File size: 7,703 Bytes
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import argparse
import code
import datetime
import json
import os
from pytz import timezone
import time

import pandas as pd  # pandas>=2.0.3
import plotly.express as px
import plotly.graph_objects as go
from tqdm import tqdm

NUM_SERVERS = 1
LOG_ROOT_DIR = os.getenv("LOGDIR", None)
if LOG_ROOT_DIR is None:
    raise ValueError("LOGDIR environment variable not set, please set it by `export LOGDIR=...`")

def get_log_files(max_num_files=None):
    log_root = os.path.expanduser(LOG_ROOT_DIR)
    filenames = []
    if NUM_SERVERS == 1:
        for filename in os.listdir(log_root):
            if filename.endswith("-conv.json"):
                filepath = f"{log_root}/{filename}"
                name_tstamp_tuple = (filepath, os.path.getmtime(filepath))
                filenames.append(name_tstamp_tuple)
    else:
        for i in range(NUM_SERVERS):
            for filename in os.listdir(f"{log_root}/server{i}"):
                if filename.endswith("-conv.json"):
                    filepath = f"{log_root}/server{i}/{filename}"
                    name_tstamp_tuple = (filepath, os.path.getmtime(filepath))
                    filenames.append(name_tstamp_tuple)
    # sort by tstamp
    filenames = sorted(filenames, key=lambda x: x[1])
    filenames = [x[0] for x in filenames]

    max_num_files = max_num_files or len(filenames)
    filenames = filenames[-max_num_files:]
    return filenames


def load_log_files(filename):
    data = []
    for retry in range(5):
        try:
            lines = open(filename).readlines()
            break
        except FileNotFoundError:
            time.sleep(2)

    for l in lines:
        row = json.loads(l)
        data.append(
            dict(
                type=row["type"],
                tstamp=row["tstamp"],
                model=row.get("model", ""),
                models=row.get("models", ["", ""]),
            )
        )
    return data


def load_log_files_parallel(log_files, num_threads=16):
    data_all = []
    from multiprocessing import Pool

    with Pool(num_threads) as p:
        ret_all = list(tqdm(p.imap(load_log_files, log_files), total=len(log_files)))
        for ret in ret_all:
            data_all.extend(ret)
    return data_all


def get_anony_vote_df(df):
    anony_vote_df = df[
        df["type"].isin(["leftvote", "rightvote", "tievote", "bothbad_vote"])
    ]
    anony_vote_df = anony_vote_df[anony_vote_df["models"].apply(lambda x: x[0] == "")]
    return anony_vote_df


def merge_counts(series, on, names):
    ret = pd.merge(series[0], series[1], on=on)
    for i in range(2, len(series)):
        ret = pd.merge(ret, series[i], on=on)
    ret = ret.reset_index()
    old_names = list(ret.columns)[-len(series) :]
    rename = {old_name: new_name for old_name, new_name in zip(old_names, names)}
    ret = ret.rename(columns=rename)
    return ret


def report_basic_stats(log_files):
    df_all = load_log_files_parallel(log_files)
    df_all = pd.DataFrame(df_all)
    now_t = df_all["tstamp"].max()
    df_1_hour = df_all[df_all["tstamp"] > (now_t - 3600)]
    df_1_day = df_all[df_all["tstamp"] > (now_t - 3600 * 24)]
    anony_vote_df_all = get_anony_vote_df(df_all)

    # Chat trends
    chat_dates = [
        datetime.datetime.fromtimestamp(x, tz=timezone("US/Pacific")).strftime(
            "%Y-%m-%d"
        )
        for x in df_all[df_all["type"] == "chat"]["tstamp"]
    ]
    chat_dates_counts = pd.value_counts(chat_dates)
    vote_dates = [
        datetime.datetime.fromtimestamp(x, tz=timezone("US/Pacific")).strftime(
            "%Y-%m-%d"
        )
        for x in anony_vote_df_all["tstamp"]
    ]
    vote_dates_counts = pd.value_counts(vote_dates)
    chat_dates_bar = go.Figure(
        data=[
            go.Bar(
                name="Anony. Vote",
                x=vote_dates_counts.index,
                y=vote_dates_counts,
                text=[f"{val:.0f}" for val in vote_dates_counts],
                textposition="auto",
            ),
            go.Bar(
                name="Chat",
                x=chat_dates_counts.index,
                y=chat_dates_counts,
                text=[f"{val:.0f}" for val in chat_dates_counts],
                textposition="auto",
            ),
        ]
    )
    chat_dates_bar.update_layout(
        barmode="stack",
        xaxis_title="Dates",
        yaxis_title="Count",
        height=300,
        width=1200,
    )

    # Model call counts
    model_hist_all = df_all[df_all["type"] == "chat"]["model"].value_counts()
    model_hist_1_day = df_1_day[df_1_day["type"] == "chat"]["model"].value_counts()
    model_hist_1_hour = df_1_hour[df_1_hour["type"] == "chat"]["model"].value_counts()
    model_hist = merge_counts(
        [model_hist_all, model_hist_1_day, model_hist_1_hour],
        on="model",
        names=["All", "Last Day", "Last Hour"],
    )
    model_hist_md = model_hist.to_markdown(index=False, tablefmt="github")

    # Action counts
    action_hist_all = df_all["type"].value_counts()
    action_hist_1_day = df_1_day["type"].value_counts()
    action_hist_1_hour = df_1_hour["type"].value_counts()
    action_hist = merge_counts(
        [action_hist_all, action_hist_1_day, action_hist_1_hour],
        on="type",
        names=["All", "Last Day", "Last Hour"],
    )
    action_hist_md = action_hist.to_markdown(index=False, tablefmt="github")

    # Anony vote counts
    anony_vote_hist_all = anony_vote_df_all["type"].value_counts()
    anony_vote_df_1_day = get_anony_vote_df(df_1_day)
    anony_vote_hist_1_day = anony_vote_df_1_day["type"].value_counts()
    # anony_vote_df_1_hour = get_anony_vote_df(df_1_hour)
    # anony_vote_hist_1_hour = anony_vote_df_1_hour["type"].value_counts()
    anony_vote_hist = merge_counts(
        [anony_vote_hist_all, anony_vote_hist_1_day],
        on="type",
        names=["All", "Last Day"],
    )
    anony_vote_hist_md = anony_vote_hist.to_markdown(index=False, tablefmt="github")

    # Last 24 hours
    chat_1_day = df_1_day[df_1_day["type"] == "chat"]
    num_chats_last_24_hours = []
    base = df_1_day["tstamp"].min()
    for i in range(24, 0, -1):
        left = base + (i - 1) * 3600
        right = base + i * 3600
        num = ((chat_1_day["tstamp"] >= left) & (chat_1_day["tstamp"] < right)).sum()
        num_chats_last_24_hours.append(num)
    times = [
        datetime.datetime.fromtimestamp(
            base + i * 3600, tz=timezone("US/Pacific")
        ).strftime("%Y-%m-%d %H:%M:%S %Z")
        for i in range(24, 0, -1)
    ]
    last_24_hours_df = pd.DataFrame({"time": times, "value": num_chats_last_24_hours})
    last_24_hours_md = last_24_hours_df.to_markdown(index=False, tablefmt="github")

    # Last update datetime
    last_updated_tstamp = now_t
    last_updated_datetime = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y-%m-%d %H:%M:%S %Z")

    # code.interact(local=locals())

    return {
        "chat_dates_bar": chat_dates_bar,
        "model_hist_md": model_hist_md,
        "action_hist_md": action_hist_md,
        "anony_vote_hist_md": anony_vote_hist_md,
        "num_chats_last_24_hours": last_24_hours_md,
        "last_updated_datetime": last_updated_datetime,
    }


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--max-num-files", type=int)
    args = parser.parse_args()

    log_files = get_log_files(args.max_num_files)
    basic_stats = report_basic_stats(log_files)

    print(basic_stats["action_hist_md"] + "\n")
    print(basic_stats["model_hist_md"] + "\n")
    print(basic_stats["anony_vote_hist_md"] + "\n")
    print(basic_stats["num_chats_last_24_hours"] + "\n")