File size: 7,129 Bytes
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import fire
import time
import json
from collections import defaultdict
from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR
from .utils import detect_language, get_time_stamp_from_date, get_input_image_path, load_image_from_path
from tqdm import tqdm
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote", "chat"]


def remove_html(raw):
    if raw.startswith("<h3>"):
        return raw[raw.find(": ") + 2 : -len("</h3>\n")]
    if raw.startswith("### Model A: ") or raw.startswith("### Model B: "):
        return raw[13:]
    return raw


def read_file(filename):
    data = []
    for retry in range(5):
        try:
            # lines = open(filename).readlines()
            for l in open(filename):
                row = json.loads(l)
                if row["type"] in VOTES:
                    data.append(row)
            break
        except FileNotFoundError:
            time.sleep(2)
    return data


def read_file_parallel(log_files, num_threads=16):
    data_all = []
    from multiprocessing import Pool

    with Pool(num_threads) as p:
        ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files)))
        for ret in ret_all:
            data_all.extend(ret)
    return data_all

def num_tokens(s:str):
    if s is None:
        return 0
    return len(s) / 4

def main(
):
    log_files = get_log_files()
    data = read_file_parallel(log_files)
    
    all_model_counts = defaultdict(int)
    all_model_input_tokens_counts = defaultdict(list)
    all_model_output_tokens_counts = defaultdict(list)
    all_model_image_sizes = defaultdict(list)
    chat_battle_counts = defaultdict(int)
    for row in tqdm(data, desc="counting"):
        if row['type'] == "chat":
            chat_battle_counts["chat"] += 1
            all_model_counts[row['model']] += 1
            tstamp = row["tstamp"]
            conv_id = row["state"]["conv_id"]
            
            image = load_image_from_path(get_input_image_path(tstamp, conv_id))
            if image is None:
                image_size = None
            else:
                image_size = load_image_from_path(get_input_image_path(tstamp, conv_id)).size
            all_model_image_sizes[row['model']].append(image_size)
            try:
                for message in row["state"]["messages"][row["state"]["offset"] :: 2]:
                    all_model_input_tokens_counts[row['model']].append(num_tokens(message[1]))
                for message in row["state"]["messages"][row["state"]["offset"] + 1 :: 2]:
                    all_model_output_tokens_counts[row['model']].append(num_tokens(message[1]))
            except Exception as e:
                print(row)
                raise e
            
        else:
            chat_battle_counts[row['type']] += 1
            if row["models"][0] is None or row["models"][1] is None:
                continue

            # Resolve model names
            models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
            if "model_name" in row["states"][0]:
                models_hidden = [
                    row["states"][0]["model_name"],
                    row["states"][1]["model_name"],
                ]
                if models_hidden[0] is None:
                    models_hidden = models_public
            else:
                models_hidden = models_public

            if (models_public[0] == "" and models_public[1] != "") or (
                models_public[1] == "" and models_public[0] != ""
            ):
                continue

            if models_public[0] == "" or models_public[0] == "Model A":
                anony = True
                models = models_hidden
            else:
                anony = False
                models = models_public
                if not models_public == models_hidden:
                    continue
            
            all_model_counts[models[0]] += 1
            all_model_counts[models[1]] += 1
            tstamp = row["tstamp"]
            conv_id1 = row["states"][0]["conv_id"]
            conv_id2 = row["states"][1]["conv_id"]
            
            image1 = load_image_from_path(get_input_image_path(tstamp, conv_id1))
            image2 = load_image_from_path(get_input_image_path(tstamp, conv_id2))
            all_model_image_sizes[models[0]].append(None if image1 is None else image1.size)
            all_model_image_sizes[models[1]].append(None if image2 is None else image2.size)
            
            for message in row["states"][0]["messages"][row["states"][0]["offset"] :: 2]:
                all_model_input_tokens_counts[models[0]].append(num_tokens(message[1]))
            for message in row["states"][0]["messages"][row["states"][0]["offset"] + 1 :: 2]:
                all_model_output_tokens_counts[models[0]].append(num_tokens(message[1]))
            for message in row["states"][1]["messages"][row["states"][1]["offset"] :: 2]:
                all_model_input_tokens_counts[models[1]].append(num_tokens(message[1]))
            for message in row["states"][1]["messages"][row["states"][1]["offset"] + 1 :: 2]:
                all_model_output_tokens_counts[models[1]].append(num_tokens(message[1]))

    print("### Chat battle counts (requests)")
    print(json.dumps(chat_battle_counts, indent=4))
    
    print("### Model counts (requests)")
    print(json.dumps(all_model_counts, indent=4))
    
    print("### Model Avg input tokens counts (tokens)")
    average_input_tokens_counts = {}
    for model, counts in all_model_input_tokens_counts.items():
        average_input_tokens_counts[model] = sum(counts) / len(counts)
    print(json.dumps(average_input_tokens_counts, indent=4))
    
    print("### Model AVg output tokens counts (tokens)")
    average_output_tokens_counts = {}
    for model, counts in all_model_output_tokens_counts.items():
        average_output_tokens_counts[model] = sum(counts) / len(counts)
    print(json.dumps(average_output_tokens_counts, indent=4))
    
    print("### Model Avg image sizes (height, width)")
    average_image_sizes = {}
    for model, sizes in all_model_image_sizes.items():
        avg_height = sum([size[0] for size in sizes if size is not None]) / len(sizes)
        avg_width = sum([size[1] for size in sizes if size is not None]) / len(sizes)
        average_image_sizes[model] = (avg_height, avg_width)
    print(json.dumps(average_image_sizes, indent=4))
    
    print("### GPT-4V estimated cost (USD)")
    gpt_4v_name = "gpt-4-vision-preview"
    gpt_4v_cost = {}
    gpt_4v_cost['input'] = sum(all_model_input_tokens_counts[gpt_4v_name]) / 1000 * 0.01
    gpt_4v_cost['output'] = sum(all_model_output_tokens_counts[gpt_4v_name]) / 1000 * 0.03
    
    all_image_cost = 0
    for size in all_model_image_sizes[gpt_4v_name]:
        if size is None:
            continue
        all_image_tokens = (size[0] // 512 + 1) * (size[1] // 512 + 1) * 170 + 85
        all_image_cost += all_image_tokens / 1000 * 0.01
    gpt_4v_cost['image'] = all_image_cost
    print(json.dumps(gpt_4v_cost, indent=4))
        
    
    
    
if __name__ == "__main__":
    fire.Fire(main)