch.gather( + input=gather_input, dim=1, index=gather_index) + + return tet_bxfx4xz + + +def shrink_grid(tet_pos_bxnx3, tet_bxfx4, grid_sdf): + with torch.no_grad(): + assert tet_pos_bxnx3.shape[0] == 1 + + occ = grid_sdf[0] > 0 + occ_sum = get_tet_bxfx4x3(occ.unsqueeze(0).unsqueeze(-1), tet_bxfx4).reshape(-1, 4).sum(-1) + mask = (occ_sum > 0) & (occ_sum < 4) + + # build connectivity graph + adj_matrix = tet_to_tet_adj_sparse(tet_bxfx4[0]) + mask = mask.float().unsqueeze(-1) + + # Include a one ring of neighbors + for i in range(1): + mask = torch.sparse.mm(adj_matrix, mask) + mask = mask.squeeze(-1) > 0 + + mapping = torch.zeros((tet_pos_bxnx3.shape[1]), device=tet_pos_bxnx3.device, dtype=torch.long) + new_tet_bxfx4 = tet_bxfx4[:, mask].long() + selected_verts_idx = torch.unique(new_tet_bxfx4) + new_tet_pos_bxnx3 = tet_pos_bxnx3[:, selected_verts_idx] + mapping[selected_verts_idx] = torch.arange(selected_verts_idx.shape[0], device=tet_pos_bxnx3.device) + new_tet_bxfx4 = mapping[new_tet_bxfx4.reshape(-1)].reshape(new_tet_bxfx4.shape) + new_grid_sdf = grid_sdf[:, selected_verts_idx] + return new_tet_pos_bxnx3, new_tet_bxfx4, new_grid_sdf + + +############################################################################### +# Regularizer +############################################################################### + +def sdf_reg_loss(sdf, all_edges): + sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1, 2) + mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) + sdf_f1x6x2 = sdf_f1x6x2[mask] + sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 0], + (sdf_f1x6x2[..., 1] > 0).float()) + \ + torch.nn.functional.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 1], + (sdf_f1x6x2[..., 0] > 0).float()) + return sdf_diff + + +def sdf_reg_loss_batch(sdf, all_edges): + sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2) + mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) + sdf_f1x6x2 = sdf_f1x6x2[mask] + sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \ + torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()) + return sdf_diff + + +############################################################################### +# Geometry interface +############################################################################### +class DMTetGeometry(Geometry): + def __init__( + self, grid_res=64, scale=2.0, device='cuda', renderer=None, + render_type='neural_render', args=None): + super(DMTetGeometry, self).__init__() + self.grid_res = grid_res + self.device = device + self.args = args + tets = np.load('data/tets/%d_compress.npz' % (grid_res)) + self.verts = torch.from_numpy(tets['vertices']).float().to(self.device) + # Make sure the tet is zero-centered and length is equal to 1 + length = self.verts.max(dim=0)[0] - self.verts.min(dim=0)[0] + length = length.max() + mid = (self.verts.max(dim=0)[0] + self.verts.min(dim=0)[0]) / 2.0 + self.verts = (self.verts - mid.unsqueeze(dim=0)) / length + if isinstance(scale, list): + self.verts[:, 0] = self.verts[:, 0] * scale[0] + self.verts[:, 1] = self.verts[:, 1] * scale[1] + self.verts[:, 2] = self.verts[:, 2] * scale[1] + else: + self.verts = self.verts * scale + self.indices = torch.from_numpy(tets['tets']).long().to(self.device) + self.triangle_table, self.num_triangles_table, self.base_tet_edges, self.v_id = create_mt_variable(self.device) + self.tet_table, self.num_tets_table = create_tetmesh_variables(self.device) + # Parameters for regularization computation + edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=self.device) + all_edges = self.indices[:, edges].reshape(-1, 2) + all_edges_sorted = torch.sort(all_edges, dim=1)[0] + self.all_edges = torch.unique(all_edges_sorted, dim=0) + + # Parameters used for fix boundary sdf + self.center_indices, self.boundary_indices = get_center_boundary_index(self.verts) + self.renderer = renderer + self.render_type = render_type + + def getAABB(self): + return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values + + def get_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None): + if indices is None: + indices = self.indices + verts, faces = marching_tets( + v_deformed_nx3, sdf_n, indices, self.triangle_table, + self.num_triangles_table, self.base_tet_edges, self.v_id) + faces = torch.cat( + [faces[:, 0:1], + faces[:, 2:3], + faces[:, 1:2], ], dim=-1) + return verts, faces + + def get_tet_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None): + if indices is None: + indices = self.indices + verts, faces, tet_verts, tets = marching_tets_tetmesh( + v_deformed_nx3, sdf_n, indices, self.triangle_table, + self.num_triangles_table, self.base_tet_edges, self.v_id, return_tet_mesh=True, + num_tets_table=self.num_tets_table, tet_table=self.tet_table, ori_v=v_deformed_nx3) + faces = torch.cat( + [faces[:, 0:1], + faces[:, 2:3], + faces[:, 1:2], ], dim=-1) + return verts, faces, tet_verts, tets + + def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False): + return_value = dict() + if self.render_type == 'neural_render': + tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh( + mesh_v_nx3.unsqueeze(dim=0), + mesh_f_fx3.int(), + camera_mv_bx4x4, + mesh_v_nx3.unsqueeze(dim=0), + resolution=resolution, + device=self.device, + hierarchical_mask=hierarchical_mask + ) + + return_value['tex_pos'] = tex_pos + return_value['mask'] = mask + return_value['hard_mask'] = hard_mask + return_value['rast'] = rast + return_value['v_pos_clip'] = v_pos_clip + return_value['mask_pyramid'] = mask_pyramid + return_value['depth'] = depth + else: + raise NotImplementedError + + return return_value + + def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256): + # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1 + v_list = [] + f_list = [] + n_batch = v_deformed_bxnx3.shape[0] + all_render_output = [] + for i_batch in range(n_batch): + verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch]) + v_list.append(verts_nx3) + f_list.append(faces_fx3) + render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution) + all_render_output.append(render_output) + + # Concatenate all render output + return_keys = all_render_output[0].keys() + return_value = dict() + for k in return_keys: + value = [v[k] for v in all_render_output] + return_value[k] = value + # We can do concatenation outside of the render + return return_value diff --git a/src/models/geometry/rep_3d/dmtet_utils.py b/src/models/geometry/rep_3d/dmtet_utils.py new file mode 100755 index 0000000000000000000000000000000000000000..8d466a9e78c49d947c115707693aa18d759885ad --- /dev/null +++ b/src/models/geometry/rep_3d/dmtet_utils.py @@ -0,0 +1,20 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch + + +def get_center_boundary_index(verts): + length_ = torch.sum(verts ** 2, dim=-1) + center_idx = torch.argmin(length_) + boundary_neg = verts == verts.max() + boundary_pos = verts == verts.min() + boundary = torch.bitwise_or(boundary_pos, boundary_neg) + boundary = torch.sum(boundary.float(), dim=-1) + boundary_idx = torch.nonzero(boundary) + return center_idx, boundary_idx.squeeze(dim=-1) diff --git a/src/models/geometry/rep_3d/extract_texture_map.py b/src/models/geometry/rep_3d/extract_texture_map.py new file mode 100755 index 0000000000000000000000000000000000000000..a5d62bb5a6c5cdf632fb504db3d2dfa99a3abbd3 --- /dev/null +++ b/src/models/geometry/rep_3d/extract_texture_map.py @@ -0,0 +1,40 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import xatlas +import numpy as np +import nvdiffrast.torch as dr + + +# ============================================================================================== +def interpolate(attr, rast, attr_idx, rast_db=None): + return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') + + +def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): + vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) + + # Convert to tensors + indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) + + uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) + mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) + # mesh_v_tex. ture + uv_clip = uvs[None, ...] * 2.0 - 1.0 + + # pad to four component coordinate + uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) + + # rasterize + rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) + + # Interpolate world space position + gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) + mask = rast[..., 3:4] > 0 + return uvs, mesh_tex_idx, gb_pos, mask diff --git a/src/models/geometry/rep_3d/flexicubes.py b/src/models/geometry/rep_3d/flexicubes.py new file mode 100755 index 0000000000000000000000000000000000000000..26d7b91b6266d802baaf55b64238629cd0f740d0 --- /dev/null +++ b/src/models/geometry/rep_3d/flexicubes.py @@ -0,0 +1,579 @@ +# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. +import torch +from .tables import * + +__all__ = [ + 'FlexiCubes' +] + + +class FlexiCubes: + """ + This class implements the FlexiCubes method for extracting meshes from scalar fields. + It maintains a series of lookup tables and indices to support the mesh extraction process. + FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances + the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting + the surface representation through gradient-based optimization. + + During instantiation, the class loads DMC tables from a file and transforms them into + PyTorch tensors on the specified device. + + Attributes: + device (str): Specifies the computational device (default is "cuda"). + dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges + associated with each dual vertex in 256 Marching Cubes (MC) configurations. + num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of + the 256 MC configurations. + check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19 + of the DMC configurations. + tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface. + quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles + along one diagonal. + quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into + two triangles along the other diagonal. + quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles + during training by connecting all edges to their midpoints. + cube_corners (torch.Tensor): Defines the positions of a standard unit cube's + eight corners in 3D space, ordered starting from the origin (0,0,0), + moving along the x-axis, then y-axis, and finally z-axis. + Used as a blueprint for generating a voxel grid. + cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used + to retrieve the case id. + cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs. + Used to retrieve edge vertices in DMC. + edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with + their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the + first edge is oriented along the x-axis. + dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges + across four adjacent cubes to the shared faces of these cubes. For instance, + dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along + the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively. + This tensor is only utilized during isosurface tetrahedralization. + adj_pairs (torch.Tensor): + A tensor containing index pairs that correspond to neighboring cubes that share the same edge. + qef_reg_scale (float): + The scaling factor applied to the regularization loss to prevent issues with singularity + when solving the QEF. This parameter is only used when a 'grad_func' is specified. + weight_scale (float): + The scale of weights in FlexiCubes. Should be between 0 and 1. + """ + + def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99): + + self.device = device + self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False) + self.num_vd_table = torch.tensor(num_vd_table, + dtype=torch.long, device=device, requires_grad=False) + self.check_table = torch.tensor( + check_table, + dtype=torch.long, device=device, requires_grad=False) + + self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False) + self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False) + self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False) + self.quad_split_train = torch.tensor( + [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False) + + self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [ + 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device) + self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False)) + self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6, + 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False) + + self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1], + dtype=torch.long, device=device) + self.dir_faces_table = torch.tensor([ + [[5, 4], [3, 2], [4, 5], [2, 3]], + [[5, 4], [1, 0], [4, 5], [0, 1]], + [[3, 2], [1, 0], [2, 3], [0, 1]] + ], dtype=torch.long, device=device) + self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device) + self.qef_reg_scale = qef_reg_scale + self.weight_scale = weight_scale + + def construct_voxel_grid(self, res): + """ + Generates a voxel grid based on the specified resolution. + + Args: + res (int or list[int]): The resolution of the voxel grid. If an integer + is provided, it is used for all three dimensions. If a list or tuple + of 3 integers is provided, they define the resolution for the x, + y, and z dimensions respectively. + + Returns: + (torch.Tensor, torch.Tensor): Returns the vertices and the indices of the + cube corners (index into vertices) of the constructed voxel grid. + The vertices are centered at the origin, with the length of each + dimension in the grid being one. + """ + base_cube_f = torch.arange(8).to(self.device) + if isinstance(res, int): + res = (res, res, res) + voxel_grid_template = torch.ones(res, device=self.device) + + res = torch.tensor([res], dtype=torch.float, device=self.device) + coords = torch.nonzero(voxel_grid_template).float() / res # N, 3 + verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3) + cubes = (base_cube_f.unsqueeze(0) + + torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1) + + verts_rounded = torch.round(verts * 10**5) / (10**5) + verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True) + cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8) + + return verts_unique - 0.5, cubes + + def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None, + gamma_f=None, training=False, output_tetmesh=False, grad_func=None): + r""" + Main function for mesh extraction from scalar field using FlexiCubes. This function converts + discrete signed distance fields, encoded on voxel grids and additional per-cube parameters, + to triangle or tetrahedral meshes using a differentiable operation as described in + `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances + mesh quality and geometric fidelity by adjusting the surface representation based on gradient + optimization. The output surface is differentiable with respect to the input vertex positions, + scalar field values, and weight parameters. + + If you intend to extract a surface mesh from a fixed Signed Distance Field without the + optimization of parameters, it is suggested to provide the "grad_func" which should + return the surface gradient at any given 3D position. When grad_func is provided, the process + to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as + described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy. + Please note, this approach is non-differentiable. + + For more details and example usage in optimization, refer to the + `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper. + + Args: + x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed. + s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values + denote that the corresponding vertex resides inside the isosurface. This affects + the directions of the extracted triangle faces and volume to be tetrahedralized. + cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid. + res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it + is used for all three dimensions. If a list or tuple of 3 integers is provided, they + specify the resolution for the x, y, and z dimensions respectively. + beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual + vertices positioning. Defaults to uniform value for all edges. + alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual + vertices positioning. Defaults to uniform value for all vertices. + gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of + quadrilaterals into triangles. Defaults to uniform value for all cubes. + training (bool, optional): If set to True, applies differentiable quad splitting for + training. Defaults to False. + output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise, + outputs a triangular mesh. Defaults to False. + grad_func (callable, optional): A function to compute the surface gradient at specified + 3D positions (input: Nx3 positions). The function should return gradients as an Nx3 + tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None. + + Returns: + (torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing: + - Vertices for the extracted triangular/tetrahedral mesh. + - Faces for the extracted triangular/tetrahedral mesh. + - Regularizer L_dev, computed per dual vertex. + + .. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization: + https://research.nvidia.com/labs/toronto-ai/flexicubes/ + .. _Manifold Dual Contouring: + https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf + """ + + surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8) + if surf_cubes.sum() == 0: + return torch.zeros( + (0, 3), + device=self.device), torch.zeros( + (0, 4), + dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros( + (0, 3), + dtype=torch.long, device=self.device), torch.zeros( + (0), + device=self.device) + beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes) + + case_ids = self._get_case_id(occ_fx8, surf_cubes, res) + + surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes) + + vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd( + x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func) + vertices, faces, s_edges, edge_indices = self._triangulate( + s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func) + if not output_tetmesh: + return vertices, faces, L_dev + else: + vertices, tets = self._tetrahedralize( + x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices, + surf_cubes, training) + return vertices, tets, L_dev + + def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges): + """ + Regularizer L_dev as in Equation 8 + """ + dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1) + mean_l2 = torch.zeros_like(vd[:, 0]) + mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float() + mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs() + return mad + + def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes): + """ + Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones. + """ + n_cubes = surf_cubes.shape[0] + + if beta_fx12 is not None: + beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1) + else: + beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device) + + if alpha_fx8 is not None: + alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1) + else: + alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device) + + if gamma_f is not None: + gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2 + else: + gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device) + + return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes] + + @torch.no_grad() + def _get_case_id(self, occ_fx8, surf_cubes, res): + """ + Obtains the ID of topology cases based on cell corner occupancy. This function resolves the + ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the + supplementary material. It should be noted that this function assumes a regular grid. + """ + case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1) + + problem_config = self.check_table.to(self.device)[case_ids] + to_check = problem_config[..., 0] == 1 + problem_config = problem_config[to_check] + if not isinstance(res, (list, tuple)): + res = [res, res, res] + + # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array, + # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes). + # This allows efficient checking on adjacent cubes. + problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long) + vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3 + vol_idx_problem = vol_idx[surf_cubes][to_check] + problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config + vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4] + + within_range = ( + vol_idx_problem_adj[..., 0] >= 0) & ( + vol_idx_problem_adj[..., 0] < res[0]) & ( + vol_idx_problem_adj[..., 1] >= 0) & ( + vol_idx_problem_adj[..., 1] < res[1]) & ( + vol_idx_problem_adj[..., 2] >= 0) & ( + vol_idx_problem_adj[..., 2] < res[2]) + + vol_idx_problem = vol_idx_problem[within_range] + vol_idx_problem_adj = vol_idx_problem_adj[within_range] + problem_config = problem_config[within_range] + problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0], + vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]] + # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted. + to_invert = (problem_config_adj[..., 0] == 1) + idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert] + case_ids.index_put_((idx,), problem_config[to_invert][..., -1]) + return case_ids + + @torch.no_grad() + def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes): + """ + Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge + can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge + and marks the cube edges with this index. + """ + occ_n = s_n < 0 + all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2) + unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True) + + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 + + surf_edges_mask = mask_edges[_idx_map] + counts = counts[_idx_map] + + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device) + # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index + # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1. + idx_map = mapping[_idx_map] + surf_edges = unique_edges[mask_edges] + return surf_edges, idx_map, counts, surf_edges_mask + + @torch.no_grad() + def _identify_surf_cubes(self, s_n, cube_fx8): + """ + Identifies grid cubes that intersect with the underlying surface by checking if the signs at + all corners are not identical. + """ + occ_n = s_n < 0 + occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8) + _occ_sum = torch.sum(occ_fx8, -1) + surf_cubes = (_occ_sum > 0) & (_occ_sum < 8) + return surf_cubes, occ_fx8 + + def _linear_interp(self, edges_weight, edges_x): + """ + Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'. + """ + edge_dim = edges_weight.dim() - 2 + assert edges_weight.shape[edge_dim] == 2 + edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), - + torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim) + denominator = edges_weight.sum(edge_dim) + ue = (edges_x * edges_weight).sum(edge_dim) / denominator + return ue + + def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None): + p_bxnx3 = p_bxnx3.reshape(-1, 7, 3) + norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3) + c_bx3 = c_bx3.reshape(-1, 3) + A = norm_bxnx3 + B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True) + + A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1) + B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1) + A = torch.cat([A, A_reg], 1) + B = torch.cat([B, B_reg], 1) + dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1) + return dual_verts + + def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func): + """ + Computes the location of dual vertices as described in Section 4.2 + """ + alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2) + surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3) + surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1) + zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x) + + idx_map = idx_map.reshape(-1, 12) + num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0) + edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], [] + + total_num_vd = 0 + vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False) + if grad_func is not None: + normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1) + vd = [] + for num in torch.unique(num_vd): + cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching) + curr_num_vd = cur_cubes.sum() * num + curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7) + curr_edge_group_to_vd = torch.arange( + curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd + total_num_vd += curr_num_vd + curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[ + cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group) + + curr_mask = (curr_edge_group != -1) + edge_group.append(torch.masked_select(curr_edge_group, curr_mask)) + edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask)) + edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask)) + vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True)) + vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1)) + + if grad_func is not None: + with torch.no_grad(): + cube_e_verts_idx = idx_map[cur_cubes] + curr_edge_group[~curr_mask] = 0 + + verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group) + verts_group_idx[verts_group_idx == -1] = 0 + verts_group_pos = torch.index_select( + input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3) + v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1) + curr_mask = curr_mask.reshape(-1, num.item(), 7, 1) + verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2)) + + normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape( + -1, num.item(), 7, + 3) + curr_mask = curr_mask.squeeze(2) + vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask, + verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3)) + edge_group = torch.cat(edge_group) + edge_group_to_vd = torch.cat(edge_group_to_vd) + edge_group_to_cube = torch.cat(edge_group_to_cube) + vd_num_edges = torch.cat(vd_num_edges) + vd_gamma = torch.cat(vd_gamma) + + if grad_func is not None: + vd = torch.cat(vd) + L_dev = torch.zeros([1], device=self.device) + else: + vd = torch.zeros((total_num_vd, 3), device=self.device) + beta_sum = torch.zeros((total_num_vd, 1), device=self.device) + + idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group) + + x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3) + s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1) + + zero_crossing_group = torch.index_select( + input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3) + + alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0, + index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1) + ue_group = self._linear_interp(s_group * alpha_group, x_group) + + beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0, + index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1) + beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group) + vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum + L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges) + + v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd + + vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube * + 12 + edge_group, src=v_idx[edge_group_to_vd]) + + return vd, L_dev, vd_gamma, vd_idx_map + + def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func): + """ + Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into + triangles based on the gamma parameter, as described in Section 4.3. + """ + with torch.no_grad(): + group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes. + group = idx_map.reshape(-1)[group_mask] + vd_idx = vd_idx_map[group_mask] + edge_indices, indices = torch.sort(group, stable=True) + quad_vd_idx = vd_idx[indices].reshape(-1, 4) + + # Ensure all face directions point towards the positive SDF to maintain consistent winding. + s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2) + flip_mask = s_edges[:, 0] > 0 + quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]], + quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]])) + if grad_func is not None: + # when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients. + with torch.no_grad(): + vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1) + quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3) + gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True) + gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True) + else: + quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4) + gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor( + 0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1) + gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor( + 1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1) + if not training: + mask = (gamma_02 > gamma_13).squeeze(1) + faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device) + faces[mask] = quad_vd_idx[mask][:, self.quad_split_1] + faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2] + faces = faces.reshape(-1, 3) + else: + vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3) + vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) + + torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2 + vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) + + torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2 + weight_sum = (gamma_02 + gamma_13) + 1e-8 + vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / + weight_sum.unsqueeze(-1)).squeeze(1) + vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0] + vd = torch.cat([vd, vd_center]) + faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2) + faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3) + return vd, faces, s_edges, edge_indices + + def _tetrahedralize( + self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices, + surf_cubes, training): + """ + Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5. + """ + occ_n = s_n < 0 + occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8) + occ_sum = torch.sum(occ_fx8, -1) + + inside_verts = x_nx3[occ_n] + mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1 + mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0] + """ + For each grid edge connecting two grid vertices with different + signs, we first form a four-sided pyramid by connecting one + of the grid vertices with four mesh vertices that correspond + to the grid edge and then subdivide the pyramid into two tetrahedra + """ + inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[ + s_edges < 0]] + if not training: + inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1) + else: + inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1) + + tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1) + """ + For each grid edge connecting two grid vertices with the + same sign, the tetrahedron is formed by the two grid vertices + and two vertices in consecutive adjacent cells + """ + inside_cubes = (occ_sum == 8) + inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1) + inside_cubes_center_idx = torch.arange( + inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0] + + surface_n_inside_cubes = surf_cubes | inside_cubes + edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13), + dtype=torch.long, device=x_nx3.device) * -1 + surf_cubes = surf_cubes[surface_n_inside_cubes] + inside_cubes = inside_cubes[surface_n_inside_cubes] + edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12) + edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx + + all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2) + unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True) + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2 + mask = mask_edges[_idx_map] + counts = counts[_idx_map] + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device) + idx_map = mapping[_idx_map] + + group_mask = (counts == 4) & mask + group = idx_map.reshape(-1)[group_mask] + edge_indices, indices = torch.sort(group) + cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long, + device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask] + edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze( + 0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask] + # Identify the face shared by the adjacent cells. + cube_idx_4 = cube_idx[indices].reshape(-1, 4) + edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0] + shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1) + cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1) + # Identify an edge of the face with different signs and + # select the mesh vertex corresponding to the identified edge. + case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255 + case_ids_expand[surf_cubes] = case_ids + cases = case_ids_expand[cube_idx_4x2] + quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2) + mask = (quad_edge == -1).sum(-1) == 0 + inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2) + tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask] + + tets = torch.cat([tets_surface, tets_inside]) + vertices = torch.cat([vertices, inside_verts, inside_cubes_center]) + return vertices, tets diff --git a/src/models/geometry/rep_3d/flexicubes_geometry.py b/src/models/geometry/rep_3d/flexicubes_geometry.py new file mode 100755 index 0000000000000000000000000000000000000000..bf050ee20361f78957839942f83fe77efde231b7 --- /dev/null +++ b/src/models/geometry/rep_3d/flexicubes_geometry.py @@ -0,0 +1,120 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import numpy as np +import os +from . import Geometry +from .flexicubes import FlexiCubes # replace later +from .dmtet import sdf_reg_loss_batch +import torch.nn.functional as F + +def get_center_boundary_index(grid_res, device): + v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device) + v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True + center_indices = torch.nonzero(v.reshape(-1)) + + v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False + v[:2, ...] = True + v[-2:, ...] = True + v[:, :2, ...] = True + v[:, -2:, ...] = True + v[:, :, :2] = True + v[:, :, -2:] = True + boundary_indices = torch.nonzero(v.reshape(-1)) + return center_indices, boundary_indices + +############################################################################### +# Geometry interface +############################################################################### +class FlexiCubesGeometry(Geometry): + def __init__( + self, grid_res=64, scale=2.0, device='cuda', renderer=None, + render_type='neural_render', args=None): + super(FlexiCubesGeometry, self).__init__() + self.grid_res = grid_res + self.device = device + self.args = args + self.fc = FlexiCubes(device, weight_scale=0.5) + self.verts, self.indices = self.fc.construct_voxel_grid(grid_res) + if isinstance(scale, list): + self.verts[:, 0] = self.verts[:, 0] * scale[0] + self.verts[:, 1] = self.verts[:, 1] * scale[1] + self.verts[:, 2] = self.verts[:, 2] * scale[1] + else: + self.verts = self.verts * scale + + all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2) + self.all_edges = torch.unique(all_edges, dim=0) + + # Parameters used for fix boundary sdf + self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device) + self.renderer = renderer + self.render_type = render_type + + def getAABB(self): + return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values + + def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False): + if indices is None: + indices = self.indices + + verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res, + beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20], + gamma_f=weight_n[:, 20], training=is_training + ) + return verts, faces, v_reg_loss + + + def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False): + return_value = dict() + if self.render_type == 'neural_render': + tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal = self.renderer.render_mesh( + mesh_v_nx3.unsqueeze(dim=0), + mesh_f_fx3.int(), + camera_mv_bx4x4, + mesh_v_nx3.unsqueeze(dim=0), + resolution=resolution, + device=self.device, + hierarchical_mask=hierarchical_mask + ) + + return_value['tex_pos'] = tex_pos + return_value['mask'] = mask + return_value['hard_mask'] = hard_mask + return_value['rast'] = rast + return_value['v_pos_clip'] = v_pos_clip + return_value['mask_pyramid'] = mask_pyramid + return_value['depth'] = depth + return_value['normal'] = normal + else: + raise NotImplementedError + + return return_value + + def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256): + # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1 + v_list = [] + f_list = [] + n_batch = v_deformed_bxnx3.shape[0] + all_render_output = [] + for i_batch in range(n_batch): + verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch]) + v_list.append(verts_nx3) + f_list.append(faces_fx3) + render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution) + all_render_output.append(render_output) + + # Concatenate all render output + return_keys = all_render_output[0].keys() + return_value = dict() + for k in return_keys: + value = [v[k] for v in all_render_output] + return_value[k] = value + # We can do concatenation outside of the render + return return_value diff --git a/src/models/geometry/rep_3d/tables.py b/src/models/geometry/rep_3d/tables.py new file mode 100755 index 0000000000000000000000000000000000000000..5873e7727b5595a1e4fbc3bd10ae5be8f3d06cca --- /dev/null +++ b/src/models/geometry/rep_3d/tables.py @@ -0,0 +1,791 @@ +# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. +dmc_table = [ +[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 8, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 9, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 9, 10, 11, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 8, 10, 11, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 8, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 8, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 6, 7, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 5, 6, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 8, 9, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 8, 11, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 6, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1]], +[[0, 2, 4, 5, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 8, 10, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 8, 9, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 6, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 6, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 6, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 9, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 8, 9, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1]], +[[1, 2, 4, 7, 9, 11, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 9, 10, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 8, 9, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 6, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 9, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, 6, 7, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 6, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 6, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 6, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 4, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 4, 5, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 5, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]] +] +num_vd_table = [0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, +2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, +1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 1, 1, +1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 3, 4, 2, +2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, +3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, +2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, +1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, +1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, +1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0] +check_table = [ +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 194], +[1, -1, 0, 0, 193], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 164], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 161], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 152], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 145], +[1, 0, 0, 1, 144], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 137], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 133], +[1, 0, 1, 0, 132], +[1, 1, 0, 0, 131], +[1, 1, 0, 0, 130], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 100], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 98], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 96], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 88], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 82], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 74], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 72], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 70], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 67], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 65], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 56], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 52], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 44], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 40], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 38], +[1, 0, -1, 0, 37], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 33], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 28], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 26], +[1, 0, 0, -1, 25], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 20], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 18], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 9], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 6], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0] +] +tet_table = [ +[-1, -1, -1, -1, -1, -1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[4, 4, 4, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, -1], +[1, 1, 1, 1, 1, 1], +[4, 4, 4, 4, 4, 4], +[0, 4, 0, 4, 4, -1], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[5, 5, 5, 5, 5, 5], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, -1, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, -1, 2, 4, 4, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 4, 4, 2], +[1, 1, 1, 1, 1, 1], +[2, 4, 2, 4, 4, 2], +[0, 4, 0, 4, 4, 0], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 5, 2, 5, 5, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[0, 1, 1, -1, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[4, 1, 1, 4, 4, 1], +[0, 1, 1, 0, 0, 1], +[4, 0, 0, 4, 4, 0], +[2, 2, 2, 2, 2, 2], +[-1, 1, 1, 4, 4, 1], +[0, 1, 1, 4, 4, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[5, 1, 1, 5, 5, 1], +[0, 1, 1, 0, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[8, 8, 8, 8, 8, 8], +[1, 1, 1, 4, 4, 1], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 4, 4, 1], +[0, 4, 0, 4, 4, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 5, 5, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[5, 5, 5, 5, 5, 5], +[6, 6, 6, 6, 6, 6], +[6, -1, 0, 6, 0, 6], +[6, 0, 0, 6, 0, 6], +[6, 1, 1, 6, 1, 6], +[4, 4, 4, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[6, 4, -1, 6, 4, 6], +[6, 4, 0, 6, 4, 6], +[6, 0, 0, 6, 0, 6], +[6, 1, 1, 6, 1, 6], +[5, 5, 5, 5, 5, 5], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 2, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[2, 4, 2, 2, 4, 2], +[0, 4, 0, 4, 4, 0], +[2, 0, 2, 2, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[6, 1, 1, 6, -1, 6], +[6, 1, 1, 6, 0, 6], +[6, 0, 0, 6, 0, 6], +[6, 2, 2, 6, 2, 6], +[4, 1, 1, 4, 4, 1], +[0, 1, 1, 0, 0, 1], +[4, 0, 0, 4, 4, 4], +[2, 2, 2, 2, 2, 2], +[6, 1, 1, 6, 4, 6], +[6, 1, 1, 6, 4, 6], +[6, 0, 0, 6, 0, 6], +[6, 2, 2, 6, 2, 6], +[5, 1, 1, 5, 5, 1], +[0, 1, 1, 0, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[6, 6, 6, 6, 6, 6], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 4, 1], +[0, 4, 0, 4, 4, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 5, 0, 5, 0, 5], +[5, 5, 5, 5, 5, 5], +[5, 5, 5, 5, 5, 5], +[0, 5, 0, 5, 0, 5], +[-1, 5, 0, 5, 0, 5], +[1, 5, 1, 5, 1, 5], +[4, 5, -1, 5, 4, 5], +[0, 5, 0, 5, 0, 5], +[4, 5, 0, 5, 4, 5], +[1, 5, 1, 5, 1, 5], +[4, 4, 4, 4, 4, 4], +[0, 4, 0, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[6, 6, 6, 6, 6, 6], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 5, 2, 5, -1, 5], +[0, 5, 0, 5, 0, 5], +[2, 5, 2, 5, 0, 5], +[1, 5, 1, 5, 1, 5], +[2, 5, 2, 5, 4, 5], +[0, 5, 0, 5, 0, 5], +[2, 5, 2, 5, 4, 5], +[1, 5, 1, 5, 1, 5], +[2, 4, 2, 4, 4, 2], +[0, 4, 0, 4, 4, 4], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 6, 2, 6, 6, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[0, 1, 1, 1, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[4, 1, 1, 1, 4, 1], +[0, 1, 1, 1, 0, 1], +[4, 0, 0, 4, 4, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[5, 5, 5, 5, 5, 5], +[1, 1, 1, 1, 4, 1], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[6, 0, 0, 6, 0, 6], +[0, 0, 0, 0, 0, 0], +[6, 6, 6, 6, 6, 6], +[5, 5, 5, 5, 5, 5], +[5, 5, 0, 5, 0, 5], +[5, 5, 0, 5, 0, 5], +[5, 5, 1, 5, 1, 5], +[4, 4, 4, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[4, 4, 0, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[4, 4, 4, 4, 4, 4], +[4, 4, 0, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[8, 8, 8, 8, 8, 8], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 1, 1, 4, 4, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[2, 4, 2, 4, 4, 2], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[5, 5, 5, 5, 5, 5], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[12, 12, 12, 12, 12, 12] +] diff --git a/src/models/lrm.py b/src/models/lrm.py new file mode 100755 index 0000000000000000000000000000000000000000..eea9ee3353d74fb60451fec87f6c2c30816f64ae --- /dev/null +++ b/src/models/lrm.py @@ -0,0 +1,196 @@ +# Copyright (c) 2023, Zexin He +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import torch +import torch.nn as nn +import mcubes +import nvdiffrast.torch as dr +from einops import rearrange, repeat + +from .encoder.dino_wrapper import DinoWrapper +from .decoder.transformer import TriplaneTransformer +from .renderer.synthesizer import TriplaneSynthesizer +from ..utils.mesh_util import xatlas_uvmap + + +class InstantNeRF(nn.Module): + """ + Full model of the large reconstruction model. + """ + def __init__( + self, + encoder_freeze: bool = False, + encoder_model_name: str = 'facebook/dino-vitb16', + encoder_feat_dim: int = 768, + transformer_dim: int = 1024, + transformer_layers: int = 16, + transformer_heads: int = 16, + triplane_low_res: int = 32, + triplane_high_res: int = 64, + triplane_dim: int = 80, + rendering_samples_per_ray: int = 128, + ): + super().__init__() + + # modules + self.encoder = DinoWrapper( + model_name=encoder_model_name, + freeze=encoder_freeze, + ) + + self.transformer = TriplaneTransformer( + inner_dim=transformer_dim, + num_layers=transformer_layers, + num_heads=transformer_heads, + image_feat_dim=encoder_feat_dim, + triplane_low_res=triplane_low_res, + triplane_high_res=triplane_high_res, + triplane_dim=triplane_dim, + ) + + self.synthesizer = TriplaneSynthesizer( + triplane_dim=triplane_dim, + samples_per_ray=rendering_samples_per_ray, + ) + + def forward_planes(self, images, cameras): + # images: [B, V, C_img, H_img, W_img] + # cameras: [B, V, 16] + B = images.shape[0] + + # encode images + image_feats = self.encoder(images, cameras) + image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B) + + # transformer generating planes + planes = self.transformer(image_feats) + + return planes + + def forward(self, images, cameras, render_cameras, render_size: int): + # images: [B, V, C_img, H_img, W_img] + # cameras: [B, V, 16] + # render_cameras: [B, M, D_cam_render] + # render_size: int + B, M = render_cameras.shape[:2] + + planes = self.forward_planes(images, cameras) + + # render target views + render_results = self.synthesizer(planes, render_cameras, render_size) + + return { + 'planes': planes, + **render_results, + } + + def get_texture_prediction(self, planes, tex_pos, hard_mask=None): + ''' + Predict Texture given triplanes + :param planes: the triplane feature map + :param tex_pos: Position we want to query the texture field + :param hard_mask: 2D silhoueete of the rendered image + ''' + tex_pos = torch.cat(tex_pos, dim=0) + if not hard_mask is None: + tex_pos = tex_pos * hard_mask.float() + batch_size = tex_pos.shape[0] + tex_pos = tex_pos.reshape(batch_size, -1, 3) + ################### + # We use mask to get the texture location (to save the memory) + if hard_mask is not None: + n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1) + sample_tex_pose_list = [] + max_point = n_point_list.max() + expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5 + for i in range(tex_pos.shape[0]): + tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3) + if tex_pos_one_shape.shape[1] < max_point: + tex_pos_one_shape = torch.cat( + [tex_pos_one_shape, torch.zeros( + 1, max_point - tex_pos_one_shape.shape[1], 3, + device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1) + sample_tex_pose_list.append(tex_pos_one_shape) + tex_pos = torch.cat(sample_tex_pose_list, dim=0) + + tex_feat = self.synthesizer.forward_points(planes, tex_pos)['rgb'] + + if hard_mask is not None: + final_tex_feat = torch.zeros( + planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device) + expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5 + for i in range(planes.shape[0]): + final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1) + tex_feat = final_tex_feat + + return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]) + + def extract_mesh( + self, + planes: torch.Tensor, + mesh_resolution: int = 256, + mesh_threshold: int = 10.0, + use_texture_map: bool = False, + texture_resolution: int = 1024, + **kwargs, + ): + ''' + Extract a 3D mesh from triplane nerf. Only support batch_size 1. + :param planes: triplane features + :param mesh_resolution: marching cubes resolution + :param mesh_threshold: iso-surface threshold + :param use_texture_map: use texture map or vertex color + :param texture_resolution: the resolution of texture map + ''' + assert planes.shape[0] == 1 + device = planes.device + + grid_out = self.synthesizer.forward_grid( + planes=planes, + grid_size=mesh_resolution, + ) + + vertices, faces = mcubes.marching_cubes( + grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), + mesh_threshold, + ) + vertices = vertices / (mesh_resolution - 1) * 2 - 1 + + if not use_texture_map: + # query vertex colors + vertices_tensor = torch.tensor(vertices, dtype=torch.float32, device=device).unsqueeze(0) + vertices_colors = self.synthesizer.forward_points( + planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy() + vertices_colors = (vertices_colors * 255).astype(np.uint8) + + return vertices, faces, vertices_colors + + # use x-atlas to get uv mapping for the mesh + vertices = torch.tensor(vertices, dtype=torch.float32, device=device) + faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device) + + ctx = dr.RasterizeCudaContext(device=device) + uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap( + ctx, vertices, faces, resolution=texture_resolution) + tex_hard_mask = tex_hard_mask.float() + + # query the texture field to get the RGB color for texture map + tex_feat = self.get_texture_prediction( + planes, [gb_pos], tex_hard_mask) + background_feature = torch.zeros_like(tex_feat) + img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask) + texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0) + + return vertices, faces, uvs, mesh_tex_idx, texture_map \ No newline at end of file diff --git a/src/models/lrm_mesh.py b/src/models/lrm_mesh.py new file mode 100755 index 0000000000000000000000000000000000000000..cb6e351bc8191de56178393ff677de1c32342cf3 --- /dev/null +++ b/src/models/lrm_mesh.py @@ -0,0 +1,382 @@ +# Copyright (c) 2023, Tencent Inc +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import torch +import torch.nn as nn +import nvdiffrast.torch as dr +from einops import rearrange, repeat + +from .encoder.dino_wrapper import DinoWrapper +from .decoder.transformer import TriplaneTransformer +from .renderer.synthesizer_mesh import TriplaneSynthesizer +from .geometry.camera.perspective_camera import PerspectiveCamera +from .geometry.render.neural_render import NeuralRender +from .geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry +from ..utils.mesh_util import xatlas_uvmap + + +class InstantMesh(nn.Module): + """ + Full model of the large reconstruction model. + """ + def __init__( + self, + encoder_freeze: bool = False, + encoder_model_name: str = 'facebook/dino-vitb16', + encoder_feat_dim: int = 768, + transformer_dim: int = 1024, + transformer_layers: int = 16, + transformer_heads: int = 16, + triplane_low_res: int = 32, + triplane_high_res: int = 64, + triplane_dim: int = 80, + rendering_samples_per_ray: int = 128, + grid_res: int = 128, + grid_scale: float = 2.0, + ): + super().__init__() + + # attributes + self.grid_res = grid_res + self.grid_scale = grid_scale + self.deformation_multiplier = 4.0 + + # modules + self.encoder = DinoWrapper( + model_name=encoder_model_name, + freeze=encoder_freeze, + ) + + self.transformer = TriplaneTransformer( + inner_dim=transformer_dim, + num_layers=transformer_layers, + num_heads=transformer_heads, + image_feat_dim=encoder_feat_dim, + triplane_low_res=triplane_low_res, + triplane_high_res=triplane_high_res, + triplane_dim=triplane_dim, + ) + + self.synthesizer = TriplaneSynthesizer( + triplane_dim=triplane_dim, + samples_per_ray=rendering_samples_per_ray, + ) + + def init_flexicubes_geometry(self, device, fovy=50.0): + camera = PerspectiveCamera(fovy=fovy, device=device) + renderer = NeuralRender(device, camera_model=camera) + self.geometry = FlexiCubesGeometry( + grid_res=self.grid_res, + scale=self.grid_scale, + renderer=renderer, + render_type='neural_render', + device=device, + ) + + def forward_planes(self, images, cameras): + # images: [B, V, C_img, H_img, W_img] + # cameras: [B, V, 16] + B = images.shape[0] + + # encode images + image_feats = self.encoder(images, cameras) + image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B) + + # decode triplanes + planes = self.transformer(image_feats) + + return planes + + def get_sdf_deformation_prediction(self, planes): + ''' + Predict SDF and deformation for tetrahedron vertices + :param planes: triplane feature map for the geometry + ''' + init_position = self.geometry.verts.unsqueeze(0).expand(planes.shape[0], -1, -1) + + # Step 1: predict the SDF and deformation + sdf, deformation, weight = torch.utils.checkpoint.checkpoint( + self.synthesizer.get_geometry_prediction, + planes, + init_position, + self.geometry.indices, + use_reentrant=False, + ) + + # Step 2: Normalize the deformation to avoid the flipped triangles. + deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation) + sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32) + + #### + # Step 3: Fix some sdf if we observe empty shape (full positive or full negative) + sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1)) + sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1) + pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1) + neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1) + zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0) + if torch.sum(zero_surface).item() > 0: + update_sdf = torch.zeros_like(sdf[0:1]) + max_sdf = sdf.max() + min_sdf = sdf.min() + update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf) # greater than zero + update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf) # smaller than zero + new_sdf = torch.zeros_like(sdf) + for i_batch in range(zero_surface.shape[0]): + if zero_surface[i_batch]: + new_sdf[i_batch:i_batch + 1] += update_sdf + update_mask = (new_sdf == 0).float() + # Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative) + sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1) + sdf_reg_loss = sdf_reg_loss * zero_surface.float() + sdf = sdf * update_mask + new_sdf * (1 - update_mask) + + # Step 4: Here we remove the gradient for the bad sdf (full positive or full negative) + final_sdf = [] + final_def = [] + for i_batch in range(zero_surface.shape[0]): + if zero_surface[i_batch]: + final_sdf.append(sdf[i_batch: i_batch + 1].detach()) + final_def.append(deformation[i_batch: i_batch + 1].detach()) + else: + final_sdf.append(sdf[i_batch: i_batch + 1]) + final_def.append(deformation[i_batch: i_batch + 1]) + sdf = torch.cat(final_sdf, dim=0) + deformation = torch.cat(final_def, dim=0) + return sdf, deformation, sdf_reg_loss, weight + + def get_geometry_prediction(self, planes=None): + ''' + Function to generate mesh with give triplanes + :param planes: triplane features + ''' + # Step 1: first get the sdf and deformation value for each vertices in the tetrahedon grid. + sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes) + v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation + tets = self.geometry.indices + n_batch = planes.shape[0] + v_list = [] + f_list = [] + flexicubes_surface_reg_list = [] + + # Step 2: Using marching tet to obtain the mesh + for i_batch in range(n_batch): + verts, faces, flexicubes_surface_reg = self.geometry.get_mesh( + v_deformed[i_batch], + sdf[i_batch].squeeze(dim=-1), + with_uv=False, + indices=tets, + weight_n=weight[i_batch].squeeze(dim=-1), + is_training=self.training, + ) + flexicubes_surface_reg_list.append(flexicubes_surface_reg) + v_list.append(verts) + f_list.append(faces) + + flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean() + flexicubes_weight_reg = (weight ** 2).mean() + + return v_list, f_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg) + + def get_texture_prediction(self, planes, tex_pos, hard_mask=None): + ''' + Predict Texture given triplanes + :param planes: the triplane feature map + :param tex_pos: Position we want to query the texture field + :param hard_mask: 2D silhoueete of the rendered image + ''' + tex_pos = torch.cat(tex_pos, dim=0) + if not hard_mask is None: + tex_pos = tex_pos * hard_mask.float() + batch_size = tex_pos.shape[0] + tex_pos = tex_pos.reshape(batch_size, -1, 3) + ################### + # We use mask to get the texture location (to save the memory) + if hard_mask is not None: + n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1) + sample_tex_pose_list = [] + max_point = n_point_list.max() + expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5 + for i in range(tex_pos.shape[0]): + tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3) + if tex_pos_one_shape.shape[1] < max_point: + tex_pos_one_shape = torch.cat( + [tex_pos_one_shape, torch.zeros( + 1, max_point - tex_pos_one_shape.shape[1], 3, + device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1) + sample_tex_pose_list.append(tex_pos_one_shape) + tex_pos = torch.cat(sample_tex_pose_list, dim=0) + + tex_feat = torch.utils.checkpoint.checkpoint( + self.synthesizer.get_texture_prediction, + planes, + tex_pos, + use_reentrant=False, + ) + + if hard_mask is not None: + final_tex_feat = torch.zeros( + planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device) + expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5 + for i in range(planes.shape[0]): + final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1) + tex_feat = final_tex_feat + + return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]) + + def render_mesh(self, mesh_v, mesh_f, cam_mv, render_size=256): + ''' + Function to render a generated mesh with nvdiffrast + :param mesh_v: List of vertices for the mesh + :param mesh_f: List of faces for the mesh + :param cam_mv: 4x4 rotation matrix + :return: + ''' + return_value_list = [] + for i_mesh in range(len(mesh_v)): + return_value = self.geometry.render_mesh( + mesh_v[i_mesh], + mesh_f[i_mesh].int(), + cam_mv[i_mesh], + resolution=render_size, + hierarchical_mask=False + ) + return_value_list.append(return_value) + + return_keys = return_value_list[0].keys() + return_value = dict() + for k in return_keys: + value = [v[k] for v in return_value_list] + return_value[k] = value + + mask = torch.cat(return_value['mask'], dim=0) + hard_mask = torch.cat(return_value['hard_mask'], dim=0) + tex_pos = return_value['tex_pos'] + depth = torch.cat(return_value['depth'], dim=0) + normal = torch.cat(return_value['normal'], dim=0) + return mask, hard_mask, tex_pos, depth, normal + + def forward_geometry(self, planes, render_cameras, render_size=256): + ''' + Main function of our Generator. It first generate 3D mesh, then render it into 2D image + with given `render_cameras`. + :param planes: triplane features + :param render_cameras: cameras to render generated 3D shape + ''' + B, NV = render_cameras.shape[:2] + + # Generate 3D mesh first + mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) + + # Render the mesh into 2D image (get 3d position of each image plane) + cam_mv = render_cameras + run_n_view = cam_mv.shape[1] + antilias_mask, hard_mask, tex_pos, depth, normal = self.render_mesh(mesh_v, mesh_f, cam_mv, render_size=render_size) + + tex_hard_mask = hard_mask + tex_pos = [torch.cat([pos[i_view:i_view + 1] for i_view in range(run_n_view)], dim=2) for pos in tex_pos] + tex_hard_mask = torch.cat( + [torch.cat( + [tex_hard_mask[i * run_n_view + i_view: i * run_n_view + i_view + 1] + for i_view in range(run_n_view)], dim=2) + for i in range(planes.shape[0])], dim=0) + + # Querying the texture field to predict the texture feature for each pixel on the image + tex_feat = self.get_texture_prediction(planes, tex_pos, tex_hard_mask) + background_feature = torch.ones_like(tex_feat) # white background + + # Merge them together + img_feat = tex_feat * tex_hard_mask + background_feature * (1 - tex_hard_mask) + + # We should split it back to the original image shape + img_feat = torch.cat( + [torch.cat( + [img_feat[i:i + 1, :, render_size * i_view: render_size * (i_view + 1)] + for i_view in range(run_n_view)], dim=0) for i in range(len(tex_pos))], dim=0) + + img = img_feat.clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV)) + antilias_mask = antilias_mask.permute(0, 3, 1, 2).unflatten(0, (B, NV)) + depth = -depth.permute(0, 3, 1, 2).unflatten(0, (B, NV)) # transform negative depth to positive + normal = normal.permute(0, 3, 1, 2).unflatten(0, (B, NV)) + + out = { + 'img': img, + 'mask': antilias_mask, + 'depth': depth, + 'normal': normal, + 'sdf': sdf, + 'mesh_v': mesh_v, + 'mesh_f': mesh_f, + 'sdf_reg_loss': sdf_reg_loss, + } + return out + + def forward(self, images, cameras, render_cameras, render_size: int): + # images: [B, V, C_img, H_img, W_img] + # cameras: [B, V, 16] + # render_cameras: [B, M, D_cam_render] + # render_size: int + B, M = render_cameras.shape[:2] + + planes = self.forward_planes(images, cameras) + out = self.forward_geometry(planes, render_cameras, render_size=render_size) + + return { + 'planes': planes, + **out + } + + def extract_mesh( + self, + planes: torch.Tensor, + use_texture_map: bool = False, + texture_resolution: int = 1024, + **kwargs, + ): + ''' + Extract a 3D mesh from FlexiCubes. Only support batch_size 1. + :param planes: triplane features + :param use_texture_map: use texture map or vertex color + :param texture_resolution: the resolution of texure map + ''' + assert planes.shape[0] == 1 + device = planes.device + + # predict geometry first + mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) + vertices, faces = mesh_v[0], mesh_f[0] + + if not use_texture_map: + # query vertex colors + vertices_tensor = vertices.unsqueeze(0) + vertices_colors = self.synthesizer.get_texture_prediction( + planes, vertices_tensor).clamp(0, 1).squeeze(0).cpu().numpy() + vertices_colors = (vertices_colors * 255).astype(np.uint8) + + return vertices.cpu().numpy(), faces.cpu().numpy(), vertices_colors + + # use x-atlas to get uv mapping for the mesh + ctx = dr.RasterizeCudaContext(device=device) + uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap( + self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution) + tex_hard_mask = tex_hard_mask.float() + + # query the texture field to get the RGB color for texture map + tex_feat = self.get_texture_prediction( + planes, [gb_pos], tex_hard_mask) + background_feature = torch.zeros_like(tex_feat) + img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask) + texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0) + + return vertices, faces, uvs, mesh_tex_idx, texture_map \ No newline at end of file diff --git a/src/models/renderer/__init__.py b/src/models/renderer/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..2c772e4fa331c678cfff50884be94d7d31835b34 --- /dev/null +++ b/src/models/renderer/__init__.py @@ -0,0 +1,9 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. diff --git a/src/models/renderer/synthesizer.py b/src/models/renderer/synthesizer.py new file mode 100755 index 0000000000000000000000000000000000000000..8db9fbdb1703b566117d227c8e4eef04157ccc93 --- /dev/null +++ b/src/models/renderer/synthesizer.py @@ -0,0 +1,203 @@ +# ORIGINAL LICENSE +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# Modified by Jiale Xu +# The modifications are subject to the same license as the original. + + +import itertools +import torch +import torch.nn as nn + +from .utils.renderer import ImportanceRenderer +from .utils.ray_sampler import RaySampler + + +class OSGDecoder(nn.Module): + """ + Triplane decoder that gives RGB and sigma values from sampled features. + Using ReLU here instead of Softplus in the original implementation. + + Reference: + EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112 + """ + def __init__(self, n_features: int, + hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU): + super().__init__() + self.net = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 1 + 3), + ) + # init all bias to zero + for m in self.modules(): + if isinstance(m, nn.Linear): + nn.init.zeros_(m.bias) + + def forward(self, sampled_features, ray_directions): + # Aggregate features by mean + # sampled_features = sampled_features.mean(1) + # Aggregate features by concatenation + _N, n_planes, _M, _C = sampled_features.shape + sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) + x = sampled_features + + N, M, C = x.shape + x = x.contiguous().view(N*M, C) + + x = self.net(x) + x = x.view(N, M, -1) + rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF + sigma = x[..., 0:1] + + return {'rgb': rgb, 'sigma': sigma} + + +class TriplaneSynthesizer(nn.Module): + """ + Synthesizer that renders a triplane volume with planes and a camera. + + Reference: + EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19 + """ + + DEFAULT_RENDERING_KWARGS = { + 'ray_start': 'auto', + 'ray_end': 'auto', + 'box_warp': 2., + 'white_back': True, + 'disparity_space_sampling': False, + 'clamp_mode': 'softplus', + 'sampler_bbox_min': -1., + 'sampler_bbox_max': 1., + } + + def __init__(self, triplane_dim: int, samples_per_ray: int): + super().__init__() + + # attributes + self.triplane_dim = triplane_dim + self.rendering_kwargs = { + **self.DEFAULT_RENDERING_KWARGS, + 'depth_resolution': samples_per_ray // 2, + 'depth_resolution_importance': samples_per_ray // 2, + } + + # renderings + self.renderer = ImportanceRenderer() + self.ray_sampler = RaySampler() + + # modules + self.decoder = OSGDecoder(n_features=triplane_dim) + + def forward(self, planes, cameras, render_size=128, crop_params=None): + # planes: (N, 3, D', H', W') + # cameras: (N, M, D_cam) + # render_size: int + assert planes.shape[0] == cameras.shape[0], "Batch size mismatch for planes and cameras" + N, M = cameras.shape[:2] + + cam2world_matrix = cameras[..., :16].view(N, M, 4, 4) + intrinsics = cameras[..., 16:25].view(N, M, 3, 3) + + # Create a batch of rays for volume rendering + ray_origins, ray_directions = self.ray_sampler( + cam2world_matrix=cam2world_matrix.reshape(-1, 4, 4), + intrinsics=intrinsics.reshape(-1, 3, 3), + render_size=render_size, + ) + assert N*M == ray_origins.shape[0], "Batch size mismatch for ray_origins" + assert ray_origins.dim() == 3, "ray_origins should be 3-dimensional" + + # Crop rays if crop_params is available + if crop_params is not None: + ray_origins = ray_origins.reshape(N*M, render_size, render_size, 3) + ray_directions = ray_directions.reshape(N*M, render_size, render_size, 3) + i, j, h, w = crop_params + ray_origins = ray_origins[:, i:i+h, j:j+w, :].reshape(N*M, -1, 3) + ray_directions = ray_directions[:, i:i+h, j:j+w, :].reshape(N*M, -1, 3) + + # Perform volume rendering + rgb_samples, depth_samples, weights_samples = self.renderer( + planes.repeat_interleave(M, dim=0), self.decoder, ray_origins, ray_directions, self.rendering_kwargs, + ) + + # Reshape into 'raw' neural-rendered image + if crop_params is not None: + Himg, Wimg = crop_params[2:] + else: + Himg = Wimg = render_size + rgb_images = rgb_samples.permute(0, 2, 1).reshape(N, M, rgb_samples.shape[-1], Himg, Wimg).contiguous() + depth_images = depth_samples.permute(0, 2, 1).reshape(N, M, 1, Himg, Wimg) + weight_images = weights_samples.permute(0, 2, 1).reshape(N, M, 1, Himg, Wimg) + + out = { + 'images_rgb': rgb_images, + 'images_depth': depth_images, + 'images_weight': weight_images, + } + return out + + def forward_grid(self, planes, grid_size: int, aabb: torch.Tensor = None): + # planes: (N, 3, D', H', W') + # grid_size: int + # aabb: (N, 2, 3) + if aabb is None: + aabb = torch.tensor([ + [self.rendering_kwargs['sampler_bbox_min']] * 3, + [self.rendering_kwargs['sampler_bbox_max']] * 3, + ], device=planes.device, dtype=planes.dtype).unsqueeze(0).repeat(planes.shape[0], 1, 1) + assert planes.shape[0] == aabb.shape[0], "Batch size mismatch for planes and aabb" + N = planes.shape[0] + + # create grid points for triplane query + grid_points = [] + for i in range(N): + grid_points.append(torch.stack(torch.meshgrid( + torch.linspace(aabb[i, 0, 0], aabb[i, 1, 0], grid_size, device=planes.device), + torch.linspace(aabb[i, 0, 1], aabb[i, 1, 1], grid_size, device=planes.device), + torch.linspace(aabb[i, 0, 2], aabb[i, 1, 2], grid_size, device=planes.device), + indexing='ij', + ), dim=-1).reshape(-1, 3)) + cube_grid = torch.stack(grid_points, dim=0).to(planes.device) + + features = self.forward_points(planes, cube_grid) + + # reshape into grid + features = { + k: v.reshape(N, grid_size, grid_size, grid_size, -1) + for k, v in features.items() + } + return features + + def forward_points(self, planes, points: torch.Tensor, chunk_size: int = 2**20): + # planes: (N, 3, D', H', W') + # points: (N, P, 3) + N, P = points.shape[:2] + + # query triplane in chunks + outs = [] + for i in range(0, points.shape[1], chunk_size): + chunk_points = points[:, i:i+chunk_size] + + # query triplane + chunk_out = self.renderer.run_model_activated( + planes=planes, + decoder=self.decoder, + sample_coordinates=chunk_points, + sample_directions=torch.zeros_like(chunk_points), + options=self.rendering_kwargs, + ) + outs.append(chunk_out) + + # concatenate the outputs + point_features = { + k: torch.cat([out[k] for out in outs], dim=1) + for k in outs[0].keys() + } + return point_features diff --git a/src/models/renderer/synthesizer_mesh.py b/src/models/renderer/synthesizer_mesh.py new file mode 100755 index 0000000000000000000000000000000000000000..dc31838315b33781560b3623c030443eeae24147 --- /dev/null +++ b/src/models/renderer/synthesizer_mesh.py @@ -0,0 +1,141 @@ +# ORIGINAL LICENSE +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# Modified by Jiale Xu +# The modifications are subject to the same license as the original. + +import itertools +import torch +import torch.nn as nn + +from .utils.renderer import generate_planes, project_onto_planes, sample_from_planes + + +class OSGDecoder(nn.Module): + """ + Triplane decoder that gives RGB and sigma values from sampled features. + Using ReLU here instead of Softplus in the original implementation. + + Reference: + EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112 + """ + def __init__(self, n_features: int, + hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU): + super().__init__() + + self.net_sdf = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 1), + ) + self.net_rgb = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 3), + ) + self.net_deformation = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 3), + ) + self.net_weight = nn.Sequential( + nn.Linear(8 * 3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 21), + ) + + # init all bias to zero + for m in self.modules(): + if isinstance(m, nn.Linear): + nn.init.zeros_(m.bias) + + def get_geometry_prediction(self, sampled_features, flexicubes_indices): + _N, n_planes, _M, _C = sampled_features.shape + sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) + + sdf = self.net_sdf(sampled_features) + deformation = self.net_deformation(sampled_features) + + grid_features = torch.index_select(input=sampled_features, index=flexicubes_indices.reshape(-1), dim=1) + grid_features = grid_features.reshape( + sampled_features.shape[0], flexicubes_indices.shape[0], flexicubes_indices.shape[1] * sampled_features.shape[-1]) + weight = self.net_weight(grid_features) * 0.1 + + return sdf, deformation, weight + + def get_texture_prediction(self, sampled_features): + _N, n_planes, _M, _C = sampled_features.shape + sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) + + rgb = self.net_rgb(sampled_features) + rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF + + return rgb + + +class TriplaneSynthesizer(nn.Module): + """ + Synthesizer that renders a triplane volume with planes and a camera. + + Reference: + EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19 + """ + + DEFAULT_RENDERING_KWARGS = { + 'ray_start': 'auto', + 'ray_end': 'auto', + 'box_warp': 2., + 'white_back': True, + 'disparity_space_sampling': False, + 'clamp_mode': 'softplus', + 'sampler_bbox_min': -1., + 'sampler_bbox_max': 1., + } + + def __init__(self, triplane_dim: int, samples_per_ray: int): + super().__init__() + + # attributes + self.triplane_dim = triplane_dim + self.rendering_kwargs = { + **self.DEFAULT_RENDERING_KWARGS, + 'depth_resolution': samples_per_ray // 2, + 'depth_resolution_importance': samples_per_ray // 2, + } + + # modules + self.plane_axes = generate_planes() + self.decoder = OSGDecoder(n_features=triplane_dim) + + def get_geometry_prediction(self, planes, sample_coordinates, flexicubes_indices): + plane_axes = self.plane_axes.to(planes.device) + sampled_features = sample_from_planes( + plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp']) + + sdf, deformation, weight = self.decoder.get_geometry_prediction(sampled_features, flexicubes_indices) + return sdf, deformation, weight + + def get_texture_prediction(self, planes, sample_coordinates): + plane_axes = self.plane_axes.to(planes.device) + sampled_features = sample_from_planes( + plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp']) + + rgb = self.decoder.get_texture_prediction(sampled_features) + return rgb diff --git a/src/models/renderer/utils/__init__.py b/src/models/renderer/utils/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..2c772e4fa331c678cfff50884be94d7d31835b34 --- /dev/null +++ b/src/models/renderer/utils/__init__.py @@ -0,0 +1,9 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. diff --git a/src/models/renderer/utils/math_utils.py b/src/models/renderer/utils/math_utils.py new file mode 100755 index 0000000000000000000000000000000000000000..4cf9d2b811e0acbc7923bc9126e010b52cb1a8af --- /dev/null +++ b/src/models/renderer/utils/math_utils.py @@ -0,0 +1,118 @@ +# MIT License + +# Copyright (c) 2022 Petr Kellnhofer + +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: + +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. + +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +import torch + +def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor: + """ + Left-multiplies MxM @ NxM. Returns NxM. + """ + res = torch.matmul(vectors4, matrix.T) + return res + + +def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor: + """ + Normalize vector lengths. + """ + return vectors / (torch.norm(vectors, dim=-1, keepdim=True)) + +def torch_dot(x: torch.Tensor, y: torch.Tensor): + """ + Dot product of two tensors. + """ + return (x * y).sum(-1) + + +def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length): + """ + Author: Petr Kellnhofer + Intersects rays with the [-1, 1] NDC volume. + Returns min and max distance of entry. + Returns -1 for no intersection. + https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection + """ + o_shape = rays_o.shape + rays_o = rays_o.detach().reshape(-1, 3) + rays_d = rays_d.detach().reshape(-1, 3) + + + bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)] + bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)] + bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device) + is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device) + + # Precompute inverse for stability. + invdir = 1 / rays_d + sign = (invdir < 0).long() + + # Intersect with YZ plane. + tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] + tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] + + # Intersect with XZ plane. + tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] + tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] + + # Resolve parallel rays. + is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False + + # Use the shortest intersection. + tmin = torch.max(tmin, tymin) + tmax = torch.min(tmax, tymax) + + # Intersect with XY plane. + tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] + tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] + + # Resolve parallel rays. + is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False + + # Use the shortest intersection. + tmin = torch.max(tmin, tzmin) + tmax = torch.min(tmax, tzmax) + + # Mark invalid. + tmin[torch.logical_not(is_valid)] = -1 + tmax[torch.logical_not(is_valid)] = -2 + + return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1) + + +def linspace(start: torch.Tensor, stop: torch.Tensor, num: int): + """ + Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive. + Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch. + """ + # create a tensor of 'num' steps from 0 to 1 + steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1) + + # reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings + # - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript + # "cannot statically infer the expected size of a list in this contex", hence the code below + for i in range(start.ndim): + steps = steps.unsqueeze(-1) + + # the output starts at 'start' and increments until 'stop' in each dimension + out = start[None] + steps * (stop - start)[None] + + return out diff --git a/src/models/renderer/utils/ray_marcher.py b/src/models/renderer/utils/ray_marcher.py new file mode 100755 index 0000000000000000000000000000000000000000..ea1db43478de703509cdd04c684f92f8e283c5ad --- /dev/null +++ b/src/models/renderer/utils/ray_marcher.py @@ -0,0 +1,72 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. +# +# Modified by Jiale Xu +# The modifications are subject to the same license as the original. + + +""" +The ray marcher takes the raw output of the implicit representation and uses the volume rendering equation to produce composited colors and depths. +Based off of the implementation in MipNeRF (this one doesn't do any cone tracing though!) +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class MipRayMarcher2(nn.Module): + def __init__(self, activation_factory): + super().__init__() + self.activation_factory = activation_factory + + def run_forward(self, colors, densities, depths, rendering_options, normals=None): + dtype = colors.dtype + deltas = depths[:, :, 1:] - depths[:, :, :-1] + colors_mid = (colors[:, :, :-1] + colors[:, :, 1:]) / 2 + densities_mid = (densities[:, :, :-1] + densities[:, :, 1:]) / 2 + depths_mid = (depths[:, :, :-1] + depths[:, :, 1:]) / 2 + + # using factory mode for better usability + densities_mid = self.activation_factory(rendering_options)(densities_mid).to(dtype) + + density_delta = densities_mid * deltas + + alpha = 1 - torch.exp(-density_delta).to(dtype) + + alpha_shifted = torch.cat([torch.ones_like(alpha[:, :, :1]), 1-alpha + 1e-10], -2) + weights = alpha * torch.cumprod(alpha_shifted, -2)[:, :, :-1] + weights = weights.to(dtype) + + composite_rgb = torch.sum(weights * colors_mid, -2) + weight_total = weights.sum(2) + # composite_depth = torch.sum(weights * depths_mid, -2) / weight_total + composite_depth = torch.sum(weights * depths_mid, -2) + + # clip the composite to min/max range of depths + composite_depth = torch.nan_to_num(composite_depth, float('inf')).to(dtype) + composite_depth = torch.clamp(composite_depth, torch.min(depths), torch.max(depths)) + + if rendering_options.get('white_back', False): + composite_rgb = composite_rgb + 1 - weight_total + + # rendered value scale is 0-1, comment out original mipnerf scaling + # composite_rgb = composite_rgb * 2 - 1 # Scale to (-1, 1) + + return composite_rgb, composite_depth, weights + + + def forward(self, colors, densities, depths, rendering_options, normals=None): + if normals is not None: + composite_rgb, composite_depth, composite_normals, weights = self.run_forward(colors, densities, depths, rendering_options, normals) + return composite_rgb, composite_depth, composite_normals, weights + + composite_rgb, composite_depth, weights = self.run_forward(colors, densities, depths, rendering_options) + return composite_rgb, composite_depth, weights diff --git a/src/models/renderer/utils/ray_sampler.py b/src/models/renderer/utils/ray_sampler.py new file mode 100755 index 0000000000000000000000000000000000000000..ae5151dda467e826ce346986bd486d4465c906f2 --- /dev/null +++ b/src/models/renderer/utils/ray_sampler.py @@ -0,0 +1,141 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. +# +# Modified by Jiale Xu +# The modifications are subject to the same license as the original. + + +""" +The ray sampler is a module that takes in camera matrices and resolution and batches of rays. +Expects cam2world matrices that use the OpenCV camera coordinate system conventions. +""" + +import torch + +class RaySampler(torch.nn.Module): + def __init__(self): + super().__init__() + self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None + + + def forward(self, cam2world_matrix, intrinsics, render_size): + """ + Create batches of rays and return origins and directions. + + cam2world_matrix: (N, 4, 4) + intrinsics: (N, 3, 3) + render_size: int + + ray_origins: (N, M, 3) + ray_dirs: (N, M, 2) + """ + + dtype = cam2world_matrix.dtype + device = cam2world_matrix.device + N, M = cam2world_matrix.shape[0], render_size**2 + cam_locs_world = cam2world_matrix[:, :3, 3] + fx = intrinsics[:, 0, 0] + fy = intrinsics[:, 1, 1] + cx = intrinsics[:, 0, 2] + cy = intrinsics[:, 1, 2] + sk = intrinsics[:, 0, 1] + + uv = torch.stack(torch.meshgrid( + torch.arange(render_size, dtype=dtype, device=device), + torch.arange(render_size, dtype=dtype, device=device), + indexing='ij', + )) + uv = uv.flip(0).reshape(2, -1).transpose(1, 0) + uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1) + + x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size) + y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size) + z_cam = torch.ones((N, M), dtype=dtype, device=device) + + x_lift = (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam + y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam + + cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1).to(dtype) + + _opencv2blender = torch.tensor([ + [1, 0, 0, 0], + [0, -1, 0, 0], + [0, 0, -1, 0], + [0, 0, 0, 1], + ], dtype=dtype, device=device).unsqueeze(0).repeat(N, 1, 1) + + cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender) + + world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3] + + ray_dirs = world_rel_points - cam_locs_world[:, None, :] + ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2).to(dtype) + + ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1) + + return ray_origins, ray_dirs + + +class OrthoRaySampler(torch.nn.Module): + def __init__(self): + super().__init__() + self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None + + + def forward(self, cam2world_matrix, ortho_scale, render_size): + """ + Create batches of rays and return origins and directions. + + cam2world_matrix: (N, 4, 4) + ortho_scale: float + render_size: int + + ray_origins: (N, M, 3) + ray_dirs: (N, M, 3) + """ + + N, M = cam2world_matrix.shape[0], render_size**2 + + uv = torch.stack(torch.meshgrid( + torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device), + torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device), + indexing='ij', + )) + uv = uv.flip(0).reshape(2, -1).transpose(1, 0) + uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1) + + x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size) + y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size) + z_cam = torch.zeros((N, M), device=cam2world_matrix.device) + + x_lift = (x_cam - 0.5) * ortho_scale + y_lift = (y_cam - 0.5) * ortho_scale + + cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1) + + _opencv2blender = torch.tensor([ + [1, 0, 0, 0], + [0, -1, 0, 0], + [0, 0, -1, 0], + [0, 0, 0, 1], + ], dtype=torch.float32, device=cam2world_matrix.device).unsqueeze(0).repeat(N, 1, 1) + + cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender) + + ray_origins = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3] + + ray_dirs_cam = torch.stack([ + torch.zeros((N, M), device=cam2world_matrix.device), + torch.zeros((N, M), device=cam2world_matrix.device), + torch.ones((N, M), device=cam2world_matrix.device), + ], dim=-1) + ray_dirs = torch.bmm(cam2world_matrix[:, :3, :3], ray_dirs_cam.permute(0, 2, 1)).permute(0, 2, 1) + + return ray_origins, ray_dirs diff --git a/src/models/renderer/utils/renderer.py b/src/models/renderer/utils/renderer.py new file mode 100755 index 0000000000000000000000000000000000000000..95c4c728efbd0283b8ddd7dc6a1b28d1510efa97 --- /dev/null +++ b/src/models/renderer/utils/renderer.py @@ -0,0 +1,323 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. +# +# Modified by Jiale Xu +# The modifications are subject to the same license as the original. + + +""" +The renderer is a module that takes in rays, decides where to sample along each +ray, and computes pixel colors using the volume rendering equation. +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .ray_marcher import MipRayMarcher2 +from . import math_utils + + +def generate_planes(): + """ + Defines planes by the three vectors that form the "axes" of the + plane. Should work with arbitrary number of planes and planes of + arbitrary orientation. + + Bugfix reference: https://github.com/NVlabs/eg3d/issues/67 + """ + return torch.tensor([[[1, 0, 0], + [0, 1, 0], + [0, 0, 1]], + [[1, 0, 0], + [0, 0, 1], + [0, 1, 0]], + [[0, 0, 1], + [0, 1, 0], + [1, 0, 0]]], dtype=torch.float32) + +def project_onto_planes(planes, coordinates): + """ + Does a projection of a 3D point onto a batch of 2D planes, + returning 2D plane coordinates. + + Takes plane axes of shape n_planes, 3, 3 + # Takes coordinates of shape N, M, 3 + # returns projections of shape N*n_planes, M, 2 + """ + N, M, C = coordinates.shape + n_planes, _, _ = planes.shape + coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3) + inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) + projections = torch.bmm(coordinates, inv_planes) + return projections[..., :2] + +def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): + assert padding_mode == 'zeros' + N, n_planes, C, H, W = plane_features.shape + _, M, _ = coordinates.shape + plane_features = plane_features.view(N*n_planes, C, H, W) + dtype = plane_features.dtype + + coordinates = (2/box_warp) * coordinates # add specific box bounds + + projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1) + output_features = torch.nn.functional.grid_sample( + plane_features, + projected_coordinates.to(dtype), + mode=mode, + padding_mode=padding_mode, + align_corners=False, + ).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) + return output_features + +def sample_from_3dgrid(grid, coordinates): + """ + Expects coordinates in shape (batch_size, num_points_per_batch, 3) + Expects grid in shape (1, channels, H, W, D) + (Also works if grid has batch size) + Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) + """ + batch_size, n_coords, n_dims = coordinates.shape + sampled_features = torch.nn.functional.grid_sample( + grid.expand(batch_size, -1, -1, -1, -1), + coordinates.reshape(batch_size, 1, 1, -1, n_dims), + mode='bilinear', + padding_mode='zeros', + align_corners=False, + ) + N, C, H, W, D = sampled_features.shape + sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) + return sampled_features + +class ImportanceRenderer(torch.nn.Module): + """ + Modified original version to filter out-of-box samples as TensoRF does. + + Reference: + TensoRF: https://github.com/apchenstu/TensoRF/blob/main/models/tensorBase.py#L277 + """ + def __init__(self): + super().__init__() + self.activation_factory = self._build_activation_factory() + self.ray_marcher = MipRayMarcher2(self.activation_factory) + self.plane_axes = generate_planes() + + def _build_activation_factory(self): + def activation_factory(options: dict): + if options['clamp_mode'] == 'softplus': + return lambda x: F.softplus(x - 1) # activation bias of -1 makes things initialize better + else: + assert False, "Renderer only supports `clamp_mode`=`softplus`!" + return activation_factory + + def _forward_pass(self, depths: torch.Tensor, ray_directions: torch.Tensor, ray_origins: torch.Tensor, + planes: torch.Tensor, decoder: nn.Module, rendering_options: dict): + """ + Additional filtering is applied to filter out-of-box samples. + Modifications made by Zexin He. + """ + + # context related variables + batch_size, num_rays, samples_per_ray, _ = depths.shape + device = depths.device + + # define sample points with depths + sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) + sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) + + # filter out-of-box samples + mask_inbox = \ + (rendering_options['sampler_bbox_min'] <= sample_coordinates) & \ + (sample_coordinates <= rendering_options['sampler_bbox_max']) + mask_inbox = mask_inbox.all(-1) + + # forward model according to all samples + _out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) + + # set out-of-box samples to zeros(rgb) & -inf(sigma) + SAFE_GUARD = 3 + DATA_TYPE = _out['sigma'].dtype + colors_pass = torch.zeros(batch_size, num_rays * samples_per_ray, 3, device=device, dtype=DATA_TYPE) + densities_pass = torch.nan_to_num(torch.full((batch_size, num_rays * samples_per_ray, 1), -float('inf'), device=device, dtype=DATA_TYPE)) / SAFE_GUARD + colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][mask_inbox], _out['sigma'][mask_inbox] + + # reshape back + colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1]) + densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1]) + + return colors_pass, densities_pass + + def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options): + # self.plane_axes = self.plane_axes.to(ray_origins.device) + + if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto': + ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) + is_ray_valid = ray_end > ray_start + if torch.any(is_ray_valid).item(): + ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() + ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() + depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) + else: + # Create stratified depth samples + depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) + + # Coarse Pass + colors_coarse, densities_coarse = self._forward_pass( + depths=depths_coarse, ray_directions=ray_directions, ray_origins=ray_origins, + planes=planes, decoder=decoder, rendering_options=rendering_options) + + # Fine Pass + N_importance = rendering_options['depth_resolution_importance'] + if N_importance > 0: + _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) + + depths_fine = self.sample_importance(depths_coarse, weights, N_importance) + + colors_fine, densities_fine = self._forward_pass( + depths=depths_fine, ray_directions=ray_directions, ray_origins=ray_origins, + planes=planes, decoder=decoder, rendering_options=rendering_options) + + all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, + depths_fine, colors_fine, densities_fine) + + rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) + else: + rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) + + return rgb_final, depth_final, weights.sum(2) + + def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): + plane_axes = self.plane_axes.to(planes.device) + sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) + + out = decoder(sampled_features, sample_directions) + if options.get('density_noise', 0) > 0: + out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] + return out + + def run_model_activated(self, planes, decoder, sample_coordinates, sample_directions, options): + out = self.run_model(planes, decoder, sample_coordinates, sample_directions, options) + out['sigma'] = self.activation_factory(options)(out['sigma']) + return out + + def sort_samples(self, all_depths, all_colors, all_densities): + _, indices = torch.sort(all_depths, dim=-2) + all_depths = torch.gather(all_depths, -2, indices) + all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) + all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) + return all_depths, all_colors, all_densities + + def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2, normals1=None, normals2=None): + all_depths = torch.cat([depths1, depths2], dim = -2) + all_colors = torch.cat([colors1, colors2], dim = -2) + all_densities = torch.cat([densities1, densities2], dim = -2) + + if normals1 is not None and normals2 is not None: + all_normals = torch.cat([normals1, normals2], dim = -2) + else: + all_normals = None + + _, indices = torch.sort(all_depths, dim=-2) + all_depths = torch.gather(all_depths, -2, indices) + all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) + all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) + + if all_normals is not None: + all_normals = torch.gather(all_normals, -2, indices.expand(-1, -1, -1, all_normals.shape[-1])) + return all_depths, all_colors, all_normals, all_densities + + return all_depths, all_colors, all_densities + + def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): + """ + Return depths of approximately uniformly spaced samples along rays. + """ + N, M, _ = ray_origins.shape + if disparity_space_sampling: + depths_coarse = torch.linspace(0, + 1, + depth_resolution, + device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) + depth_delta = 1/(depth_resolution - 1) + depths_coarse += torch.rand_like(depths_coarse) * depth_delta + depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) + else: + if type(ray_start) == torch.Tensor: + depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) + depth_delta = (ray_end - ray_start) / (depth_resolution - 1) + depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] + else: + depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) + depth_delta = (ray_end - ray_start)/(depth_resolution - 1) + depths_coarse += torch.rand_like(depths_coarse) * depth_delta + + return depths_coarse + + def sample_importance(self, z_vals, weights, N_importance): + """ + Return depths of importance sampled points along rays. See NeRF importance sampling for more. + """ + with torch.no_grad(): + batch_size, num_rays, samples_per_ray, _ = z_vals.shape + + z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) + weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher + + # smooth weights + weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1), 2, 1, padding=1) + weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() + weights = weights + 0.01 + + z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) + importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], + N_importance).detach().reshape(batch_size, num_rays, N_importance, 1) + return importance_z_vals + + def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): + """ + Sample @N_importance samples from @bins with distribution defined by @weights. + Inputs: + bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" + weights: (N_rays, N_samples_) + N_importance: the number of samples to draw from the distribution + det: deterministic or not + eps: a small number to prevent division by zero + Outputs: + samples: the sampled samples + """ + N_rays, N_samples_ = weights.shape + weights = weights + eps # prevent division by zero (don't do inplace op!) + pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) + cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function + cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) + # padded to 0~1 inclusive + + if det: + u = torch.linspace(0, 1, N_importance, device=bins.device) + u = u.expand(N_rays, N_importance) + else: + u = torch.rand(N_rays, N_importance, device=bins.device) + u = u.contiguous() + + inds = torch.searchsorted(cdf, u, right=True) + below = torch.clamp_min(inds-1, 0) + above = torch.clamp_max(inds, N_samples_) + + inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) + cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) + bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) + + denom = cdf_g[...,1]-cdf_g[...,0] + denom[denom 0 and radius > 0 + + elevation = np.deg2rad(elevation) + + camera_positions = [] + for i in range(M): + azimuth = 2 * np.pi * i / M + x = radius * np.cos(elevation) * np.cos(azimuth) + y = radius * np.cos(elevation) * np.sin(azimuth) + z = radius * np.sin(elevation) + camera_positions.append([x, y, z]) + camera_positions = np.array(camera_positions) + camera_positions = torch.from_numpy(camera_positions).float() + extrinsics = center_looking_at_camera_pose(camera_positions) + return extrinsics + + +def FOV_to_intrinsics(fov, device='cpu'): + """ + Creates a 3x3 camera intrinsics matrix from the camera field of view, specified in degrees. + Note the intrinsics are returned as normalized by image size, rather than in pixel units. + Assumes principal point is at image center. + """ + focal_length = 0.5 / np.tan(np.deg2rad(fov) * 0.5) + intrinsics = torch.tensor([[focal_length, 0, 0.5], [0, focal_length, 0.5], [0, 0, 1]], device=device) + return intrinsics + + +def get_zero123plus_input_cameras(batch_size=1, radius=4.0, fov=30.0): + """ + Get the input camera parameters. + """ + azimuths = np.array([30, 90, 150, 210, 270, 330]).astype(float) + elevations = np.array([20, -10, 20, -10, 20, -10]).astype(float) + + c2ws = spherical_camera_pose(azimuths, elevations, radius) + c2ws = c2ws.float().flatten(-2) + + Ks = FOV_to_intrinsics(fov).unsqueeze(0).repeat(6, 1, 1).float().flatten(-2) + + extrinsics = c2ws[:, :12] + intrinsics = torch.stack([Ks[:, 0], Ks[:, 4], Ks[:, 2], Ks[:, 5]], dim=-1) + cameras = torch.cat([extrinsics, intrinsics], dim=-1) + + return cameras.unsqueeze(0).repeat(batch_size, 1, 1) diff --git a/src/utils/infer_util.py b/src/utils/infer_util.py new file mode 100644 index 0000000000000000000000000000000000000000..89cd078214afcc0e3dadafea5fbbb9ac005ea476 --- /dev/null +++ b/src/utils/infer_util.py @@ -0,0 +1,84 @@ +import os +import imageio +import rembg +import torch +import numpy as np +import PIL.Image +from PIL import Image +from typing import Any + + +def remove_background(image: PIL.Image.Image, + rembg_session: Any = None, + force: bool = False, + **rembg_kwargs, +) -> PIL.Image.Image: + do_remove = True + if image.mode == "RGBA" and image.getextrema()[3][0] < 255: + do_remove = False + do_remove = do_remove or force + if do_remove: + image = rembg.remove(image, session=rembg_session, **rembg_kwargs) + return image + + +def resize_foreground( + image: PIL.Image.Image, + ratio: float, +) -> PIL.Image.Image: + image = np.array(image) + assert image.shape[-1] == 4 + alpha = np.where(image[..., 3] > 0) + y1, y2, x1, x2 = ( + alpha[0].min(), + alpha[0].max(), + alpha[1].min(), + alpha[1].max(), + ) + # crop the foreground + fg = image[y1:y2, x1:x2] + # pad to square + size = max(fg.shape[0], fg.shape[1]) + ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 + ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 + new_image = np.pad( + fg, + ((ph0, ph1), (pw0, pw1), (0, 0)), + mode="constant", + constant_values=((0, 0), (0, 0), (0, 0)), + ) + + # compute padding according to the ratio + new_size = int(new_image.shape[0] / ratio) + # pad to size, double side + ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 + ph1, pw1 = new_size - size - ph0, new_size - size - pw0 + new_image = np.pad( + new_image, + ((ph0, ph1), (pw0, pw1), (0, 0)), + mode="constant", + constant_values=((0, 0), (0, 0), (0, 0)), + ) + new_image = PIL.Image.fromarray(new_image) + return new_image + + +def images_to_video( + images: torch.Tensor, + output_path: str, + fps: int = 30, +) -> None: + # images: (N, C, H, W) + video_dir = os.path.dirname(output_path) + video_name = os.path.basename(output_path) + os.makedirs(video_dir, exist_ok=True) + + frames = [] + for i in range(len(images)): + frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) + assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ + f"Frame shape mismatch: {frame.shape} vs {images.shape}" + assert frame.min() >= 0 and frame.max() <= 255, \ + f"Frame value out of range: {frame.min()} ~ {frame.max()}" + frames.append(frame) + imageio.mimwrite(output_path, np.stack(frames), fps=fps, quality=10) \ No newline at end of file diff --git a/src/utils/mesh_util.py b/src/utils/mesh_util.py new file mode 100755 index 0000000000000000000000000000000000000000..33b40dd7a34759ba81fe7037ee075882ad7a25bf --- /dev/null +++ b/src/utils/mesh_util.py @@ -0,0 +1,165 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import xatlas +import trimesh +import cv2 +import numpy as np +import nvdiffrast.torch as dr +from PIL import Image + + +def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fname): + mesh = trimesh.Trimesh( + vertices=pointnp_px3, + faces=facenp_fx3, + vertex_colors=colornp_px3, + ) + mesh.export(fname, 'obj') + + +def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname): + import os + fol, na = os.path.split(fname) + na, _ = os.path.splitext(na) + + matname = '%s/%s.mtl' % (fol, na) + fid = open(matname, 'w') + fid.write('newmtl material_0\n') + fid.write('Kd 1 1 1\n') + fid.write('Ka 0 0 0\n') + fid.write('Ks 0.4 0.4 0.4\n') + fid.write('Ns 10\n') + fid.write('illum 2\n') + fid.write('map_Kd %s.png\n' % na) + fid.close() + #### + + fid = open(fname, 'w') + fid.write('mtllib %s.mtl\n' % na) + + for pidx, p in enumerate(pointnp_px3): + pp = p + fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2])) + + for pidx, p in enumerate(tcoords_px2): + pp = p + fid.write('vt %f %f\n' % (pp[0], pp[1])) + + fid.write('usemtl material_0\n') + for i, f in enumerate(facenp_fx3): + f1 = f + 1 + f2 = facetex_fx3[i] + 1 + fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) + fid.close() + + # save texture map + lo, hi = 0, 1 + img = np.asarray(texmap_hxwx3, dtype=np.float32) + img = (img - lo) * (255 / (hi - lo)) + img = img.clip(0, 255) + mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True) + mask = (mask <= 3.0).astype(np.float32) + kernel = np.ones((3, 3), 'uint8') + dilate_img = cv2.dilate(img, kernel, iterations=1) + img = img * (1 - mask) + dilate_img * mask + img = img.clip(0, 255).astype(np.uint8) + Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png') + + +def loadobj(meshfile): + v = [] + f = [] + meshfp = open(meshfile, 'r') + for line in meshfp.readlines(): + data = line.strip().split(' ') + data = [da for da in data if len(da) > 0] + if len(data) != 4: + continue + if data[0] == 'v': + v.append([float(d) for d in data[1:]]) + if data[0] == 'f': + data = [da.split('/')[0] for da in data] + f.append([int(d) for d in data[1:]]) + meshfp.close() + + # torch need int64 + facenp_fx3 = np.array(f, dtype=np.int64) - 1 + pointnp_px3 = np.array(v, dtype=np.float32) + return pointnp_px3, facenp_fx3 + + +def loadobjtex(meshfile): + v = [] + vt = [] + f = [] + ft = [] + meshfp = open(meshfile, 'r') + for line in meshfp.readlines(): + data = line.strip().split(' ') + data = [da for da in data if len(da) > 0] + if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)): + continue + if data[0] == 'v': + assert len(data) == 4 + + v.append([float(d) for d in data[1:]]) + if data[0] == 'vt': + if len(data) == 3 or len(data) == 4: + vt.append([float(d) for d in data[1:3]]) + if data[0] == 'f': + data = [da.split('/') for da in data] + if len(data) == 4: + f.append([int(d[0]) for d in data[1:]]) + ft.append([int(d[1]) for d in data[1:]]) + elif len(data) == 5: + idx1 = [1, 2, 3] + data1 = [data[i] for i in idx1] + f.append([int(d[0]) for d in data1]) + ft.append([int(d[1]) for d in data1]) + idx2 = [1, 3, 4] + data2 = [data[i] for i in idx2] + f.append([int(d[0]) for d in data2]) + ft.append([int(d[1]) for d in data2]) + meshfp.close() + + # torch need int64 + facenp_fx3 = np.array(f, dtype=np.int64) - 1 + ftnp_fx3 = np.array(ft, dtype=np.int64) - 1 + pointnp_px3 = np.array(v, dtype=np.float32) + uvs = np.array(vt, dtype=np.float32) + return pointnp_px3, facenp_fx3, uvs, ftnp_fx3 + + +# ============================================================================================== +def interpolate(attr, rast, attr_idx, rast_db=None): + return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') + + +def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): + vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) + + # Convert to tensors + indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) + + uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) + mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) + # mesh_v_tex. ture + uv_clip = uvs[None, ...] * 2.0 - 1.0 + + # pad to four component coordinate + uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) + + # rasterize + rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) + + # Interpolate world space position + gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) + mask = rast[..., 3:4] > 0 + return uvs, mesh_tex_idx, gb_pos, mask diff --git a/src/utils/train_util.py b/src/utils/train_util.py new file mode 100755 index 0000000000000000000000000000000000000000..2e65421bffa8cc42c1517e86f2dfd8183caf52ab --- /dev/null +++ b/src/utils/train_util.py @@ -0,0 +1,26 @@ +import importlib + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def instantiate_from_config(config): + if not "target" in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) diff --git a/zero123plus/pipeline.py b/zero123plus/pipeline.py new file mode 100755 index 0000000000000000000000000000000000000000..0088218346b36f07662d051670e51c658df59f1f --- /dev/null +++ b/zero123plus/pipeline.py @@ -0,0 +1,406 @@ +from typing import Any, Dict, Optional +from diffusers.models import AutoencoderKL, UNet2DConditionModel +from diffusers.schedulers import KarrasDiffusionSchedulers + +import numpy +import torch +import torch.nn as nn +import torch.utils.checkpoint +import torch.distributed +import transformers +from collections import OrderedDict +from PIL import Image +from torchvision import transforms +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer + +import diffusers +from diffusers import ( + AutoencoderKL, + DDPMScheduler, + DiffusionPipeline, + EulerAncestralDiscreteScheduler, + UNet2DConditionModel, + ImagePipelineOutput +) +from diffusers.image_processor import VaeImageProcessor +from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0 +from diffusers.utils.import_utils import is_xformers_available + + +def to_rgb_image(maybe_rgba: Image.Image): + if maybe_rgba.mode == 'RGB': + return maybe_rgba + elif maybe_rgba.mode == 'RGBA': + rgba = maybe_rgba + img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8) + img = Image.fromarray(img, 'RGB') + img.paste(rgba, mask=rgba.getchannel('A')) + return img + else: + raise ValueError("Unsupported image type.", maybe_rgba.mode) + + +class ReferenceOnlyAttnProc(torch.nn.Module): + def __init__( + self, + chained_proc, + enabled=False, + name=None + ) -> None: + super().__init__() + self.enabled = enabled + self.chained_proc = chained_proc + self.name = name + + def __call__( + self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, + mode="w", ref_dict: dict = None, is_cfg_guidance = False + ) -> Any: + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + if self.enabled and is_cfg_guidance: + res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask) + hidden_states = hidden_states[1:] + encoder_hidden_states = encoder_hidden_states[1:] + if self.enabled: + if mode == 'w': + ref_dict[self.name] = encoder_hidden_states + elif mode == 'r': + encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1) + elif mode == 'm': + encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1) + else: + assert False, mode + res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask) + if self.enabled and is_cfg_guidance: + res = torch.cat([res0, res]) + return res + + +class RefOnlyNoisedUNet(torch.nn.Module): + def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None: + super().__init__() + self.unet = unet + self.train_sched = train_sched + self.val_sched = val_sched + + unet_lora_attn_procs = dict() + for name, _ in unet.attn_processors.items(): + if torch.__version__ >= '2.0': + default_attn_proc = AttnProcessor2_0() + elif is_xformers_available(): + default_attn_proc = XFormersAttnProcessor() + else: + default_attn_proc = AttnProcessor() + unet_lora_attn_procs[name] = ReferenceOnlyAttnProc( + default_attn_proc, enabled=name.endswith("attn1.processor"), name=name + ) + unet.set_attn_processor(unet_lora_attn_procs) + + def __getattr__(self, name: str): + try: + return super().__getattr__(name) + except AttributeError: + return getattr(self.unet, name) + + def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs): + if is_cfg_guidance: + encoder_hidden_states = encoder_hidden_states[1:] + class_labels = class_labels[1:] + self.unet( + noisy_cond_lat, timestep, + encoder_hidden_states=encoder_hidden_states, + class_labels=class_labels, + cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), + **kwargs + ) + + def forward( + self, sample, timestep, encoder_hidden_states, class_labels=None, + *args, cross_attention_kwargs, + down_block_res_samples=None, mid_block_res_sample=None, + **kwargs + ): + cond_lat = cross_attention_kwargs['cond_lat'] + is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False) + noise = torch.randn_like(cond_lat) + if self.training: + noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) + noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep) + else: + noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1)) + noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1)) + ref_dict = {} + self.forward_cond( + noisy_cond_lat, timestep, + encoder_hidden_states, class_labels, + ref_dict, is_cfg_guidance, **kwargs + ) + weight_dtype = self.unet.dtype + return self.unet( + sample, timestep, + encoder_hidden_states, *args, + class_labels=class_labels, + cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance), + down_block_additional_residuals=[ + sample.to(dtype=weight_dtype) for sample in down_block_res_samples + ] if down_block_res_samples is not None else None, + mid_block_additional_residual=( + mid_block_res_sample.to(dtype=weight_dtype) + if mid_block_res_sample is not None else None + ), + **kwargs + ) + + +def scale_latents(latents): + latents = (latents - 0.22) * 0.75 + return latents + + +def unscale_latents(latents): + latents = latents / 0.75 + 0.22 + return latents + + +def scale_image(image): + image = image * 0.5 / 0.8 + return image + + +def unscale_image(image): + image = image / 0.5 * 0.8 + return image + + +class DepthControlUNet(torch.nn.Module): + def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None: + super().__init__() + self.unet = unet + if controlnet is None: + self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet) + else: + self.controlnet = controlnet + DefaultAttnProc = AttnProcessor2_0 + if is_xformers_available(): + DefaultAttnProc = XFormersAttnProcessor + self.controlnet.set_attn_processor(DefaultAttnProc()) + self.conditioning_scale = conditioning_scale + + def __getattr__(self, name: str): + try: + return super().__getattr__(name) + except AttributeError: + return getattr(self.unet, name) + + def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs): + cross_attention_kwargs = dict(cross_attention_kwargs) + control_depth = cross_attention_kwargs.pop('control_depth') + down_block_res_samples, mid_block_res_sample = self.controlnet( + sample, + timestep, + encoder_hidden_states=encoder_hidden_states, + controlnet_cond=control_depth, + conditioning_scale=self.conditioning_scale, + return_dict=False, + ) + return self.unet( + sample, + timestep, + encoder_hidden_states=encoder_hidden_states, + down_block_res_samples=down_block_res_samples, + mid_block_res_sample=mid_block_res_sample, + cross_attention_kwargs=cross_attention_kwargs + ) + + +class ModuleListDict(torch.nn.Module): + def __init__(self, procs: dict) -> None: + super().__init__() + self.keys = sorted(procs.keys()) + self.values = torch.nn.ModuleList(procs[k] for k in self.keys) + + def __getitem__(self, key): + return self.values[self.keys.index(key)] + + +class SuperNet(torch.nn.Module): + def __init__(self, state_dict: Dict[str, torch.Tensor]): + super().__init__() + state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys())) + self.layers = torch.nn.ModuleList(state_dict.values()) + self.mapping = dict(enumerate(state_dict.keys())) + self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} + + # .processor for unet, .self_attn for text encoder + self.split_keys = [".processor", ".self_attn"] + + # we add a hook to state_dict() and load_state_dict() so that the + # naming fits with `unet.attn_processors` + def map_to(module, state_dict, *args, **kwargs): + new_state_dict = {} + for key, value in state_dict.items(): + num = int(key.split(".")[1]) # 0 is always "layers" + new_key = key.replace(f"layers.{num}", module.mapping[num]) + new_state_dict[new_key] = value + + return new_state_dict + + def remap_key(key, state_dict): + for k in self.split_keys: + if k in key: + return key.split(k)[0] + k + return key.split('.')[0] + + def map_from(module, state_dict, *args, **kwargs): + all_keys = list(state_dict.keys()) + for key in all_keys: + replace_key = remap_key(key, state_dict) + new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") + state_dict[new_key] = state_dict[key] + del state_dict[key] + + self._register_state_dict_hook(map_to) + self._register_load_state_dict_pre_hook(map_from, with_module=True) + + +class Zero123PlusPipeline(diffusers.StableDiffusionPipeline): + tokenizer: transformers.CLIPTokenizer + text_encoder: transformers.CLIPTextModel + vision_encoder: transformers.CLIPVisionModelWithProjection + + feature_extractor_clip: transformers.CLIPImageProcessor + unet: UNet2DConditionModel + scheduler: diffusers.schedulers.KarrasDiffusionSchedulers + + vae: AutoencoderKL + ramping: nn.Linear + + feature_extractor_vae: transformers.CLIPImageProcessor + + depth_transforms_multi = transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]) + ]) + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + scheduler: KarrasDiffusionSchedulers, + vision_encoder: transformers.CLIPVisionModelWithProjection, + feature_extractor_clip: CLIPImageProcessor, + feature_extractor_vae: CLIPImageProcessor, + ramping_coefficients: Optional[list] = None, + safety_checker=None, + ): + DiffusionPipeline.__init__(self) + + self.register_modules( + vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, + unet=unet, scheduler=scheduler, safety_checker=None, + vision_encoder=vision_encoder, + feature_extractor_clip=feature_extractor_clip, + feature_extractor_vae=feature_extractor_vae + ) + self.register_to_config(ramping_coefficients=ramping_coefficients) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def prepare(self): + train_sched = DDPMScheduler.from_config(self.scheduler.config) + if isinstance(self.unet, UNet2DConditionModel): + self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval() + + def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0): + self.prepare() + self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale) + return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)])) + + def encode_condition_image(self, image: torch.Tensor): + image = self.vae.encode(image).latent_dist.sample() + return image + + @torch.no_grad() + def __call__( + self, + image: Image.Image = None, + prompt = "", + *args, + num_images_per_prompt: Optional[int] = 1, + guidance_scale=4.0, + depth_image: Image.Image = None, + output_type: Optional[str] = "pil", + width=640, + height=960, + num_inference_steps=28, + return_dict=True, + **kwargs + ): + self.prepare() + if image is None: + raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.") + assert not isinstance(image, torch.Tensor) + image = to_rgb_image(image) + image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values + image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values + if depth_image is not None and hasattr(self.unet, "controlnet"): + depth_image = to_rgb_image(depth_image) + depth_image = self.depth_transforms_multi(depth_image).to( + device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype + ) + image = image_1.to(device=self.vae.device, dtype=self.vae.dtype) + image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) + cond_lat = self.encode_condition_image(image) + if guidance_scale > 1: + negative_lat = self.encode_condition_image(torch.zeros_like(image)) + cond_lat = torch.cat([negative_lat, cond_lat]) + encoded = self.vision_encoder(image_2, output_hidden_states=False) + global_embeds = encoded.image_embeds + global_embeds = global_embeds.unsqueeze(-2) + + if hasattr(self, "encode_prompt"): + encoder_hidden_states = self.encode_prompt( + prompt, + self.device, + num_images_per_prompt, + False + )[0] + else: + encoder_hidden_states = self._encode_prompt( + prompt, + self.device, + num_images_per_prompt, + False + ) + ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) + encoder_hidden_states = encoder_hidden_states + global_embeds * ramp + cak = dict(cond_lat=cond_lat) + if hasattr(self.unet, "controlnet"): + cak['control_depth'] = depth_image + latents: torch.Tensor = super().__call__( + None, + *args, + cross_attention_kwargs=cak, + guidance_scale=guidance_scale, + num_images_per_prompt=num_images_per_prompt, + prompt_embeds=encoder_hidden_states, + num_inference_steps=num_inference_steps, + output_type='latent', + width=width, + height=height, + **kwargs + ).images + latents = unscale_latents(latents) + if not output_type == "latent": + image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]) + else: + image = latents + + image = self.image_processor.postprocess(image, output_type=output_type) + if not return_dict: + return (image,) + + return ImagePipelineOutput(images=image)