File size: 16,112 Bytes
7f6ca6e 6a26f80 7f6ca6e a52e4dc 6a26f80 4b6b54f 6a26f80 a52e4dc ed0637e c0fa552 ed0637e a52e4dc 342f2c9 a52e4dc 6280ba1 a52e4dc 6280ba1 a52e4dc 6280ba1 a52e4dc 6280ba1 a52e4dc 6280ba1 a52e4dc 6280ba1 a52e4dc 6280ba1 a52e4dc 7f6ca6e eaa1d85 7f6ca6e a52e4dc 6280ba1 a52e4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
# CSS样式
# st.markdown("""
# <style>
# h1 {
# font-size: 2.5em; /* 标题字体大小 */
# }
# .stDataFrame {
# font-family: Helvetica;
# }
# .dataframe th, .dataframe td {
# width: auto;
# min-width: 500px;
# }
# </style>
# """, unsafe_allow_html=True)
# # 标题
# st.title('🏆AEOLLM Leaderboard')
# # 描述
# st.markdown("""
# This leaderboard is used to show the performance of the **automatic evaluation methods of LLMs** submitted by the **AEOLLM team** on four tasks:
# - Dialogue Generation (DG)
# - Text Expansion (TE)
# - Summary Generation (SG)
# - Non-Factoid QA (NFQA)
# Details of AEOLLLM can be found at the link: [https://aeollm.github.io/](https://aeollm.github.io/)
# """, unsafe_allow_html=True)
# # 创建示例数据
# # teamId 唯一标识码
# DG = {
# "teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
# "methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
# "accuracy": [0.5806, 0.5483, 0.6001, 0.6472],
# "kendall's tau": [0.3243, 0.1739, 0.3042, 0.4167],
# "spearman": [0.3505, 0.1857, 0.3264, 0.4512]
# }
# df1 = pd.DataFrame(DG)
# for col in df1.select_dtypes(include=['float64', 'int64']).columns:
# df1[col] = df1[col].apply(lambda x: f"{x:.4f}")
# TE = {
# "teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
# "methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
# "accuracy": [0.5107, 0.5050, 0.5461, 0.5581],
# "kendall's tau": [0.1281, 0.0635, 0.2716, 0.3864],
# "spearman": [0.1352, 0.0667, 0.2867, 0.4157]
# }
# df2 = pd.DataFrame(TE)
# for col in df2.select_dtypes(include=['float64', 'int64']).columns:
# df2[col] = df2[col].apply(lambda x: f"{x:.4f}")
# SG = {
# "teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
# "methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
# "accuracy": [0.6504, 0.6014, 0.7162, 0.7441],
# "kendall's tau": [0.3957, 0.2688, 0.5092, 0.5001],
# "spearman": [0.4188, 0.2817, 0.5403, 0.5405],
# }
# df3 = pd.DataFrame(SG)
# for col in df3.select_dtypes(include=['float64', 'int64']).columns:
# df3[col] = df3[col].apply(lambda x: f"{x:.4f}")
# NFQA = {
# "teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
# "methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
# "accuracy": [0.5935, 0.5817, 0.7000, 0.7203],
# "kendall's tau": [0.2332, 0.2389, 0.4440, 0.4235],
# "spearman": [0.2443, 0.2492, 0.4630, 0.4511]
# }
# df4 = pd.DataFrame(NFQA)
# for col in df4.select_dtypes(include=['float64', 'int64']).columns:
# df4[col] = df4[col].apply(lambda x: f"{x:.4f}")
# # 创建标签页
# tab1, tab2, tab3, tab4 = st.tabs(["DG", "TE", "SG", "NFQA"])
# with tab1:
# st.markdown("""Task: Dialogue Generation; Dataset: DialyDialog""", unsafe_allow_html=True)
# st.dataframe(df1, use_container_width=True)
# with tab2:
# st.markdown("""Task: Text Expansion; Dataset: WritingPrompts""", unsafe_allow_html=True)
# st.dataframe(df2, use_container_width=True)
# with tab3:
# st.markdown("""Task: Summary Generation; Dataset: Xsum""", unsafe_allow_html=True)
# st.dataframe(df3, use_container_width=True)
# with tab4:
# st.markdown("""Task: Non-Factoid QA; Dataset: NF_CATS""", unsafe_allow_html=True)
# st.dataframe(df4, use_container_width=True)
# 设置页面标题和大标题
st.set_page_config(page_title="AEOLLM", page_icon="👋")
st.title("NTCIR-18 Automatic Evaluation of LLMs (AEOLLM) Task")
# 在侧边栏创建导航菜单
with st.sidebar:
page = option_menu(
"Navigation",
["Introduction", "Methodology", "Datasets", "Important Dates",
"Evaluation Measures", "Data and File format", "Submit",
"LeaderBoard", "Organisers", "References"],
icons=['house', 'book', 'database', 'calendar', 'clipboard', 'file', 'upload', 'trophy', 'people', 'book'],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "5px"},
"icon": {"color": "orange", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin":"0px", "--hover-color": "#6c757d"},
"nav-link-selected": {"background-color": "#FF6347"},
}
)
st.markdown("""
<style>
/* 统一调整所有 Markdown 文本的字体大小 */
.markdown-text-container {
font-size: 20px;
font-family: 'Times New Roman', serif;
line-height: 1.6; /* 设置行高 */
}
</style>
""", unsafe_allow_html=True)
# 根据选择的页面展示不同的内容
if page == "Introduction":
st.header("Introduction")
st.markdown("""
The Automatic Evaluation of LLMs (AEOLLM) task is a new core task in [NTCIR-18](http://research.nii.ac.jp/ntcir/ntcir-18) to support in-depth research on large language models (LLMs) evaluation. As LLMs grow popular in both fields of academia and industry, how to effectively evaluate the capacity of LLMs becomes an increasingly critical but still challenging issue. Existing methods can be divided into two types: manual evaluation, which is expensive, and automatic evaluation, which faces many limitations including the task format (the majority belong to multiple-choice questions) and evaluation criteria (occupied by reference-based metrics). To advance the innovation of automatic evaluation, we proposed the Automatic Evaluation of LLMs (AEOLLM) task which focuses on generative tasks and encourages reference-free methods. Besides, we set up diverse subtasks such as summary generation, non-factoid question answering, text expansion, and dialogue generation to comprehensively test different methods. We believe that the AEOLLM task will facilitate the development of the LLMs community.
""")
elif page == "Methodology":
st.header("Methodology")
st.image("asserts/method.svg", use_column_width=True)
st.markdown("""
<ol>
<li>First, we choose four subtasks as shown in the table below:</li>
<table>
<thead>
<tr>
<th style="text-align: left">Task</th>
<th style="text-align: left">Description</th>
<th style="text-align: left">Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">Summary Generation (SG)</td>
<td style="text-align: left">write a summary for the specified text</td>
<td style="text-align: left">XSum: over 226k news articles</td>
</tr>
<tr>
<td style="text-align: left">Non-Factoid QA (NFQA)</td>
<td style="text-align: left">construct long-form answers to open-ended non-factoid questions</td>
<td style="text-align: left">NF_CATS: 12k non-factoid questions</td>
</tr>
<tr>
<td style="text-align: left">Text Expansion (TE)</td>
<td style="text-align: left">given a theme, participants need to generate stories related to the theme</td>
<td style="text-align: left">WritingPrompts: 303k story themes2</td>
</tr>
<tr>
<td style="text-align: left">Dialogue Generation (DG)</td>
<td style="text-align: left">generate human-like responses to numerous topics in daily conversation contexts</td>
<td style="text-align: left">DailyDialog: 13k daily conversation contexts</td>
</tr>
</tbody>
</table>
<li>Second, we choose a series of popular LLMs during the competition to generate answers.</li>
<li>Third, we manually annotate the answer sets for each question, which will be used as gold standards for evaluating the performance of different evaluation methods.</li>
<li>Last, we will collect evaluation results from participants and calculate consistency with manually annotated results. We will use Accuracy, Kendall’s tau and Spearman correlation coefficient as the evaluation metrics.</li>
</ol>
""",unsafe_allow_html=True)
elif page == "Datasets":
st.header("Datasets")
st.markdown("""
<p>A brief description of the specific dataset we used, along with the original download link, is provided below:</p>
<ul>
<li><strong>Summary Generation (SG): <a href="https://huggingface.co/datasets/EdinburghNLP/xsum">Xsum</a></strong>: A real-world single document news summary dataset collected from online articles by the British Broadcasting Corporation (BBC) and contains over 220 thousand news documents.</li>
<li><strong>Non-Factoid QA (NFQA): <a href="https://github.com/Lurunchik/NF-CATS">NF_CATS</a></strong>: A dataset contains examples of 12k natural questions divided into eight categories.</li>
<li><strong>Text Expansion (TE): <a href="https://huggingface.co/datasets/euclaise/writingprompts">WritingPrompts</a></strong>: A large dataset of 300K human-written stories paired with writing prompts from an online forum.</li>
<li><strong>Dialogue Generation (DG): <a href="https://huggingface.co/datasets/daily_dialog">DailyDialog</a></strong>: A high-quality dataset of 13k multi-turn dialogues. The language is human-written and less noisy.</li>
</ul>
<p>For your convenience, we have released <strong>the training set</strong> (with human-annotated results) and <strong>the test set</strong> (without human-annotated results) on <a href="https://huggingface.co/datasets/THUIR/AEOLLM">https://huggingface.co/datasets/THUIR/AEOLLM</a>, which you can easily download.</p>
""",unsafe_allow_html=True)
elif page == "Important Dates":
st.header("Important Dates")
st.markdown("""
<p><em>All deadlines are at 11:59pm in the Anywhere on Earth (AOE) timezone.</em><br />
<span class="event"><strong>Kickoff Event</strong>:</span> <span class="date">March 29, 2024</span><br />
<span class="event"><strong>Dataset Release</strong>:</span> <span class="date">👉May 1, 2024</span><br />
<span class="event"><strong>System Output Submission Deadline</strong>:</span> <span class="date">Jan 15, 2025</span><br />
<span class="event"><strong>Evaluation Results Release</strong>:</span> <span class="date">Feb 1, 2025</span> <br />
<span class="event"><strong>Task overview release (draft)</strong>:</span> <span class="date">Feb 1, 2025</span><br />
<span class="event"><strong>Submission Due of Participant Papers (draft)</strong>:</span> <span class="date">March 1, 2025</span><br />
<span class="event"><strong>Camera-Ready Participant Paper Due</strong>:</span> <span class="date">May 1, 2025</span><br />
<span class="event"><strong>NTCIR-18 Conference</strong>:</span> <span class="date">Jun 10-13 2025</span><br /></p>
""",unsafe_allow_html=True)
elif page == "Evaluation Measures":
st.header("Evaluation Measures")
st.markdown("""
- **Acc(Accuracy):** The proportion of identical preference results between the model and human annotations. Specifically, we first convert individual scores (ranks) into pairwise preferences and then calculate consistency with human annotations.
- **Kendall's tau:** Measures the ordinal association between two ranked variables.
$$
\\tau=\\frac{C-D}{\\frac{1}{2}n(n-1)}
$$
where:
- C is the number of concordant pairs,
- D is the number of discordant pairs,
- n is the number of pairs.
- **Spearman's Rank Correlation Coefficient:** Measures the strength and direction of the association between two ranked variables.
$$
\\rho = 1 - \\frac{6 \sum d_i^2}{n(n^2 - 1)}
$$
where:
- $d_i$ is the difference between the ranks of corresponding elements in the two lists,
- $n$ is the number of elements.
""",unsafe_allow_html=True)
elif page == "Data and File format":
st.header("Data and File format")
st.markdown("""
<p>We will be following a similar format as the ones used by most <strong>TREC submissions</strong>, which is repeated below. White space is used to separate columns. The width of the columns in the format is not important, but it is important to have exactly five columns per line with at least one space between the columns.</p>
<p><strong>taskId questionId answerId score rank</strong></p>
<ol>
<li>the first column is the taskeId (index different tasks)</li>
<li>the second column is questionId (index different questions in the same task)</li>
<li>the third column is answerId (index the answer provided by different LLMs to the same question)</li>
<li>the fourth column is score (index the score to the answer given by participants)</li>
<li>the fifth column is rank (index the rank of the answer within all answers to the same question)</li>
</ol>
""",unsafe_allow_html=True)
elif page == "Submit":
st.header("Submit")
st.markdown("""
TAB
""")
elif page == "LeaderBoard":
st.header("LeaderBoard")
# # 描述
st.markdown("""
This leaderboard is used to show the performance of the **automatic evaluation methods of LLMs** submitted by the **AEOLLM team** on four tasks:
- Dialogue Generation (DG)
- Text Expansion (TE)
- Summary Generation (SG)
- Non-Factoid QA (NFQA)
""", unsafe_allow_html=True)
# 创建示例数据
# teamId 唯一标识码
DG = {
"teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
"methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
"accuracy": [0.5806, 0.5483, 0.6001, 0.6472],
"kendall's tau": [0.3243, 0.1739, 0.3042, 0.4167],
"spearman": [0.3505, 0.1857, 0.3264, 0.4512]
}
df1 = pd.DataFrame(DG)
TE = {
"teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
"methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
"accuracy": [0.5107, 0.5050, 0.5461, 0.5581],
"kendall's tau": [0.1281, 0.0635, 0.2716, 0.3864],
"spearman": [0.1352, 0.0667, 0.2867, 0.4157]
}
df2 = pd.DataFrame(TE)
SG = {
"teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
"methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
"accuracy": [0.6504, 0.6014, 0.7162, 0.7441],
"kendall's tau": [0.3957, 0.2688, 0.5092, 0.5001],
"spearman": [0.4188, 0.2817, 0.5403, 0.5405],
}
df3 = pd.DataFrame(SG)
NFQA = {
"teamId": ["baseline1", "baseline2", "baseline3", "baseline4"],
"methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o-mini"],
"accuracy": [0.5935, 0.5817, 0.7000, 0.7203],
"kendall's tau": [0.2332, 0.2389, 0.4440, 0.4235],
"spearman": [0.2443, 0.2492, 0.4630, 0.4511]
}
df4 = pd.DataFrame(NFQA)
df = [df1, df2, df3, df4]
for d in df:
for col in d.select_dtypes(include=['float64', 'int64']).columns:
d[col] = d[col].apply(lambda x: f"{x:.4f}")
# 创建标签页
tab1, tab2, tab3, tab4 = st.tabs(["DG", "TE", "SG", "NFQA"])
with tab1:
st.markdown("""Task: Dialogue Generation; Dataset: DialyDialog""", unsafe_allow_html=True)
st.dataframe(df1, use_container_width=True)
with tab2:
st.markdown("""Task: Text Expansion; Dataset: WritingPrompts""", unsafe_allow_html=True)
st.dataframe(df2, use_container_width=True)
with tab3:
st.markdown("""Task: Summary Generation; Dataset: Xsum""", unsafe_allow_html=True)
st.dataframe(df3, use_container_width=True)
with tab4:
st.markdown("""Task: Non-Factoid QA; Dataset: NF_CATS""", unsafe_allow_html=True)
st.dataframe(df4, use_container_width=True)
elif page == "Organisers":
st.header("Organisers")
st.markdown("""
<em>Yiqun Liu</em> [yiqunliu@tsinghua.edu.cn] (Tsinghua University)<br />
<em>Qingyao Ai</em> [aiqy@tsinghua.edu.cn] (Tsinghua University)<br />
<em>Junjie Chen</em> [chenjj826@gmail.com] (Tsinghua University) <br />
<em>Zhumin Chu</em> [chuzm19@mails.tsinghua.edu.cn] (Tsinghua University)<br />
<em>Haitao Li</em> [liht22@mails.tsinghua.edu.cn] (Tsinghua University)""",unsafe_allow_html=True)
elif page == "References":
st.header("References")
st.markdown("""TAB""")
|