File size: 2,185 Bytes
7f6ca6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d2570c
7f6ca6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import streamlit as st
import pandas as pd

# CSS样式
st.markdown("""
<style>
h1 {
    font-size: 2.5em;  /* 标题字体大小 */
}
.stDataFrame {
    font-family: Helvetica;
}
.dataframe th, .dataframe td {
    width: auto;
    min-width: 500px; 
}
</style>
""", unsafe_allow_html=True)

# 标题
st.title('🏆AEOLLM Leaderboard')

# 描述
st.markdown("""
This leaderboard is used to show the performance of the **automatic evaluation methods of LLMs** submitted by the **AEOLLM team** on four tasks:
- Summary Generation (SG)
- Non-Factoid QA (NFQA)
- Dialogue Generation (DG)
- Text Expansion (TE).
            
Details of AEOLLLM can be found at the link: [https://aeollm.github.io/](https://aeollm.github.io/)
""", unsafe_allow_html=True)
# 创建示例数据
SG = {
    "methods": ["Model A", "Model B", "Model C"],
    "team": ["U1", "U2", "U3"],
    "acc": [0.75, 0.64, 0.83],
    "tau": [0.05, 0.28, 0.16],
    "s": [0.12, 0.27, 0.18],
}
df1 = pd.DataFrame(SG)

NFQA = {
    "methods": ["Model A", "Model B", "Model C"],
    "team": ["U1", "U2", "U3"],
    "acc": [0.75, 0.64, 0.83],
    "tau": [0.05, 0.28, 0.16],
    "s": [0.12, 0.27, 0.18]
}
df2 = pd.DataFrame(NFQA)

DG = {
    "methods": ["Model A", "Model B", "Model C"],
    "team": ["U1", "U2", "U3"],
    "acc": [0.75, 0.64, 0.83],
    "tau": [0.05, 0.28, 0.16],
    "s": [0.12, 0.27, 0.18]
}
df3 = pd.DataFrame(DG)

TE = {
    "methods": ["Model A", "Model B", "Model C"],
    "team": ["U1", "U2", "U3"],
    "acc": [0.75, 0.64, 0.83],
    "tau": [0.05, 0.28, 0.16],
    "s": [0.12, 0.27, 0.18]
}
df4 = pd.DataFrame(TE)

# 创建标签页
tab1, tab2, tab3, tab4 = st.tabs(["SG", "NFQA", "DG", "TE"])

# 在标签页 1 中添加内容
with tab1:
    st.header("Summary Generation")
    st.dataframe(df1, use_container_width=True)

# 在标签页 2 中添加内容
with tab2:
    st.header("Non-Factoid QA")
    st.dataframe(df2, use_container_width=True)

# 在标签页 3 中添加内容
with tab3:
    st.header("Dialogue Generation")
    st.dataframe(df3, use_container_width=True)

# 在标签页 4 中添加内容
with tab4:
    st.header("Text Expansion")
    st.dataframe(df4, use_container_width=True, )