Spaces:
Running
on
Zero
Running
on
Zero
Ji4chenLi
commited on
Commit
•
9f200a2
1
Parent(s):
b7b902b
initial test
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +225 -84
- checkpoints/unet_lora.pt +3 -0
- configs/inference_t2v_512_v2.0.yaml +77 -0
- lvdm/__pycache__/basics.cpython-311.pyc +0 -0
- lvdm/__pycache__/common.cpython-311.pyc +0 -0
- lvdm/__pycache__/distributions.cpython-311.pyc +0 -0
- lvdm/__pycache__/ema.cpython-311.pyc +0 -0
- lvdm/basics.py +102 -0
- lvdm/common.py +112 -0
- lvdm/distributions.py +103 -0
- lvdm/ema.py +84 -0
- lvdm/models/__pycache__/autoencoder.cpython-311.pyc +0 -0
- lvdm/models/__pycache__/ddpm3d.cpython-311.pyc +0 -0
- lvdm/models/__pycache__/utils_diffusion.cpython-311.pyc +0 -0
- lvdm/models/autoencoder.py +276 -0
- lvdm/models/ddpm3d.py +967 -0
- lvdm/models/samplers/__pycache__/ddim.cpython-311.pyc +0 -0
- lvdm/models/samplers/ddim.py +493 -0
- lvdm/models/utils_diffusion.py +130 -0
- lvdm/modules/__pycache__/attention.cpython-311.pyc +0 -0
- lvdm/modules/attention.py +584 -0
- lvdm/modules/encoders/__pycache__/condition.cpython-311.pyc +0 -0
- lvdm/modules/encoders/__pycache__/ip_resampler.cpython-311.pyc +0 -0
- lvdm/modules/encoders/condition.py +512 -0
- lvdm/modules/encoders/ip_resampler.py +148 -0
- lvdm/modules/networks/__pycache__/ae_modules.cpython-311.pyc +0 -0
- lvdm/modules/networks/__pycache__/openaimodel3d.cpython-311.pyc +0 -0
- lvdm/modules/networks/ae_modules.py +1025 -0
- lvdm/modules/networks/openaimodel3d.py +710 -0
- lvdm/modules/x_transformer.py +704 -0
- pipeline/__init__.py +0 -0
- pipeline/__pycache__/__init__.cpython-311.pyc +0 -0
- pipeline/__pycache__/model_scope_vlcm_pipeline.cpython-311.pyc +0 -0
- pipeline/__pycache__/t2v_turbo_ms_pipeline.cpython-311.pyc +0 -0
- pipeline/__pycache__/t2v_turbo_vc2_pipeline.cpython-311.pyc +0 -0
- pipeline/__pycache__/vlcm_pipeline.cpython-311.pyc +0 -0
- pipeline/t2v_turbo_ms_pipeline.py +221 -0
- pipeline/t2v_turbo_vc2_pipeline.py +214 -0
- requirements.txt +18 -6
- scheduler/__pycache__/t2v_turbo_scheduler.cpython-311.pyc +0 -0
- scheduler/__pycache__/vlcm_scheduler.cpython-311.pyc +0 -0
- scheduler/t2v_turbo_scheduler.py +518 -0
- style.css +16 -0
- utils/__init__.py +0 -0
- utils/__pycache__/__init__.cpython-311.pyc +0 -0
- utils/__pycache__/common_utils.cpython-311.pyc +0 -0
- utils/__pycache__/lora.cpython-311.pyc +0 -0
- utils/__pycache__/lora_handler.cpython-311.pyc +0 -0
- utils/__pycache__/utils.cpython-311.pyc +0 -0
- utils/common_utils.py +385 -0
app.py
CHANGED
@@ -1,61 +1,190 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
examples = [
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
]
|
45 |
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
-
}
|
51 |
-
"""
|
52 |
|
53 |
if torch.cuda.is_available():
|
54 |
power_device = "GPU"
|
55 |
else:
|
56 |
power_device = "CPU"
|
57 |
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
@@ -64,7 +193,6 @@ with gr.Blocks(css=css) as demo:
|
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
67 |
-
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
70 |
show_label=False,
|
@@ -72,75 +200,88 @@ with gr.Blocks(css=css) as demo:
|
|
72 |
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
-
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
seed = gr.Slider(
|
90 |
label="Seed",
|
91 |
minimum=0,
|
92 |
maximum=MAX_SEED,
|
93 |
step=1,
|
94 |
value=0,
|
|
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
with gr.Row():
|
118 |
-
|
119 |
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=
|
122 |
-
maximum=
|
123 |
step=0.1,
|
124 |
-
value=
|
125 |
)
|
126 |
-
|
127 |
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=
|
133 |
)
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
gr.Examples(
|
136 |
-
examples
|
137 |
-
inputs
|
|
|
|
|
|
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
demo.queue().launch()
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import random
|
6 |
+
import time
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
|
9 |
+
import spaces
|
10 |
+
|
11 |
import torch
|
12 |
+
import torchvision
|
13 |
+
|
14 |
+
from concurrent.futures import ThreadPoolExecutor
|
15 |
+
import uuid
|
16 |
+
|
17 |
+
from utils.lora import collapse_lora, monkeypatch_remove_lora
|
18 |
+
from utils.lora_handler import LoraHandler
|
19 |
+
from utils.common_utils import load_model_checkpoint
|
20 |
+
from utils.utils import instantiate_from_config
|
21 |
+
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
|
22 |
+
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
|
23 |
+
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
+
MAX_SEED = np.iinfo(np.int32).max
|
27 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
28 |
+
|
29 |
|
30 |
if torch.cuda.is_available():
|
31 |
+
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
|
32 |
+
model_config = config.pop("model", OmegaConf.create())
|
33 |
+
pretrained_t2v = instantiate_from_config(model_config)
|
34 |
+
pretrained_t2v = load_model_checkpoint(pretrained_t2v, "checkpoints/vc2_model.ckpt")
|
|
|
|
|
|
|
35 |
|
36 |
+
unet_config = model_config["params"]["unet_config"]
|
37 |
+
unet_config["params"]["time_cond_proj_dim"] = 256
|
38 |
+
unet = instantiate_from_config(unet_config)
|
39 |
+
|
40 |
+
unet.load_state_dict(
|
41 |
+
pretrained_t2v.model.diffusion_model.state_dict(), strict=False
|
42 |
+
)
|
43 |
+
|
44 |
+
use_unet_lora = True
|
45 |
+
lora_manager = LoraHandler(
|
46 |
+
version="cloneofsimo",
|
47 |
+
use_unet_lora=use_unet_lora,
|
48 |
+
save_for_webui=True,
|
49 |
+
unet_replace_modules=["UNetModel"],
|
50 |
+
)
|
51 |
+
lora_manager.add_lora_to_model(
|
52 |
+
use_unet_lora,
|
53 |
+
unet,
|
54 |
+
lora_manager.unet_replace_modules,
|
55 |
+
lora_path="checkpoints/unet_lora.pt",
|
56 |
+
dropout=0.1,
|
57 |
+
r=64,
|
58 |
+
)
|
59 |
+
unet.eval()
|
60 |
+
collapse_lora(unet, lora_manager.unet_replace_modules)
|
61 |
+
monkeypatch_remove_lora(unet)
|
62 |
+
|
63 |
+
torch.save(unet.state_dict(), "checkpoints/merged_unet.pt")
|
64 |
+
|
65 |
+
pretrained_t2v.model.diffusion_model = unet
|
66 |
+
scheduler = T2VTurboScheduler(
|
67 |
+
linear_start=model_config["params"]["linear_start"],
|
68 |
+
linear_end=model_config["params"]["linear_end"],
|
69 |
+
)
|
70 |
+
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
|
71 |
+
|
72 |
+
pipeline.to(device)
|
73 |
+
else:
|
74 |
+
assert False
|
75 |
|
|
|
76 |
|
77 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
78 |
if randomize_seed:
|
79 |
seed = random.randint(0, MAX_SEED)
|
80 |
+
return seed
|
81 |
+
|
82 |
+
|
83 |
+
def save_video(
|
84 |
+
vid_tensor, profile: gr.OAuthProfile | None, metadata: dict, root_path="./", fps=16
|
85 |
+
):
|
86 |
+
unique_name = str(uuid.uuid4()) + ".mp4"
|
87 |
+
prefix = ""
|
88 |
+
for k, v in metadata.items():
|
89 |
+
prefix += f"{k}={v}_"
|
90 |
+
unique_name = prefix + unique_name
|
91 |
+
unique_name = os.path.join(root_path, unique_name)
|
92 |
+
|
93 |
+
video = vid_tensor.detach().cpu()
|
94 |
+
video = torch.clamp(video.float(), -1.0, 1.0)
|
95 |
+
video = video.permute(1, 0, 2, 3) # t,c,h,w
|
96 |
+
video = (video + 1.0) / 2.0
|
97 |
+
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
98 |
+
|
99 |
+
torchvision.io.write_video(
|
100 |
+
unique_name, video, fps=fps, video_codec="h264", options={"crf": "10"}
|
101 |
+
)
|
102 |
+
return unique_name
|
103 |
+
|
104 |
+
|
105 |
+
def save_videos(
|
106 |
+
video_array, profile: gr.OAuthProfile | None, metadata: dict, fps: int = 16
|
107 |
+
):
|
108 |
+
paths = []
|
109 |
+
root_path = "./videos/"
|
110 |
+
os.makedirs(root_path, exist_ok=True)
|
111 |
+
with ThreadPoolExecutor() as executor:
|
112 |
+
paths = list(
|
113 |
+
executor.map(
|
114 |
+
save_video,
|
115 |
+
video_array,
|
116 |
+
[profile] * len(video_array),
|
117 |
+
[metadata] * len(video_array),
|
118 |
+
[root_path] * len(video_array),
|
119 |
+
[fps] * len(video_array),
|
120 |
+
)
|
121 |
+
)
|
122 |
+
return paths[0]
|
123 |
+
|
124 |
+
|
125 |
+
@spaces.GPU(duration=60)
|
126 |
+
def generate(
|
127 |
+
prompt: str,
|
128 |
+
seed: int = 0,
|
129 |
+
guidance_scale: float = 7.5,
|
130 |
+
num_inference_steps: int = 4,
|
131 |
+
num_frames: int = 16,
|
132 |
+
fps: int = 16,
|
133 |
+
randomize_seed: bool = False,
|
134 |
+
param_dtype="torch.float16",
|
135 |
+
progress=gr.Progress(track_tqdm=True),
|
136 |
+
profile: gr.OAuthProfile | None = None,
|
137 |
+
):
|
138 |
+
seed = randomize_seed_fn(seed, randomize_seed)
|
139 |
+
torch.manual_seed(seed)
|
140 |
+
pipeline.to(
|
141 |
+
torch_device=device,
|
142 |
+
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
|
143 |
+
)
|
144 |
+
start_time = time.time()
|
145 |
+
|
146 |
+
result = pipeline(
|
147 |
+
prompt=prompt,
|
148 |
+
frames=num_frames,
|
149 |
+
fps=fps,
|
150 |
+
guidance_scale=guidance_scale,
|
151 |
+
num_inference_steps=num_inference_steps,
|
152 |
+
num_videos_per_prompt=1,
|
153 |
+
)
|
154 |
+
paths = save_videos(
|
155 |
+
result,
|
156 |
+
profile,
|
157 |
+
metadata={
|
158 |
+
"prompt": prompt,
|
159 |
+
"seed": seed,
|
160 |
+
"guidance_scale": guidance_scale,
|
161 |
+
"num_inference_steps": num_inference_steps,
|
162 |
+
},
|
163 |
+
fps=fps,
|
164 |
+
)
|
165 |
+
print(time.time() - start_time)
|
166 |
+
return paths, seed
|
167 |
|
168 |
examples = [
|
169 |
+
"An astronaut riding a horse.",
|
170 |
+
"Darth vader surfing in waves.",
|
171 |
+
"Robot dancing in times square.",
|
172 |
+
"Clown fish swimming through the coral reef.",
|
173 |
+
"Pikachu snowboarding.",
|
174 |
+
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
|
175 |
+
"A young woman with glasses is jogging in the park wearing a pink headband.",
|
176 |
+
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
|
177 |
+
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
|
178 |
+
"With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach.",
|
179 |
]
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
if torch.cuda.is_available():
|
183 |
power_device = "GPU"
|
184 |
else:
|
185 |
power_device = "CPU"
|
186 |
|
187 |
+
with gr.Blocks(css="style.css") as demo:
|
188 |
|
189 |
with gr.Column(elem_id="col-container"):
|
190 |
gr.Markdown(f"""
|
|
|
193 |
""")
|
194 |
|
195 |
with gr.Row():
|
|
|
196 |
prompt = gr.Text(
|
197 |
label="Prompt",
|
198 |
show_label=False,
|
|
|
200 |
placeholder="Enter your prompt",
|
201 |
container=False,
|
202 |
)
|
|
|
203 |
run_button = gr.Button("Run", scale=0)
|
204 |
+
result_video = gr.Video(
|
205 |
+
label="Generated Video", interactive=False, autoplay=True
|
206 |
+
)
|
207 |
|
208 |
with gr.Accordion("Advanced Settings", open=False):
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
seed = gr.Slider(
|
211 |
label="Seed",
|
212 |
minimum=0,
|
213 |
maximum=MAX_SEED,
|
214 |
step=1,
|
215 |
value=0,
|
216 |
+
randomize=True,
|
217 |
)
|
218 |
+
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
|
219 |
+
dtype_choices = ["torch.float16", "torch.float32"]
|
220 |
+
param_dtype = gr.Radio(
|
221 |
+
dtype_choices,
|
222 |
+
label="torch.dtype",
|
223 |
+
value=dtype_choices[0],
|
224 |
+
interactive=True,
|
225 |
+
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
|
226 |
+
)
|
227 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
with gr.Row():
|
|
|
229 |
guidance_scale = gr.Slider(
|
230 |
+
label="Guidance scale for base",
|
231 |
+
minimum=2,
|
232 |
+
maximum=14,
|
233 |
step=0.1,
|
234 |
+
value=7.5,
|
235 |
)
|
|
|
236 |
num_inference_steps = gr.Slider(
|
237 |
+
label="Number of inference steps for base",
|
238 |
minimum=1,
|
239 |
+
maximum=8,
|
240 |
step=1,
|
241 |
+
value=4,
|
242 |
)
|
243 |
+
with gr.Row():
|
244 |
+
num_frames = gr.Slider(
|
245 |
+
label="Number of Video Frames",
|
246 |
+
minimum=16,
|
247 |
+
maximum=48,
|
248 |
+
step=8,
|
249 |
+
value=16,
|
250 |
+
)
|
251 |
+
fps = gr.Slider(
|
252 |
+
label="FPS",
|
253 |
+
minimum=8,
|
254 |
+
maximum=32,
|
255 |
+
step=4,
|
256 |
+
value=16,
|
257 |
+
)
|
258 |
+
|
259 |
gr.Examples(
|
260 |
+
examples=examples,
|
261 |
+
inputs=prompt,
|
262 |
+
outputs=result_video,
|
263 |
+
fn=generate,
|
264 |
+
cache_examples=CACHE_EXAMPLES,
|
265 |
)
|
266 |
|
267 |
+
gr.on(
|
268 |
+
triggers=[
|
269 |
+
prompt.submit,
|
270 |
+
run_button.click,
|
271 |
+
],
|
272 |
+
fn=generate,
|
273 |
+
inputs=[
|
274 |
+
prompt,
|
275 |
+
seed,
|
276 |
+
guidance_scale,
|
277 |
+
num_inference_steps,
|
278 |
+
num_frames,
|
279 |
+
fps,
|
280 |
+
randomize_seed,
|
281 |
+
param_dtype,
|
282 |
+
],
|
283 |
+
outputs=[result_video, seed],
|
284 |
+
api_name="run",
|
285 |
+
)
|
286 |
|
287 |
demo.queue().launch()
|
checkpoints/unet_lora.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1b223501f3fbbd491a9797c37f224ba031520cb442a10c07e4613b70b203845
|
3 |
+
size 468885008
|
configs/inference_t2v_512_v2.0.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: lvdm.models.ddpm3d.LatentDiffusion
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.012
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
timesteps: 1000
|
8 |
+
first_stage_key: video
|
9 |
+
cond_stage_key: caption
|
10 |
+
cond_stage_trainable: false
|
11 |
+
conditioning_key: crossattn
|
12 |
+
image_size:
|
13 |
+
- 40
|
14 |
+
- 64
|
15 |
+
channels: 4
|
16 |
+
scale_by_std: false
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: false
|
19 |
+
uncond_type: empty_seq
|
20 |
+
use_scale: true
|
21 |
+
scale_b: 0.7
|
22 |
+
unet_config:
|
23 |
+
target: lvdm.modules.networks.openaimodel3d.UNetModel
|
24 |
+
params:
|
25 |
+
in_channels: 4
|
26 |
+
out_channels: 4
|
27 |
+
model_channels: 320
|
28 |
+
attention_resolutions:
|
29 |
+
- 4
|
30 |
+
- 2
|
31 |
+
- 1
|
32 |
+
num_res_blocks: 2
|
33 |
+
channel_mult:
|
34 |
+
- 1
|
35 |
+
- 2
|
36 |
+
- 4
|
37 |
+
- 4
|
38 |
+
num_head_channels: 64
|
39 |
+
transformer_depth: 1
|
40 |
+
context_dim: 1024
|
41 |
+
use_linear: true
|
42 |
+
use_checkpoint: true
|
43 |
+
temporal_conv: true
|
44 |
+
temporal_attention: true
|
45 |
+
temporal_selfatt_only: true
|
46 |
+
use_relative_position: false
|
47 |
+
use_causal_attention: false
|
48 |
+
temporal_length: 16
|
49 |
+
addition_attention: true
|
50 |
+
fps_cond: true
|
51 |
+
first_stage_config:
|
52 |
+
target: lvdm.models.autoencoder.AutoencoderKL
|
53 |
+
params:
|
54 |
+
embed_dim: 4
|
55 |
+
monitor: val/rec_loss
|
56 |
+
ddconfig:
|
57 |
+
double_z: true
|
58 |
+
z_channels: 4
|
59 |
+
resolution: 512
|
60 |
+
in_channels: 3
|
61 |
+
out_ch: 3
|
62 |
+
ch: 128
|
63 |
+
ch_mult:
|
64 |
+
- 1
|
65 |
+
- 2
|
66 |
+
- 4
|
67 |
+
- 4
|
68 |
+
num_res_blocks: 2
|
69 |
+
attn_resolutions: []
|
70 |
+
dropout: 0.0
|
71 |
+
lossconfig:
|
72 |
+
target: torch.nn.Identity
|
73 |
+
cond_stage_config:
|
74 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
|
75 |
+
params:
|
76 |
+
freeze: true
|
77 |
+
layer: penultimate
|
lvdm/__pycache__/basics.cpython-311.pyc
ADDED
Binary file (5.03 kB). View file
|
|
lvdm/__pycache__/common.cpython-311.pyc
ADDED
Binary file (7.2 kB). View file
|
|
lvdm/__pycache__/distributions.cpython-311.pyc
ADDED
Binary file (6.25 kB). View file
|
|
lvdm/__pycache__/ema.cpython-311.pyc
ADDED
Binary file (5.49 kB). View file
|
|
lvdm/basics.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
import torch.nn as nn
|
11 |
+
from utils.utils import instantiate_from_config
|
12 |
+
|
13 |
+
|
14 |
+
def disabled_train(self, mode=True):
|
15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
16 |
+
does not change anymore."""
|
17 |
+
return self
|
18 |
+
|
19 |
+
|
20 |
+
def zero_module(module):
|
21 |
+
"""
|
22 |
+
Zero out the parameters of a module and return it.
|
23 |
+
"""
|
24 |
+
for p in module.parameters():
|
25 |
+
p.detach().zero_()
|
26 |
+
return module
|
27 |
+
|
28 |
+
|
29 |
+
def scale_module(module, scale):
|
30 |
+
"""
|
31 |
+
Scale the parameters of a module and return it.
|
32 |
+
"""
|
33 |
+
for p in module.parameters():
|
34 |
+
p.detach().mul_(scale)
|
35 |
+
return module
|
36 |
+
|
37 |
+
|
38 |
+
def conv_nd(dims, *args, **kwargs):
|
39 |
+
"""
|
40 |
+
Create a 1D, 2D, or 3D convolution module.
|
41 |
+
"""
|
42 |
+
if dims == 1:
|
43 |
+
return nn.Conv1d(*args, **kwargs)
|
44 |
+
elif dims == 2:
|
45 |
+
return nn.Conv2d(*args, **kwargs)
|
46 |
+
elif dims == 3:
|
47 |
+
return nn.Conv3d(*args, **kwargs)
|
48 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
49 |
+
|
50 |
+
|
51 |
+
def linear(*args, **kwargs):
|
52 |
+
"""
|
53 |
+
Create a linear module.
|
54 |
+
"""
|
55 |
+
return nn.Linear(*args, **kwargs)
|
56 |
+
|
57 |
+
|
58 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
59 |
+
"""
|
60 |
+
Create a 1D, 2D, or 3D average pooling module.
|
61 |
+
"""
|
62 |
+
if dims == 1:
|
63 |
+
return nn.AvgPool1d(*args, **kwargs)
|
64 |
+
elif dims == 2:
|
65 |
+
return nn.AvgPool2d(*args, **kwargs)
|
66 |
+
elif dims == 3:
|
67 |
+
return nn.AvgPool3d(*args, **kwargs)
|
68 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
69 |
+
|
70 |
+
|
71 |
+
def nonlinearity(type="silu"):
|
72 |
+
if type == "silu":
|
73 |
+
return nn.SiLU()
|
74 |
+
elif type == "leaky_relu":
|
75 |
+
return nn.LeakyReLU()
|
76 |
+
|
77 |
+
|
78 |
+
class GroupNormSpecific(nn.GroupNorm):
|
79 |
+
def forward(self, x):
|
80 |
+
return super().forward(x.float()).type(x.dtype)
|
81 |
+
|
82 |
+
|
83 |
+
def normalization(channels, num_groups=32):
|
84 |
+
"""
|
85 |
+
Make a standard normalization layer.
|
86 |
+
:param channels: number of input channels.
|
87 |
+
:return: an nn.Module for normalization.
|
88 |
+
"""
|
89 |
+
return GroupNormSpecific(num_groups, channels)
|
90 |
+
|
91 |
+
|
92 |
+
class HybridConditioner(nn.Module):
|
93 |
+
|
94 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
95 |
+
super().__init__()
|
96 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
97 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
98 |
+
|
99 |
+
def forward(self, c_concat, c_crossattn):
|
100 |
+
c_concat = self.concat_conditioner(c_concat)
|
101 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
102 |
+
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|
lvdm/common.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from inspect import isfunction
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def gather_data(data, return_np=True):
|
9 |
+
"""gather data from multiple processes to one list"""
|
10 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
11 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
12 |
+
if return_np:
|
13 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
14 |
+
return data_list
|
15 |
+
|
16 |
+
|
17 |
+
def autocast(f):
|
18 |
+
def do_autocast(*args, **kwargs):
|
19 |
+
with torch.cuda.amp.autocast(
|
20 |
+
enabled=True,
|
21 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
22 |
+
cache_enabled=torch.is_autocast_cache_enabled(),
|
23 |
+
):
|
24 |
+
return f(*args, **kwargs)
|
25 |
+
|
26 |
+
return do_autocast
|
27 |
+
|
28 |
+
|
29 |
+
def extract_into_tensor(a, t, x_shape):
|
30 |
+
b, *_ = t.shape
|
31 |
+
out = a.gather(-1, t)
|
32 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
33 |
+
|
34 |
+
|
35 |
+
def noise_like(shape, device, repeat=False):
|
36 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
37 |
+
shape[0], *((1,) * (len(shape) - 1))
|
38 |
+
)
|
39 |
+
noise = lambda: torch.randn(shape, device=device)
|
40 |
+
return repeat_noise() if repeat else noise()
|
41 |
+
|
42 |
+
|
43 |
+
def default(val, d):
|
44 |
+
if exists(val):
|
45 |
+
return val
|
46 |
+
return d() if isfunction(d) else d
|
47 |
+
|
48 |
+
|
49 |
+
def exists(val):
|
50 |
+
return val is not None
|
51 |
+
|
52 |
+
|
53 |
+
def identity(*args, **kwargs):
|
54 |
+
return nn.Identity()
|
55 |
+
|
56 |
+
|
57 |
+
def uniq(arr):
|
58 |
+
return {el: True for el in arr}.keys()
|
59 |
+
|
60 |
+
|
61 |
+
def mean_flat(tensor):
|
62 |
+
"""
|
63 |
+
Take the mean over all non-batch dimensions.
|
64 |
+
"""
|
65 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
66 |
+
|
67 |
+
|
68 |
+
def ismap(x):
|
69 |
+
if not isinstance(x, torch.Tensor):
|
70 |
+
return False
|
71 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
72 |
+
|
73 |
+
|
74 |
+
def isimage(x):
|
75 |
+
if not isinstance(x, torch.Tensor):
|
76 |
+
return False
|
77 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
78 |
+
|
79 |
+
|
80 |
+
def max_neg_value(t):
|
81 |
+
return -torch.finfo(t.dtype).max
|
82 |
+
|
83 |
+
|
84 |
+
def shape_to_str(x):
|
85 |
+
shape_str = "x".join([str(x) for x in x.shape])
|
86 |
+
return shape_str
|
87 |
+
|
88 |
+
|
89 |
+
def init_(tensor):
|
90 |
+
dim = tensor.shape[-1]
|
91 |
+
std = 1 / math.sqrt(dim)
|
92 |
+
tensor.uniform_(-std, std)
|
93 |
+
return tensor
|
94 |
+
|
95 |
+
|
96 |
+
ckpt = torch.utils.checkpoint.checkpoint
|
97 |
+
|
98 |
+
|
99 |
+
def checkpoint(func, inputs, params, flag):
|
100 |
+
"""
|
101 |
+
Evaluate a function without caching intermediate activations, allowing for
|
102 |
+
reduced memory at the expense of extra compute in the backward pass.
|
103 |
+
:param func: the function to evaluate.
|
104 |
+
:param inputs: the argument sequence to pass to `func`.
|
105 |
+
:param params: a sequence of parameters `func` depends on but does not
|
106 |
+
explicitly take as arguments.
|
107 |
+
:param flag: if False, disable gradient checkpointing.
|
108 |
+
"""
|
109 |
+
if flag:
|
110 |
+
return ckpt(func, *inputs)
|
111 |
+
else:
|
112 |
+
return func(*inputs)
|
lvdm/distributions.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(
|
34 |
+
device=self.parameters.device
|
35 |
+
)
|
36 |
+
|
37 |
+
def sample(self, noise=None):
|
38 |
+
if noise is None:
|
39 |
+
noise = torch.randn(self.mean.shape)
|
40 |
+
|
41 |
+
x = self.mean + self.std * noise.to(device=self.parameters.device)
|
42 |
+
return x
|
43 |
+
|
44 |
+
def kl(self, other=None):
|
45 |
+
if self.deterministic:
|
46 |
+
return torch.Tensor([0.0])
|
47 |
+
else:
|
48 |
+
if other is None:
|
49 |
+
return 0.5 * torch.sum(
|
50 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
51 |
+
dim=[1, 2, 3],
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
return 0.5 * torch.sum(
|
55 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
56 |
+
+ self.var / other.var
|
57 |
+
- 1.0
|
58 |
+
- self.logvar
|
59 |
+
+ other.logvar,
|
60 |
+
dim=[1, 2, 3],
|
61 |
+
)
|
62 |
+
|
63 |
+
def nll(self, sample, dims=[1, 2, 3]):
|
64 |
+
if self.deterministic:
|
65 |
+
return torch.Tensor([0.0])
|
66 |
+
logtwopi = np.log(2.0 * np.pi)
|
67 |
+
return 0.5 * torch.sum(
|
68 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
69 |
+
dim=dims,
|
70 |
+
)
|
71 |
+
|
72 |
+
def mode(self):
|
73 |
+
return self.mean
|
74 |
+
|
75 |
+
|
76 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
77 |
+
"""
|
78 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
79 |
+
Compute the KL divergence between two gaussians.
|
80 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
81 |
+
scalars, among other use cases.
|
82 |
+
"""
|
83 |
+
tensor = None
|
84 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
85 |
+
if isinstance(obj, torch.Tensor):
|
86 |
+
tensor = obj
|
87 |
+
break
|
88 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
89 |
+
|
90 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
91 |
+
# Tensors, but it does not work for torch.exp().
|
92 |
+
logvar1, logvar2 = [
|
93 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
94 |
+
for x in (logvar1, logvar2)
|
95 |
+
]
|
96 |
+
|
97 |
+
return 0.5 * (
|
98 |
+
-1.0
|
99 |
+
+ logvar2
|
100 |
+
- logvar1
|
101 |
+
+ torch.exp(logvar1 - logvar2)
|
102 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
103 |
+
)
|
lvdm/ema.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError("Decay must be between 0 and 1")
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer(
|
14 |
+
"num_updates",
|
15 |
+
(
|
16 |
+
torch.tensor(0, dtype=torch.int)
|
17 |
+
if use_num_upates
|
18 |
+
else torch.tensor(-1, dtype=torch.int)
|
19 |
+
),
|
20 |
+
)
|
21 |
+
|
22 |
+
for name, p in model.named_parameters():
|
23 |
+
if p.requires_grad:
|
24 |
+
# remove as '.'-character is not allowed in buffers
|
25 |
+
s_name = name.replace(".", "")
|
26 |
+
self.m_name2s_name.update({name: s_name})
|
27 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
28 |
+
|
29 |
+
self.collected_params = []
|
30 |
+
|
31 |
+
def forward(self, model):
|
32 |
+
decay = self.decay
|
33 |
+
|
34 |
+
if self.num_updates >= 0:
|
35 |
+
self.num_updates += 1
|
36 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
37 |
+
|
38 |
+
one_minus_decay = 1.0 - decay
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
m_param = dict(model.named_parameters())
|
42 |
+
shadow_params = dict(self.named_buffers())
|
43 |
+
|
44 |
+
for key in m_param:
|
45 |
+
if m_param[key].requires_grad:
|
46 |
+
sname = self.m_name2s_name[key]
|
47 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
48 |
+
shadow_params[sname].sub_(
|
49 |
+
one_minus_decay * (shadow_params[sname] - m_param[key])
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
assert not key in self.m_name2s_name
|
53 |
+
|
54 |
+
def copy_to(self, model):
|
55 |
+
m_param = dict(model.named_parameters())
|
56 |
+
shadow_params = dict(self.named_buffers())
|
57 |
+
for key in m_param:
|
58 |
+
if m_param[key].requires_grad:
|
59 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
60 |
+
else:
|
61 |
+
assert not key in self.m_name2s_name
|
62 |
+
|
63 |
+
def store(self, parameters):
|
64 |
+
"""
|
65 |
+
Save the current parameters for restoring later.
|
66 |
+
Args:
|
67 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
68 |
+
temporarily stored.
|
69 |
+
"""
|
70 |
+
self.collected_params = [param.clone() for param in parameters]
|
71 |
+
|
72 |
+
def restore(self, parameters):
|
73 |
+
"""
|
74 |
+
Restore the parameters stored with the `store` method.
|
75 |
+
Useful to validate the model with EMA parameters without affecting the
|
76 |
+
original optimization process. Store the parameters before the
|
77 |
+
`copy_to` method. After validation (or model saving), use this to
|
78 |
+
restore the former parameters.
|
79 |
+
Args:
|
80 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
81 |
+
updated with the stored parameters.
|
82 |
+
"""
|
83 |
+
for c_param, param in zip(self.collected_params, parameters):
|
84 |
+
param.data.copy_(c_param.data)
|
lvdm/models/__pycache__/autoencoder.cpython-311.pyc
ADDED
Binary file (14.1 kB). View file
|
|
lvdm/models/__pycache__/ddpm3d.cpython-311.pyc
ADDED
Binary file (45.5 kB). View file
|
|
lvdm/models/__pycache__/utils_diffusion.cpython-311.pyc
ADDED
Binary file (6.64 kB). View file
|
|
lvdm/models/autoencoder.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from contextlib import contextmanager
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from einops import rearrange
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import pytorch_lightning as pl
|
8 |
+
from lvdm.modules.networks.ae_modules import Encoder, Decoder
|
9 |
+
from lvdm.distributions import DiagonalGaussianDistribution
|
10 |
+
from utils.utils import instantiate_from_config
|
11 |
+
|
12 |
+
|
13 |
+
class AutoencoderKL(pl.LightningModule):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
ddconfig,
|
17 |
+
lossconfig,
|
18 |
+
embed_dim,
|
19 |
+
ckpt_path=None,
|
20 |
+
ignore_keys=[],
|
21 |
+
image_key="image",
|
22 |
+
colorize_nlabels=None,
|
23 |
+
monitor=None,
|
24 |
+
test=False,
|
25 |
+
logdir=None,
|
26 |
+
input_dim=4,
|
27 |
+
test_args=None,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.image_key = image_key
|
31 |
+
self.encoder = Encoder(**ddconfig)
|
32 |
+
self.decoder = Decoder(**ddconfig)
|
33 |
+
self.loss = instantiate_from_config(lossconfig)
|
34 |
+
assert ddconfig["double_z"]
|
35 |
+
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
36 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
37 |
+
self.embed_dim = embed_dim
|
38 |
+
self.input_dim = input_dim
|
39 |
+
self.test = test
|
40 |
+
self.test_args = test_args
|
41 |
+
self.logdir = logdir
|
42 |
+
if colorize_nlabels is not None:
|
43 |
+
assert type(colorize_nlabels) == int
|
44 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
45 |
+
if monitor is not None:
|
46 |
+
self.monitor = monitor
|
47 |
+
if ckpt_path is not None:
|
48 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
49 |
+
if self.test:
|
50 |
+
self.init_test()
|
51 |
+
|
52 |
+
def init_test(
|
53 |
+
self,
|
54 |
+
):
|
55 |
+
self.test = True
|
56 |
+
save_dir = os.path.join(self.logdir, "test")
|
57 |
+
if "ckpt" in self.test_args:
|
58 |
+
ckpt_name = (
|
59 |
+
os.path.basename(self.test_args.ckpt).split(".ckpt")[0]
|
60 |
+
+ f"_epoch{self._cur_epoch}"
|
61 |
+
)
|
62 |
+
self.root = os.path.join(save_dir, ckpt_name)
|
63 |
+
else:
|
64 |
+
self.root = save_dir
|
65 |
+
if "test_subdir" in self.test_args:
|
66 |
+
self.root = os.path.join(save_dir, self.test_args.test_subdir)
|
67 |
+
|
68 |
+
self.root_zs = os.path.join(self.root, "zs")
|
69 |
+
self.root_dec = os.path.join(self.root, "reconstructions")
|
70 |
+
self.root_inputs = os.path.join(self.root, "inputs")
|
71 |
+
os.makedirs(self.root, exist_ok=True)
|
72 |
+
|
73 |
+
if self.test_args.save_z:
|
74 |
+
os.makedirs(self.root_zs, exist_ok=True)
|
75 |
+
if self.test_args.save_reconstruction:
|
76 |
+
os.makedirs(self.root_dec, exist_ok=True)
|
77 |
+
if self.test_args.save_input:
|
78 |
+
os.makedirs(self.root_inputs, exist_ok=True)
|
79 |
+
assert self.test_args is not None
|
80 |
+
self.test_maximum = getattr(self.test_args, "test_maximum", None)
|
81 |
+
self.count = 0
|
82 |
+
self.eval_metrics = {}
|
83 |
+
self.decodes = []
|
84 |
+
self.save_decode_samples = 2048
|
85 |
+
|
86 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
87 |
+
sd = torch.load(path, map_location="cpu")
|
88 |
+
try:
|
89 |
+
self._cur_epoch = sd["epoch"]
|
90 |
+
sd = sd["state_dict"]
|
91 |
+
except:
|
92 |
+
self._cur_epoch = "null"
|
93 |
+
keys = list(sd.keys())
|
94 |
+
for k in keys:
|
95 |
+
for ik in ignore_keys:
|
96 |
+
if k.startswith(ik):
|
97 |
+
print("Deleting key {} from state_dict.".format(k))
|
98 |
+
del sd[k]
|
99 |
+
self.load_state_dict(sd, strict=False)
|
100 |
+
# self.load_state_dict(sd, strict=True)
|
101 |
+
print(f"Restored from {path}")
|
102 |
+
|
103 |
+
def encode(self, x, **kwargs):
|
104 |
+
|
105 |
+
h = self.encoder(x)
|
106 |
+
moments = self.quant_conv(h)
|
107 |
+
posterior = DiagonalGaussianDistribution(moments)
|
108 |
+
return posterior
|
109 |
+
|
110 |
+
def decode(self, z, **kwargs):
|
111 |
+
z = self.post_quant_conv(z)
|
112 |
+
dec = self.decoder(z)
|
113 |
+
return dec
|
114 |
+
|
115 |
+
def forward(self, input, sample_posterior=True):
|
116 |
+
posterior = self.encode(input)
|
117 |
+
if sample_posterior:
|
118 |
+
z = posterior.sample()
|
119 |
+
else:
|
120 |
+
z = posterior.mode()
|
121 |
+
dec = self.decode(z)
|
122 |
+
return dec, posterior
|
123 |
+
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if x.dim() == 5 and self.input_dim == 4:
|
127 |
+
b, c, t, h, w = x.shape
|
128 |
+
self.b = b
|
129 |
+
self.t = t
|
130 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
131 |
+
|
132 |
+
return x
|
133 |
+
|
134 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
135 |
+
inputs = self.get_input(batch, self.image_key)
|
136 |
+
reconstructions, posterior = self(inputs)
|
137 |
+
|
138 |
+
if optimizer_idx == 0:
|
139 |
+
# train encoder+decoder+logvar
|
140 |
+
aeloss, log_dict_ae = self.loss(
|
141 |
+
inputs,
|
142 |
+
reconstructions,
|
143 |
+
posterior,
|
144 |
+
optimizer_idx,
|
145 |
+
self.global_step,
|
146 |
+
last_layer=self.get_last_layer(),
|
147 |
+
split="train",
|
148 |
+
)
|
149 |
+
self.log(
|
150 |
+
"aeloss",
|
151 |
+
aeloss,
|
152 |
+
prog_bar=True,
|
153 |
+
logger=True,
|
154 |
+
on_step=True,
|
155 |
+
on_epoch=True,
|
156 |
+
)
|
157 |
+
self.log_dict(
|
158 |
+
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
159 |
+
)
|
160 |
+
return aeloss
|
161 |
+
|
162 |
+
if optimizer_idx == 1:
|
163 |
+
# train the discriminator
|
164 |
+
discloss, log_dict_disc = self.loss(
|
165 |
+
inputs,
|
166 |
+
reconstructions,
|
167 |
+
posterior,
|
168 |
+
optimizer_idx,
|
169 |
+
self.global_step,
|
170 |
+
last_layer=self.get_last_layer(),
|
171 |
+
split="train",
|
172 |
+
)
|
173 |
+
|
174 |
+
self.log(
|
175 |
+
"discloss",
|
176 |
+
discloss,
|
177 |
+
prog_bar=True,
|
178 |
+
logger=True,
|
179 |
+
on_step=True,
|
180 |
+
on_epoch=True,
|
181 |
+
)
|
182 |
+
self.log_dict(
|
183 |
+
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
184 |
+
)
|
185 |
+
return discloss
|
186 |
+
|
187 |
+
def validation_step(self, batch, batch_idx):
|
188 |
+
inputs = self.get_input(batch, self.image_key)
|
189 |
+
reconstructions, posterior = self(inputs)
|
190 |
+
aeloss, log_dict_ae = self.loss(
|
191 |
+
inputs,
|
192 |
+
reconstructions,
|
193 |
+
posterior,
|
194 |
+
0,
|
195 |
+
self.global_step,
|
196 |
+
last_layer=self.get_last_layer(),
|
197 |
+
split="val",
|
198 |
+
)
|
199 |
+
|
200 |
+
discloss, log_dict_disc = self.loss(
|
201 |
+
inputs,
|
202 |
+
reconstructions,
|
203 |
+
posterior,
|
204 |
+
1,
|
205 |
+
self.global_step,
|
206 |
+
last_layer=self.get_last_layer(),
|
207 |
+
split="val",
|
208 |
+
)
|
209 |
+
|
210 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
211 |
+
self.log_dict(log_dict_ae)
|
212 |
+
self.log_dict(log_dict_disc)
|
213 |
+
return self.log_dict
|
214 |
+
|
215 |
+
def configure_optimizers(self):
|
216 |
+
lr = self.learning_rate
|
217 |
+
opt_ae = torch.optim.Adam(
|
218 |
+
list(self.encoder.parameters())
|
219 |
+
+ list(self.decoder.parameters())
|
220 |
+
+ list(self.quant_conv.parameters())
|
221 |
+
+ list(self.post_quant_conv.parameters()),
|
222 |
+
lr=lr,
|
223 |
+
betas=(0.5, 0.9),
|
224 |
+
)
|
225 |
+
opt_disc = torch.optim.Adam(
|
226 |
+
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
227 |
+
)
|
228 |
+
return [opt_ae, opt_disc], []
|
229 |
+
|
230 |
+
def get_last_layer(self):
|
231 |
+
return self.decoder.conv_out.weight
|
232 |
+
|
233 |
+
@torch.no_grad()
|
234 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
235 |
+
log = dict()
|
236 |
+
x = self.get_input(batch, self.image_key)
|
237 |
+
x = x.to(self.device)
|
238 |
+
if not only_inputs:
|
239 |
+
xrec, posterior = self(x)
|
240 |
+
if x.shape[1] > 3:
|
241 |
+
# colorize with random projection
|
242 |
+
assert xrec.shape[1] > 3
|
243 |
+
x = self.to_rgb(x)
|
244 |
+
xrec = self.to_rgb(xrec)
|
245 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
246 |
+
log["reconstructions"] = xrec
|
247 |
+
log["inputs"] = x
|
248 |
+
return log
|
249 |
+
|
250 |
+
def to_rgb(self, x):
|
251 |
+
assert self.image_key == "segmentation"
|
252 |
+
if not hasattr(self, "colorize"):
|
253 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
254 |
+
x = F.conv2d(x, weight=self.colorize)
|
255 |
+
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
256 |
+
return x
|
257 |
+
|
258 |
+
|
259 |
+
class IdentityFirstStage(torch.nn.Module):
|
260 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
261 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
262 |
+
super().__init__()
|
263 |
+
|
264 |
+
def encode(self, x, *args, **kwargs):
|
265 |
+
return x
|
266 |
+
|
267 |
+
def decode(self, x, *args, **kwargs):
|
268 |
+
return x
|
269 |
+
|
270 |
+
def quantize(self, x, *args, **kwargs):
|
271 |
+
if self.vq_interface:
|
272 |
+
return x, None, [None, None, None]
|
273 |
+
return x
|
274 |
+
|
275 |
+
def forward(self, x, *args, **kwargs):
|
276 |
+
return x
|
lvdm/models/ddpm3d.py
ADDED
@@ -0,0 +1,967 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
4 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
from contextlib import contextmanager
|
11 |
+
import numpy as np
|
12 |
+
from tqdm import tqdm
|
13 |
+
from einops import rearrange, repeat
|
14 |
+
import logging
|
15 |
+
|
16 |
+
mainlogger = logging.getLogger("mainlogger")
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torchvision.utils import make_grid
|
20 |
+
import pytorch_lightning as pl
|
21 |
+
from utils.utils import instantiate_from_config
|
22 |
+
from lvdm.ema import LitEma
|
23 |
+
from lvdm.distributions import DiagonalGaussianDistribution
|
24 |
+
from lvdm.models.utils_diffusion import make_beta_schedule
|
25 |
+
from lvdm.modules.encoders.ip_resampler import ImageProjModel, Resampler
|
26 |
+
from lvdm.basics import disabled_train
|
27 |
+
from lvdm.common import extract_into_tensor, noise_like, exists, default
|
28 |
+
|
29 |
+
|
30 |
+
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
|
31 |
+
|
32 |
+
|
33 |
+
class DDPM(pl.LightningModule):
|
34 |
+
# classic DDPM with Gaussian diffusion, in image space
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
unet_config,
|
38 |
+
timesteps=1000,
|
39 |
+
beta_schedule="linear",
|
40 |
+
loss_type="l2",
|
41 |
+
ckpt_path=None,
|
42 |
+
ignore_keys=[],
|
43 |
+
load_only_unet=False,
|
44 |
+
monitor=None,
|
45 |
+
use_ema=True,
|
46 |
+
first_stage_key="image",
|
47 |
+
image_size=256,
|
48 |
+
channels=3,
|
49 |
+
log_every_t=100,
|
50 |
+
clip_denoised=True,
|
51 |
+
linear_start=1e-4,
|
52 |
+
linear_end=2e-2,
|
53 |
+
cosine_s=8e-3,
|
54 |
+
given_betas=None,
|
55 |
+
original_elbo_weight=0.0,
|
56 |
+
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
57 |
+
l_simple_weight=1.0,
|
58 |
+
conditioning_key=None,
|
59 |
+
parameterization="eps", # all assuming fixed variance schedules
|
60 |
+
scheduler_config=None,
|
61 |
+
use_positional_encodings=False,
|
62 |
+
learn_logvar=False,
|
63 |
+
logvar_init=0.0,
|
64 |
+
):
|
65 |
+
super().__init__()
|
66 |
+
assert parameterization in [
|
67 |
+
"eps",
|
68 |
+
"x0",
|
69 |
+
], 'currently only supporting "eps" and "x0"'
|
70 |
+
self.parameterization = parameterization
|
71 |
+
mainlogger.info(
|
72 |
+
f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode"
|
73 |
+
)
|
74 |
+
self.cond_stage_model = None
|
75 |
+
self.clip_denoised = clip_denoised
|
76 |
+
self.log_every_t = log_every_t
|
77 |
+
self.first_stage_key = first_stage_key
|
78 |
+
self.channels = channels
|
79 |
+
self.temporal_length = unet_config.params.temporal_length
|
80 |
+
self.image_size = image_size
|
81 |
+
if isinstance(self.image_size, int):
|
82 |
+
self.image_size = [self.image_size, self.image_size]
|
83 |
+
self.use_positional_encodings = use_positional_encodings
|
84 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
85 |
+
self.use_ema = use_ema
|
86 |
+
if self.use_ema:
|
87 |
+
self.model_ema = LitEma(self.model)
|
88 |
+
mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
89 |
+
|
90 |
+
self.use_scheduler = scheduler_config is not None
|
91 |
+
if self.use_scheduler:
|
92 |
+
self.scheduler_config = scheduler_config
|
93 |
+
|
94 |
+
self.v_posterior = v_posterior
|
95 |
+
self.original_elbo_weight = original_elbo_weight
|
96 |
+
self.l_simple_weight = l_simple_weight
|
97 |
+
|
98 |
+
if monitor is not None:
|
99 |
+
self.monitor = monitor
|
100 |
+
if ckpt_path is not None:
|
101 |
+
self.init_from_ckpt(
|
102 |
+
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
|
103 |
+
)
|
104 |
+
|
105 |
+
self.register_schedule(
|
106 |
+
given_betas=given_betas,
|
107 |
+
beta_schedule=beta_schedule,
|
108 |
+
timesteps=timesteps,
|
109 |
+
linear_start=linear_start,
|
110 |
+
linear_end=linear_end,
|
111 |
+
cosine_s=cosine_s,
|
112 |
+
)
|
113 |
+
|
114 |
+
self.loss_type = loss_type
|
115 |
+
|
116 |
+
self.learn_logvar = learn_logvar
|
117 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
118 |
+
if self.learn_logvar:
|
119 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
120 |
+
|
121 |
+
def register_schedule(
|
122 |
+
self,
|
123 |
+
given_betas=None,
|
124 |
+
beta_schedule="linear",
|
125 |
+
timesteps=1000,
|
126 |
+
linear_start=1e-4,
|
127 |
+
linear_end=2e-2,
|
128 |
+
cosine_s=8e-3,
|
129 |
+
):
|
130 |
+
if exists(given_betas):
|
131 |
+
betas = given_betas
|
132 |
+
else:
|
133 |
+
betas = make_beta_schedule(
|
134 |
+
beta_schedule,
|
135 |
+
timesteps,
|
136 |
+
linear_start=linear_start,
|
137 |
+
linear_end=linear_end,
|
138 |
+
cosine_s=cosine_s,
|
139 |
+
)
|
140 |
+
alphas = 1.0 - betas
|
141 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
142 |
+
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
143 |
+
|
144 |
+
(timesteps,) = betas.shape
|
145 |
+
self.num_timesteps = int(timesteps)
|
146 |
+
self.linear_start = linear_start
|
147 |
+
self.linear_end = linear_end
|
148 |
+
assert (
|
149 |
+
alphas_cumprod.shape[0] == self.num_timesteps
|
150 |
+
), "alphas have to be defined for each timestep"
|
151 |
+
|
152 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
153 |
+
|
154 |
+
self.register_buffer("betas", to_torch(betas))
|
155 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
156 |
+
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
157 |
+
|
158 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
159 |
+
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
160 |
+
self.register_buffer(
|
161 |
+
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
162 |
+
)
|
163 |
+
self.register_buffer(
|
164 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
165 |
+
)
|
166 |
+
self.register_buffer(
|
167 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
168 |
+
)
|
169 |
+
self.register_buffer(
|
170 |
+
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
171 |
+
)
|
172 |
+
|
173 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
174 |
+
posterior_variance = (1 - self.v_posterior) * betas * (
|
175 |
+
1.0 - alphas_cumprod_prev
|
176 |
+
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
177 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
178 |
+
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
179 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
180 |
+
self.register_buffer(
|
181 |
+
"posterior_log_variance_clipped",
|
182 |
+
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
|
183 |
+
)
|
184 |
+
self.register_buffer(
|
185 |
+
"posterior_mean_coef1",
|
186 |
+
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
|
187 |
+
)
|
188 |
+
self.register_buffer(
|
189 |
+
"posterior_mean_coef2",
|
190 |
+
to_torch(
|
191 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
192 |
+
),
|
193 |
+
)
|
194 |
+
|
195 |
+
if self.parameterization == "eps":
|
196 |
+
lvlb_weights = self.betas**2 / (
|
197 |
+
2
|
198 |
+
* self.posterior_variance
|
199 |
+
* to_torch(alphas)
|
200 |
+
* (1 - self.alphas_cumprod)
|
201 |
+
)
|
202 |
+
elif self.parameterization == "x0":
|
203 |
+
lvlb_weights = (
|
204 |
+
0.5
|
205 |
+
* np.sqrt(torch.Tensor(alphas_cumprod))
|
206 |
+
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
raise NotImplementedError("mu not supported")
|
210 |
+
# TODO how to choose this term
|
211 |
+
lvlb_weights[0] = lvlb_weights[1]
|
212 |
+
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
|
213 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
214 |
+
|
215 |
+
@contextmanager
|
216 |
+
def ema_scope(self, context=None):
|
217 |
+
if self.use_ema:
|
218 |
+
self.model_ema.store(self.model.parameters())
|
219 |
+
self.model_ema.copy_to(self.model)
|
220 |
+
if context is not None:
|
221 |
+
mainlogger.info(f"{context}: Switched to EMA weights")
|
222 |
+
try:
|
223 |
+
yield None
|
224 |
+
finally:
|
225 |
+
if self.use_ema:
|
226 |
+
self.model_ema.restore(self.model.parameters())
|
227 |
+
if context is not None:
|
228 |
+
mainlogger.info(f"{context}: Restored training weights")
|
229 |
+
|
230 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
231 |
+
sd = torch.load(path, map_location="cpu")
|
232 |
+
if "state_dict" in list(sd.keys()):
|
233 |
+
sd = sd["state_dict"]
|
234 |
+
keys = list(sd.keys())
|
235 |
+
for k in keys:
|
236 |
+
for ik in ignore_keys:
|
237 |
+
if k.startswith(ik):
|
238 |
+
mainlogger.info("Deleting key {} from state_dict.".format(k))
|
239 |
+
del sd[k]
|
240 |
+
missing, unexpected = (
|
241 |
+
self.load_state_dict(sd, strict=False)
|
242 |
+
if not only_model
|
243 |
+
else self.model.load_state_dict(sd, strict=False)
|
244 |
+
)
|
245 |
+
mainlogger.info(
|
246 |
+
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
|
247 |
+
)
|
248 |
+
if len(missing) > 0:
|
249 |
+
mainlogger.info(f"Missing Keys: {missing}")
|
250 |
+
if len(unexpected) > 0:
|
251 |
+
mainlogger.info(f"Unexpected Keys: {unexpected}")
|
252 |
+
|
253 |
+
def q_mean_variance(self, x_start, t):
|
254 |
+
"""
|
255 |
+
Get the distribution q(x_t | x_0).
|
256 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
257 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
258 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
259 |
+
"""
|
260 |
+
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
261 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
262 |
+
log_variance = extract_into_tensor(
|
263 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
264 |
+
)
|
265 |
+
return mean, variance, log_variance
|
266 |
+
|
267 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
268 |
+
return (
|
269 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
270 |
+
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
271 |
+
* noise
|
272 |
+
)
|
273 |
+
|
274 |
+
def q_posterior(self, x_start, x_t, t):
|
275 |
+
posterior_mean = (
|
276 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
277 |
+
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
278 |
+
)
|
279 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
280 |
+
posterior_log_variance_clipped = extract_into_tensor(
|
281 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
282 |
+
)
|
283 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
284 |
+
|
285 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
286 |
+
model_out = self.model(x, t)
|
287 |
+
if self.parameterization == "eps":
|
288 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
289 |
+
elif self.parameterization == "x0":
|
290 |
+
x_recon = model_out
|
291 |
+
if clip_denoised:
|
292 |
+
x_recon.clamp_(-1.0, 1.0)
|
293 |
+
|
294 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
295 |
+
x_start=x_recon, x_t=x, t=t
|
296 |
+
)
|
297 |
+
return model_mean, posterior_variance, posterior_log_variance
|
298 |
+
|
299 |
+
@torch.no_grad()
|
300 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
301 |
+
b, *_, device = *x.shape, x.device
|
302 |
+
model_mean, _, model_log_variance = self.p_mean_variance(
|
303 |
+
x=x, t=t, clip_denoised=clip_denoised
|
304 |
+
)
|
305 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
306 |
+
# no noise when t == 0
|
307 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
308 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
309 |
+
|
310 |
+
@torch.no_grad()
|
311 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
312 |
+
device = self.betas.device
|
313 |
+
b = shape[0]
|
314 |
+
img = torch.randn(shape, device=device)
|
315 |
+
intermediates = [img]
|
316 |
+
for i in tqdm(
|
317 |
+
reversed(range(0, self.num_timesteps)),
|
318 |
+
desc="Sampling t",
|
319 |
+
total=self.num_timesteps,
|
320 |
+
):
|
321 |
+
img = self.p_sample(
|
322 |
+
img,
|
323 |
+
torch.full((b,), i, device=device, dtype=torch.long),
|
324 |
+
clip_denoised=self.clip_denoised,
|
325 |
+
)
|
326 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
327 |
+
intermediates.append(img)
|
328 |
+
if return_intermediates:
|
329 |
+
return img, intermediates
|
330 |
+
return img
|
331 |
+
|
332 |
+
@torch.no_grad()
|
333 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
334 |
+
image_size = self.image_size
|
335 |
+
channels = self.channels
|
336 |
+
return self.p_sample_loop(
|
337 |
+
(batch_size, channels, image_size, image_size),
|
338 |
+
return_intermediates=return_intermediates,
|
339 |
+
)
|
340 |
+
|
341 |
+
def q_sample(self, x_start, t, noise=None):
|
342 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
343 |
+
return (
|
344 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
|
345 |
+
* x_start
|
346 |
+
* extract_into_tensor(self.scale_arr, t, x_start.shape)
|
347 |
+
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
348 |
+
* noise
|
349 |
+
)
|
350 |
+
|
351 |
+
def get_input(self, batch, k):
|
352 |
+
x = batch[k]
|
353 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
354 |
+
return x
|
355 |
+
|
356 |
+
def _get_rows_from_list(self, samples):
|
357 |
+
n_imgs_per_row = len(samples)
|
358 |
+
denoise_grid = rearrange(samples, "n b c h w -> b n c h w")
|
359 |
+
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
|
360 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
361 |
+
return denoise_grid
|
362 |
+
|
363 |
+
@torch.no_grad()
|
364 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
365 |
+
log = dict()
|
366 |
+
x = self.get_input(batch, self.first_stage_key)
|
367 |
+
N = min(x.shape[0], N)
|
368 |
+
n_row = min(x.shape[0], n_row)
|
369 |
+
x = x.to(self.device)[:N]
|
370 |
+
log["inputs"] = x
|
371 |
+
|
372 |
+
# get diffusion row
|
373 |
+
diffusion_row = list()
|
374 |
+
x_start = x[:n_row]
|
375 |
+
|
376 |
+
for t in range(self.num_timesteps):
|
377 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
378 |
+
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
|
379 |
+
t = t.to(self.device).long()
|
380 |
+
noise = torch.randn_like(x_start)
|
381 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
382 |
+
diffusion_row.append(x_noisy)
|
383 |
+
|
384 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
385 |
+
|
386 |
+
if sample:
|
387 |
+
# get denoise row
|
388 |
+
with self.ema_scope("Plotting"):
|
389 |
+
samples, denoise_row = self.sample(
|
390 |
+
batch_size=N, return_intermediates=True
|
391 |
+
)
|
392 |
+
|
393 |
+
log["samples"] = samples
|
394 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
395 |
+
|
396 |
+
if return_keys:
|
397 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
398 |
+
return log
|
399 |
+
else:
|
400 |
+
return {key: log[key] for key in return_keys}
|
401 |
+
return log
|
402 |
+
|
403 |
+
|
404 |
+
class LatentDiffusion(DDPM):
|
405 |
+
"""main class"""
|
406 |
+
|
407 |
+
def __init__(
|
408 |
+
self,
|
409 |
+
first_stage_config,
|
410 |
+
cond_stage_config,
|
411 |
+
num_timesteps_cond=None,
|
412 |
+
cond_stage_key="caption",
|
413 |
+
cond_stage_trainable=False,
|
414 |
+
cond_stage_forward=None,
|
415 |
+
conditioning_key=None,
|
416 |
+
uncond_prob=0.2,
|
417 |
+
uncond_type="empty_seq",
|
418 |
+
scale_factor=1.0,
|
419 |
+
scale_by_std=False,
|
420 |
+
encoder_type="2d",
|
421 |
+
only_model=False,
|
422 |
+
use_scale=False,
|
423 |
+
scale_a=1,
|
424 |
+
scale_b=0.3,
|
425 |
+
mid_step=400,
|
426 |
+
fix_scale_bug=False,
|
427 |
+
*args,
|
428 |
+
**kwargs,
|
429 |
+
):
|
430 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
431 |
+
self.scale_by_std = scale_by_std
|
432 |
+
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
433 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
434 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
435 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
436 |
+
conditioning_key = default(conditioning_key, "crossattn")
|
437 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
438 |
+
|
439 |
+
self.cond_stage_trainable = cond_stage_trainable
|
440 |
+
self.cond_stage_key = cond_stage_key
|
441 |
+
|
442 |
+
# scale factor
|
443 |
+
self.use_scale = use_scale
|
444 |
+
if self.use_scale:
|
445 |
+
self.scale_a = scale_a
|
446 |
+
self.scale_b = scale_b
|
447 |
+
if fix_scale_bug:
|
448 |
+
scale_step = self.num_timesteps - mid_step
|
449 |
+
else: # bug
|
450 |
+
scale_step = self.num_timesteps
|
451 |
+
|
452 |
+
scale_arr1 = np.linspace(scale_a, scale_b, mid_step)
|
453 |
+
scale_arr2 = np.full(scale_step, scale_b)
|
454 |
+
scale_arr = np.concatenate((scale_arr1, scale_arr2))
|
455 |
+
scale_arr_prev = np.append(scale_a, scale_arr[:-1])
|
456 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
457 |
+
self.register_buffer("scale_arr", to_torch(scale_arr))
|
458 |
+
|
459 |
+
try:
|
460 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
461 |
+
except:
|
462 |
+
self.num_downs = 0
|
463 |
+
if not scale_by_std:
|
464 |
+
self.scale_factor = scale_factor
|
465 |
+
else:
|
466 |
+
self.register_buffer("scale_factor", torch.tensor(scale_factor))
|
467 |
+
self.instantiate_first_stage(first_stage_config)
|
468 |
+
self.instantiate_cond_stage(cond_stage_config)
|
469 |
+
self.first_stage_config = first_stage_config
|
470 |
+
self.cond_stage_config = cond_stage_config
|
471 |
+
self.clip_denoised = False
|
472 |
+
|
473 |
+
self.cond_stage_forward = cond_stage_forward
|
474 |
+
self.encoder_type = encoder_type
|
475 |
+
assert encoder_type in ["2d", "3d"]
|
476 |
+
self.uncond_prob = uncond_prob
|
477 |
+
self.classifier_free_guidance = True if uncond_prob > 0 else False
|
478 |
+
assert uncond_type in ["zero_embed", "empty_seq"]
|
479 |
+
self.uncond_type = uncond_type
|
480 |
+
|
481 |
+
self.restarted_from_ckpt = False
|
482 |
+
if ckpt_path is not None:
|
483 |
+
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
|
484 |
+
self.restarted_from_ckpt = True
|
485 |
+
|
486 |
+
def make_cond_schedule(
|
487 |
+
self,
|
488 |
+
):
|
489 |
+
self.cond_ids = torch.full(
|
490 |
+
size=(self.num_timesteps,),
|
491 |
+
fill_value=self.num_timesteps - 1,
|
492 |
+
dtype=torch.long,
|
493 |
+
)
|
494 |
+
ids = torch.round(
|
495 |
+
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
496 |
+
).long()
|
497 |
+
self.cond_ids[: self.num_timesteps_cond] = ids
|
498 |
+
|
499 |
+
def q_sample(self, x_start, t, noise=None):
|
500 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
501 |
+
if self.use_scale:
|
502 |
+
return (
|
503 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
|
504 |
+
* x_start
|
505 |
+
* extract_into_tensor(self.scale_arr, t, x_start.shape)
|
506 |
+
+ extract_into_tensor(
|
507 |
+
self.sqrt_one_minus_alphas_cumprod, t, x_start.shape
|
508 |
+
)
|
509 |
+
* noise
|
510 |
+
)
|
511 |
+
else:
|
512 |
+
return (
|
513 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
|
514 |
+
* x_start
|
515 |
+
+ extract_into_tensor(
|
516 |
+
self.sqrt_one_minus_alphas_cumprod, t, x_start.shape
|
517 |
+
)
|
518 |
+
* noise
|
519 |
+
)
|
520 |
+
|
521 |
+
def _freeze_model(self):
|
522 |
+
for name, para in self.model.diffusion_model.named_parameters():
|
523 |
+
para.requires_grad = False
|
524 |
+
|
525 |
+
def instantiate_first_stage(self, config):
|
526 |
+
model = instantiate_from_config(config)
|
527 |
+
self.first_stage_model = model.eval()
|
528 |
+
self.first_stage_model.train = disabled_train
|
529 |
+
for param in self.first_stage_model.parameters():
|
530 |
+
param.requires_grad = False
|
531 |
+
|
532 |
+
def instantiate_cond_stage(self, config):
|
533 |
+
if not self.cond_stage_trainable:
|
534 |
+
model = instantiate_from_config(config)
|
535 |
+
self.cond_stage_model = model.eval()
|
536 |
+
self.cond_stage_model.train = disabled_train
|
537 |
+
for param in self.cond_stage_model.parameters():
|
538 |
+
param.requires_grad = False
|
539 |
+
else:
|
540 |
+
model = instantiate_from_config(config)
|
541 |
+
self.cond_stage_model = model
|
542 |
+
|
543 |
+
def get_learned_conditioning(self, c):
|
544 |
+
if self.cond_stage_forward is None:
|
545 |
+
if hasattr(self.cond_stage_model, "encode") and callable(
|
546 |
+
self.cond_stage_model.encode
|
547 |
+
):
|
548 |
+
c = self.cond_stage_model.encode(c)
|
549 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
550 |
+
c = c.mode()
|
551 |
+
else:
|
552 |
+
c = self.cond_stage_model(c)
|
553 |
+
else:
|
554 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
555 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
556 |
+
return c
|
557 |
+
|
558 |
+
def get_first_stage_encoding(self, encoder_posterior, noise=None):
|
559 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
560 |
+
z = encoder_posterior.sample(noise=noise)
|
561 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
562 |
+
z = encoder_posterior
|
563 |
+
else:
|
564 |
+
raise NotImplementedError(
|
565 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
566 |
+
)
|
567 |
+
return self.scale_factor * z
|
568 |
+
|
569 |
+
@torch.no_grad()
|
570 |
+
def encode_first_stage(self, x):
|
571 |
+
if self.encoder_type == "2d" and x.dim() == 5:
|
572 |
+
b, _, t, _, _ = x.shape
|
573 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
574 |
+
reshape_back = True
|
575 |
+
else:
|
576 |
+
reshape_back = False
|
577 |
+
|
578 |
+
encoder_posterior = self.first_stage_model.encode(x)
|
579 |
+
results = self.get_first_stage_encoding(encoder_posterior).detach()
|
580 |
+
|
581 |
+
if reshape_back:
|
582 |
+
results = rearrange(results, "(b t) c h w -> b c t h w", b=b, t=t)
|
583 |
+
|
584 |
+
return results
|
585 |
+
|
586 |
+
@torch.no_grad()
|
587 |
+
def encode_first_stage_2DAE(self, x):
|
588 |
+
|
589 |
+
b, _, t, _, _ = x.shape
|
590 |
+
results = torch.cat(
|
591 |
+
[
|
592 |
+
self.get_first_stage_encoding(self.first_stage_model.encode(x[:, :, i]))
|
593 |
+
.detach()
|
594 |
+
.unsqueeze(2)
|
595 |
+
for i in range(t)
|
596 |
+
],
|
597 |
+
dim=2,
|
598 |
+
)
|
599 |
+
|
600 |
+
return results
|
601 |
+
|
602 |
+
def decode_core(self, z, **kwargs):
|
603 |
+
if self.encoder_type == "2d" and z.dim() == 5:
|
604 |
+
b, _, t, _, _ = z.shape
|
605 |
+
z = rearrange(z, "b c t h w -> (b t) c h w")
|
606 |
+
reshape_back = True
|
607 |
+
else:
|
608 |
+
reshape_back = False
|
609 |
+
|
610 |
+
z = 1.0 / self.scale_factor * z
|
611 |
+
|
612 |
+
results = self.first_stage_model.decode(z, **kwargs)
|
613 |
+
|
614 |
+
if reshape_back:
|
615 |
+
results = rearrange(results, "(b t) c h w -> b c t h w", b=b, t=t)
|
616 |
+
return results
|
617 |
+
|
618 |
+
@torch.no_grad()
|
619 |
+
def decode_first_stage(self, z, **kwargs):
|
620 |
+
return self.decode_core(z, **kwargs)
|
621 |
+
|
622 |
+
def apply_model(self, x_noisy, t, cond, **kwargs):
|
623 |
+
if isinstance(cond, dict):
|
624 |
+
# hybrid case, cond is exptected to be a dict
|
625 |
+
pass
|
626 |
+
else:
|
627 |
+
if not isinstance(cond, list):
|
628 |
+
cond = [cond]
|
629 |
+
key = (
|
630 |
+
"c_concat" if self.model.conditioning_key == "concat" else "c_crossattn"
|
631 |
+
)
|
632 |
+
cond = {key: cond}
|
633 |
+
|
634 |
+
x_recon = self.model(x_noisy, t, **cond, **kwargs)
|
635 |
+
|
636 |
+
if isinstance(x_recon, tuple):
|
637 |
+
return x_recon[0]
|
638 |
+
else:
|
639 |
+
return x_recon
|
640 |
+
|
641 |
+
def _get_denoise_row_from_list(self, samples, desc=""):
|
642 |
+
denoise_row = []
|
643 |
+
for zd in tqdm(samples, desc=desc):
|
644 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device)))
|
645 |
+
n_log_timesteps = len(denoise_row)
|
646 |
+
|
647 |
+
denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W
|
648 |
+
|
649 |
+
if denoise_row.dim() == 5:
|
650 |
+
# img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps]
|
651 |
+
denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w")
|
652 |
+
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
|
653 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
|
654 |
+
elif denoise_row.dim() == 6:
|
655 |
+
# video, grid_size=[n_log_timesteps*bs, t]
|
656 |
+
video_length = denoise_row.shape[3]
|
657 |
+
denoise_grid = rearrange(denoise_row, "n b c t h w -> b n c t h w")
|
658 |
+
denoise_grid = rearrange(denoise_grid, "b n c t h w -> (b n) c t h w")
|
659 |
+
denoise_grid = rearrange(denoise_grid, "n c t h w -> (n t) c h w")
|
660 |
+
denoise_grid = make_grid(denoise_grid, nrow=video_length)
|
661 |
+
else:
|
662 |
+
raise ValueError
|
663 |
+
|
664 |
+
return denoise_grid
|
665 |
+
|
666 |
+
@torch.no_grad()
|
667 |
+
def decode_first_stage_2DAE(self, z, **kwargs):
|
668 |
+
|
669 |
+
b, _, t, _, _ = z.shape
|
670 |
+
z = 1.0 / self.scale_factor * z
|
671 |
+
results = torch.cat(
|
672 |
+
[
|
673 |
+
self.first_stage_model.decode(z[:, :, i], **kwargs).unsqueeze(2)
|
674 |
+
for i in range(t)
|
675 |
+
],
|
676 |
+
dim=2,
|
677 |
+
)
|
678 |
+
|
679 |
+
return results
|
680 |
+
|
681 |
+
def p_mean_variance(
|
682 |
+
self,
|
683 |
+
x,
|
684 |
+
c,
|
685 |
+
t,
|
686 |
+
clip_denoised: bool,
|
687 |
+
return_x0=False,
|
688 |
+
score_corrector=None,
|
689 |
+
corrector_kwargs=None,
|
690 |
+
**kwargs,
|
691 |
+
):
|
692 |
+
t_in = t
|
693 |
+
model_out = self.apply_model(x, t_in, c, **kwargs)
|
694 |
+
|
695 |
+
if score_corrector is not None:
|
696 |
+
assert self.parameterization == "eps"
|
697 |
+
model_out = score_corrector.modify_score(
|
698 |
+
self, model_out, x, t, c, **corrector_kwargs
|
699 |
+
)
|
700 |
+
|
701 |
+
if self.parameterization == "eps":
|
702 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
703 |
+
elif self.parameterization == "x0":
|
704 |
+
x_recon = model_out
|
705 |
+
else:
|
706 |
+
raise NotImplementedError()
|
707 |
+
|
708 |
+
if clip_denoised:
|
709 |
+
x_recon.clamp_(-1.0, 1.0)
|
710 |
+
|
711 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
712 |
+
x_start=x_recon, x_t=x, t=t
|
713 |
+
)
|
714 |
+
|
715 |
+
if return_x0:
|
716 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
717 |
+
else:
|
718 |
+
return model_mean, posterior_variance, posterior_log_variance
|
719 |
+
|
720 |
+
@torch.no_grad()
|
721 |
+
def p_sample(
|
722 |
+
self,
|
723 |
+
x,
|
724 |
+
c,
|
725 |
+
t,
|
726 |
+
clip_denoised=False,
|
727 |
+
repeat_noise=False,
|
728 |
+
return_x0=False,
|
729 |
+
temperature=1.0,
|
730 |
+
noise_dropout=0.0,
|
731 |
+
score_corrector=None,
|
732 |
+
corrector_kwargs=None,
|
733 |
+
**kwargs,
|
734 |
+
):
|
735 |
+
b, *_, device = *x.shape, x.device
|
736 |
+
outputs = self.p_mean_variance(
|
737 |
+
x=x,
|
738 |
+
c=c,
|
739 |
+
t=t,
|
740 |
+
clip_denoised=clip_denoised,
|
741 |
+
return_x0=return_x0,
|
742 |
+
score_corrector=score_corrector,
|
743 |
+
corrector_kwargs=corrector_kwargs,
|
744 |
+
**kwargs,
|
745 |
+
)
|
746 |
+
if return_x0:
|
747 |
+
model_mean, _, model_log_variance, x0 = outputs
|
748 |
+
else:
|
749 |
+
model_mean, _, model_log_variance = outputs
|
750 |
+
|
751 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
752 |
+
if noise_dropout > 0.0:
|
753 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
754 |
+
# no noise when t == 0
|
755 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
756 |
+
|
757 |
+
if return_x0:
|
758 |
+
return (
|
759 |
+
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
|
760 |
+
x0,
|
761 |
+
)
|
762 |
+
else:
|
763 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
764 |
+
|
765 |
+
@torch.no_grad()
|
766 |
+
def p_sample_loop(
|
767 |
+
self,
|
768 |
+
cond,
|
769 |
+
shape,
|
770 |
+
return_intermediates=False,
|
771 |
+
x_T=None,
|
772 |
+
verbose=True,
|
773 |
+
callback=None,
|
774 |
+
timesteps=None,
|
775 |
+
mask=None,
|
776 |
+
x0=None,
|
777 |
+
img_callback=None,
|
778 |
+
start_T=None,
|
779 |
+
log_every_t=None,
|
780 |
+
**kwargs,
|
781 |
+
):
|
782 |
+
|
783 |
+
if not log_every_t:
|
784 |
+
log_every_t = self.log_every_t
|
785 |
+
device = self.betas.device
|
786 |
+
b = shape[0]
|
787 |
+
# sample an initial noise
|
788 |
+
if x_T is None:
|
789 |
+
img = torch.randn(shape, device=device)
|
790 |
+
else:
|
791 |
+
img = x_T
|
792 |
+
|
793 |
+
intermediates = [img]
|
794 |
+
if timesteps is None:
|
795 |
+
timesteps = self.num_timesteps
|
796 |
+
if start_T is not None:
|
797 |
+
timesteps = min(timesteps, start_T)
|
798 |
+
|
799 |
+
iterator = (
|
800 |
+
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
|
801 |
+
if verbose
|
802 |
+
else reversed(range(0, timesteps))
|
803 |
+
)
|
804 |
+
|
805 |
+
if mask is not None:
|
806 |
+
assert x0 is not None
|
807 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
808 |
+
|
809 |
+
for i in iterator:
|
810 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
811 |
+
if self.shorten_cond_schedule:
|
812 |
+
assert self.model.conditioning_key != "hybrid"
|
813 |
+
tc = self.cond_ids[ts].to(cond.device)
|
814 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
815 |
+
|
816 |
+
img = self.p_sample(
|
817 |
+
img, cond, ts, clip_denoised=self.clip_denoised, **kwargs
|
818 |
+
)
|
819 |
+
if mask is not None:
|
820 |
+
img_orig = self.q_sample(x0, ts)
|
821 |
+
img = img_orig * mask + (1.0 - mask) * img
|
822 |
+
|
823 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
824 |
+
intermediates.append(img)
|
825 |
+
if callback:
|
826 |
+
callback(i)
|
827 |
+
if img_callback:
|
828 |
+
img_callback(img, i)
|
829 |
+
|
830 |
+
if return_intermediates:
|
831 |
+
return img, intermediates
|
832 |
+
return img
|
833 |
+
|
834 |
+
|
835 |
+
class LatentVisualDiffusion(LatentDiffusion):
|
836 |
+
def __init__(
|
837 |
+
self, cond_img_config, finegrained=False, random_cond=False, *args, **kwargs
|
838 |
+
):
|
839 |
+
super().__init__(*args, **kwargs)
|
840 |
+
self.random_cond = random_cond
|
841 |
+
self.instantiate_img_embedder(cond_img_config, freeze=True)
|
842 |
+
num_tokens = 16 if finegrained else 4
|
843 |
+
self.image_proj_model = self.init_projector(
|
844 |
+
use_finegrained=finegrained,
|
845 |
+
num_tokens=num_tokens,
|
846 |
+
input_dim=1024,
|
847 |
+
cross_attention_dim=1024,
|
848 |
+
dim=1280,
|
849 |
+
)
|
850 |
+
|
851 |
+
def instantiate_img_embedder(self, config, freeze=True):
|
852 |
+
embedder = instantiate_from_config(config)
|
853 |
+
if freeze:
|
854 |
+
self.embedder = embedder.eval()
|
855 |
+
self.embedder.train = disabled_train
|
856 |
+
for param in self.embedder.parameters():
|
857 |
+
param.requires_grad = False
|
858 |
+
|
859 |
+
def init_projector(
|
860 |
+
self, use_finegrained, num_tokens, input_dim, cross_attention_dim, dim
|
861 |
+
):
|
862 |
+
if not use_finegrained:
|
863 |
+
image_proj_model = ImageProjModel(
|
864 |
+
clip_extra_context_tokens=num_tokens,
|
865 |
+
cross_attention_dim=cross_attention_dim,
|
866 |
+
clip_embeddings_dim=input_dim,
|
867 |
+
)
|
868 |
+
else:
|
869 |
+
image_proj_model = Resampler(
|
870 |
+
dim=input_dim,
|
871 |
+
depth=4,
|
872 |
+
dim_head=64,
|
873 |
+
heads=12,
|
874 |
+
num_queries=num_tokens,
|
875 |
+
embedding_dim=dim,
|
876 |
+
output_dim=cross_attention_dim,
|
877 |
+
ff_mult=4,
|
878 |
+
)
|
879 |
+
return image_proj_model
|
880 |
+
|
881 |
+
## Never delete this func: it is used in log_images() and inference stage
|
882 |
+
def get_image_embeds(self, batch_imgs):
|
883 |
+
## img: b c h w
|
884 |
+
img_token = self.embedder(batch_imgs)
|
885 |
+
img_emb = self.image_proj_model(img_token)
|
886 |
+
return img_emb
|
887 |
+
|
888 |
+
|
889 |
+
class DiffusionWrapper(pl.LightningModule):
|
890 |
+
def __init__(self, diff_model_config, conditioning_key):
|
891 |
+
super().__init__()
|
892 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
893 |
+
self.conditioning_key = conditioning_key
|
894 |
+
|
895 |
+
def forward(
|
896 |
+
self,
|
897 |
+
x,
|
898 |
+
t,
|
899 |
+
c_concat: list = None,
|
900 |
+
c_crossattn: list = None,
|
901 |
+
c_adm=None,
|
902 |
+
s=None,
|
903 |
+
mask=None,
|
904 |
+
**kwargs,
|
905 |
+
):
|
906 |
+
# temporal_context = fps is foNone
|
907 |
+
if self.conditioning_key is None:
|
908 |
+
out = self.diffusion_model(x, t)
|
909 |
+
elif self.conditioning_key == "concat":
|
910 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
911 |
+
out = self.diffusion_model(xc, t, **kwargs)
|
912 |
+
elif self.conditioning_key == "crossattn":
|
913 |
+
cc = torch.cat(c_crossattn, 1)
|
914 |
+
out = self.diffusion_model(x, t, context=cc, **kwargs)
|
915 |
+
elif self.conditioning_key == "hybrid":
|
916 |
+
## it is just right [b,c,t,h,w]: concatenate in channel dim
|
917 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
918 |
+
cc = torch.cat(c_crossattn, 1)
|
919 |
+
out = self.diffusion_model(xc, t, context=cc)
|
920 |
+
elif self.conditioning_key == "resblockcond":
|
921 |
+
cc = c_crossattn[0]
|
922 |
+
out = self.diffusion_model(x, t, context=cc)
|
923 |
+
elif self.conditioning_key == "adm":
|
924 |
+
cc = c_crossattn[0]
|
925 |
+
out = self.diffusion_model(x, t, y=cc)
|
926 |
+
elif self.conditioning_key == "hybrid-adm":
|
927 |
+
assert c_adm is not None
|
928 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
929 |
+
cc = torch.cat(c_crossattn, 1)
|
930 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
931 |
+
elif self.conditioning_key == "hybrid-time":
|
932 |
+
assert s is not None
|
933 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
934 |
+
cc = torch.cat(c_crossattn, 1)
|
935 |
+
out = self.diffusion_model(xc, t, context=cc, s=s)
|
936 |
+
elif self.conditioning_key == "concat-time-mask":
|
937 |
+
# assert s is not None
|
938 |
+
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
|
939 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
940 |
+
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
|
941 |
+
elif self.conditioning_key == "concat-adm-mask":
|
942 |
+
# assert s is not None
|
943 |
+
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
|
944 |
+
if c_concat is not None:
|
945 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
946 |
+
else:
|
947 |
+
xc = x
|
948 |
+
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
|
949 |
+
elif self.conditioning_key == "hybrid-adm-mask":
|
950 |
+
cc = torch.cat(c_crossattn, 1)
|
951 |
+
if c_concat is not None:
|
952 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
953 |
+
else:
|
954 |
+
xc = x
|
955 |
+
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
|
956 |
+
elif (
|
957 |
+
self.conditioning_key == "hybrid-time-adm"
|
958 |
+
): # adm means y, e.g., class index
|
959 |
+
# assert s is not None
|
960 |
+
assert c_adm is not None
|
961 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
962 |
+
cc = torch.cat(c_crossattn, 1)
|
963 |
+
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
|
964 |
+
else:
|
965 |
+
raise NotImplementedError()
|
966 |
+
|
967 |
+
return out
|
lvdm/models/samplers/__pycache__/ddim.cpython-311.pyc
ADDED
Binary file (18.5 kB). View file
|
|
lvdm/models/samplers/ddim.py
ADDED
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tqdm import tqdm
|
3 |
+
import torch
|
4 |
+
from lvdm.models.utils_diffusion import (
|
5 |
+
make_ddim_sampling_parameters,
|
6 |
+
make_ddim_timesteps,
|
7 |
+
)
|
8 |
+
from lvdm.common import noise_like
|
9 |
+
|
10 |
+
|
11 |
+
class DDIMSampler(object):
|
12 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
13 |
+
super().__init__()
|
14 |
+
self.model = model
|
15 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
16 |
+
self.schedule = schedule
|
17 |
+
self.counter = 0
|
18 |
+
|
19 |
+
def register_buffer(self, name, attr):
|
20 |
+
if type(attr) == torch.Tensor:
|
21 |
+
if attr.device != torch.device("cuda"):
|
22 |
+
attr = attr.to(torch.device("cuda"))
|
23 |
+
setattr(self, name, attr)
|
24 |
+
|
25 |
+
def make_schedule(
|
26 |
+
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
27 |
+
):
|
28 |
+
self.ddim_timesteps = make_ddim_timesteps(
|
29 |
+
ddim_discr_method=ddim_discretize,
|
30 |
+
num_ddim_timesteps=ddim_num_steps,
|
31 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
32 |
+
verbose=verbose,
|
33 |
+
)
|
34 |
+
alphas_cumprod = self.model.alphas_cumprod
|
35 |
+
assert (
|
36 |
+
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
37 |
+
), "alphas have to be defined for each timestep"
|
38 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
39 |
+
|
40 |
+
self.register_buffer("betas", to_torch(self.model.betas))
|
41 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
42 |
+
self.register_buffer(
|
43 |
+
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
44 |
+
)
|
45 |
+
self.use_scale = self.model.use_scale
|
46 |
+
print("DDIM scale", self.use_scale)
|
47 |
+
|
48 |
+
if self.use_scale:
|
49 |
+
self.register_buffer("scale_arr", to_torch(self.model.scale_arr))
|
50 |
+
ddim_scale_arr = self.scale_arr.cpu()[self.ddim_timesteps]
|
51 |
+
self.register_buffer("ddim_scale_arr", ddim_scale_arr)
|
52 |
+
ddim_scale_arr = np.asarray(
|
53 |
+
[self.scale_arr.cpu()[0]]
|
54 |
+
+ self.scale_arr.cpu()[self.ddim_timesteps[:-1]].tolist()
|
55 |
+
)
|
56 |
+
self.register_buffer("ddim_scale_arr_prev", ddim_scale_arr)
|
57 |
+
|
58 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
59 |
+
self.register_buffer(
|
60 |
+
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
61 |
+
)
|
62 |
+
self.register_buffer(
|
63 |
+
"sqrt_one_minus_alphas_cumprod",
|
64 |
+
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
65 |
+
)
|
66 |
+
self.register_buffer(
|
67 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
68 |
+
)
|
69 |
+
self.register_buffer(
|
70 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
71 |
+
)
|
72 |
+
self.register_buffer(
|
73 |
+
"sqrt_recipm1_alphas_cumprod",
|
74 |
+
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
75 |
+
)
|
76 |
+
|
77 |
+
# ddim sampling parameters
|
78 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
79 |
+
alphacums=alphas_cumprod.cpu(),
|
80 |
+
ddim_timesteps=self.ddim_timesteps,
|
81 |
+
eta=ddim_eta,
|
82 |
+
verbose=verbose,
|
83 |
+
)
|
84 |
+
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
85 |
+
self.register_buffer("ddim_alphas", ddim_alphas)
|
86 |
+
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
87 |
+
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
88 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
89 |
+
(1 - self.alphas_cumprod_prev)
|
90 |
+
/ (1 - self.alphas_cumprod)
|
91 |
+
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
92 |
+
)
|
93 |
+
self.register_buffer(
|
94 |
+
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
95 |
+
)
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
def sample(
|
99 |
+
self,
|
100 |
+
S,
|
101 |
+
batch_size,
|
102 |
+
shape,
|
103 |
+
conditioning=None,
|
104 |
+
callback=None,
|
105 |
+
normals_sequence=None,
|
106 |
+
img_callback=None,
|
107 |
+
quantize_x0=False,
|
108 |
+
eta=0.0,
|
109 |
+
mask=None,
|
110 |
+
x0=None,
|
111 |
+
temperature=1.0,
|
112 |
+
noise_dropout=0.0,
|
113 |
+
score_corrector=None,
|
114 |
+
corrector_kwargs=None,
|
115 |
+
verbose=True,
|
116 |
+
schedule_verbose=False,
|
117 |
+
x_T=None,
|
118 |
+
log_every_t=100,
|
119 |
+
unconditional_guidance_scale=1.0,
|
120 |
+
unconditional_conditioning=None,
|
121 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
|
125 |
+
# check condition bs
|
126 |
+
if conditioning is not None:
|
127 |
+
if isinstance(conditioning, dict):
|
128 |
+
try:
|
129 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
130 |
+
except:
|
131 |
+
cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
|
132 |
+
|
133 |
+
if cbs != batch_size:
|
134 |
+
print(
|
135 |
+
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
if conditioning.shape[0] != batch_size:
|
139 |
+
print(
|
140 |
+
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
141 |
+
)
|
142 |
+
|
143 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
|
144 |
+
|
145 |
+
# make shape
|
146 |
+
if len(shape) == 3:
|
147 |
+
C, H, W = shape
|
148 |
+
size = (batch_size, C, H, W)
|
149 |
+
elif len(shape) == 4:
|
150 |
+
C, T, H, W = shape
|
151 |
+
size = (batch_size, C, T, H, W)
|
152 |
+
# print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
153 |
+
|
154 |
+
samples, intermediates = self.ddim_sampling(
|
155 |
+
conditioning,
|
156 |
+
size,
|
157 |
+
callback=callback,
|
158 |
+
img_callback=img_callback,
|
159 |
+
quantize_denoised=quantize_x0,
|
160 |
+
mask=mask,
|
161 |
+
x0=x0,
|
162 |
+
ddim_use_original_steps=False,
|
163 |
+
noise_dropout=noise_dropout,
|
164 |
+
temperature=temperature,
|
165 |
+
score_corrector=score_corrector,
|
166 |
+
corrector_kwargs=corrector_kwargs,
|
167 |
+
x_T=x_T,
|
168 |
+
log_every_t=log_every_t,
|
169 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
170 |
+
unconditional_conditioning=unconditional_conditioning,
|
171 |
+
verbose=verbose,
|
172 |
+
**kwargs,
|
173 |
+
)
|
174 |
+
return samples, intermediates
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def ddim_sampling(
|
178 |
+
self,
|
179 |
+
cond,
|
180 |
+
shape,
|
181 |
+
x_T=None,
|
182 |
+
ddim_use_original_steps=False,
|
183 |
+
callback=None,
|
184 |
+
timesteps=None,
|
185 |
+
quantize_denoised=False,
|
186 |
+
mask=None,
|
187 |
+
x0=None,
|
188 |
+
img_callback=None,
|
189 |
+
log_every_t=100,
|
190 |
+
temperature=1.0,
|
191 |
+
noise_dropout=0.0,
|
192 |
+
score_corrector=None,
|
193 |
+
corrector_kwargs=None,
|
194 |
+
unconditional_guidance_scale=1.0,
|
195 |
+
unconditional_conditioning=None,
|
196 |
+
verbose=True,
|
197 |
+
cond_tau=1.0,
|
198 |
+
target_size=None,
|
199 |
+
start_timesteps=None,
|
200 |
+
**kwargs,
|
201 |
+
):
|
202 |
+
device = self.model.betas.device
|
203 |
+
print("ddim device", device)
|
204 |
+
b = shape[0]
|
205 |
+
if x_T is None:
|
206 |
+
img = torch.randn(shape, device=device)
|
207 |
+
else:
|
208 |
+
img = x_T
|
209 |
+
|
210 |
+
if timesteps is None:
|
211 |
+
timesteps = (
|
212 |
+
self.ddpm_num_timesteps
|
213 |
+
if ddim_use_original_steps
|
214 |
+
else self.ddim_timesteps
|
215 |
+
)
|
216 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
217 |
+
subset_end = (
|
218 |
+
int(
|
219 |
+
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
220 |
+
* self.ddim_timesteps.shape[0]
|
221 |
+
)
|
222 |
+
- 1
|
223 |
+
)
|
224 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
225 |
+
|
226 |
+
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
227 |
+
time_range = (
|
228 |
+
reversed(range(0, timesteps))
|
229 |
+
if ddim_use_original_steps
|
230 |
+
else np.flip(timesteps)
|
231 |
+
)
|
232 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
233 |
+
if verbose:
|
234 |
+
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
235 |
+
else:
|
236 |
+
iterator = time_range
|
237 |
+
|
238 |
+
init_x0 = False
|
239 |
+
clean_cond = kwargs.pop("clean_cond", False)
|
240 |
+
for i, step in enumerate(iterator):
|
241 |
+
index = total_steps - i - 1
|
242 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
243 |
+
if start_timesteps is not None:
|
244 |
+
assert x0 is not None
|
245 |
+
if step > start_timesteps * time_range[0]:
|
246 |
+
continue
|
247 |
+
elif not init_x0:
|
248 |
+
img = self.model.q_sample(x0, ts)
|
249 |
+
init_x0 = True
|
250 |
+
|
251 |
+
# use mask to blend noised original latent (img_orig) & new sampled latent (img)
|
252 |
+
if mask is not None:
|
253 |
+
assert x0 is not None
|
254 |
+
if clean_cond:
|
255 |
+
img_orig = x0
|
256 |
+
else:
|
257 |
+
img_orig = self.model.q_sample(
|
258 |
+
x0, ts
|
259 |
+
) # TODO: deterministic forward pass? <ddim inversion>
|
260 |
+
img = (
|
261 |
+
img_orig * mask + (1.0 - mask) * img
|
262 |
+
) # keep original & modify use img
|
263 |
+
|
264 |
+
index_clip = int((1 - cond_tau) * total_steps)
|
265 |
+
if index <= index_clip and target_size is not None:
|
266 |
+
target_size_ = [
|
267 |
+
target_size[0],
|
268 |
+
target_size[1] // 8,
|
269 |
+
target_size[2] // 8,
|
270 |
+
]
|
271 |
+
img = torch.nn.functional.interpolate(
|
272 |
+
img,
|
273 |
+
size=target_size_,
|
274 |
+
mode="nearest",
|
275 |
+
)
|
276 |
+
outs = self.p_sample_ddim(
|
277 |
+
img,
|
278 |
+
cond,
|
279 |
+
ts,
|
280 |
+
index=index,
|
281 |
+
use_original_steps=ddim_use_original_steps,
|
282 |
+
quantize_denoised=quantize_denoised,
|
283 |
+
temperature=temperature,
|
284 |
+
noise_dropout=noise_dropout,
|
285 |
+
score_corrector=score_corrector,
|
286 |
+
corrector_kwargs=corrector_kwargs,
|
287 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
288 |
+
unconditional_conditioning=unconditional_conditioning,
|
289 |
+
x0=x0,
|
290 |
+
**kwargs,
|
291 |
+
)
|
292 |
+
|
293 |
+
img, pred_x0 = outs
|
294 |
+
if callback:
|
295 |
+
callback(i)
|
296 |
+
if img_callback:
|
297 |
+
img_callback(pred_x0, i)
|
298 |
+
|
299 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
300 |
+
intermediates["x_inter"].append(img)
|
301 |
+
intermediates["pred_x0"].append(pred_x0)
|
302 |
+
|
303 |
+
return img, intermediates
|
304 |
+
|
305 |
+
@torch.no_grad()
|
306 |
+
def p_sample_ddim(
|
307 |
+
self,
|
308 |
+
x,
|
309 |
+
c,
|
310 |
+
t,
|
311 |
+
index,
|
312 |
+
repeat_noise=False,
|
313 |
+
use_original_steps=False,
|
314 |
+
quantize_denoised=False,
|
315 |
+
temperature=1.0,
|
316 |
+
noise_dropout=0.0,
|
317 |
+
score_corrector=None,
|
318 |
+
corrector_kwargs=None,
|
319 |
+
unconditional_guidance_scale=1.0,
|
320 |
+
unconditional_conditioning=None,
|
321 |
+
uc_type=None,
|
322 |
+
conditional_guidance_scale_temporal=None,
|
323 |
+
**kwargs,
|
324 |
+
):
|
325 |
+
b, *_, device = *x.shape, x.device
|
326 |
+
if x.dim() == 5:
|
327 |
+
is_video = True
|
328 |
+
else:
|
329 |
+
is_video = False
|
330 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
331 |
+
e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
|
332 |
+
else:
|
333 |
+
# with unconditional condition
|
334 |
+
if isinstance(c, torch.Tensor):
|
335 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
336 |
+
e_t_uncond = self.model.apply_model(
|
337 |
+
x, t, unconditional_conditioning, **kwargs
|
338 |
+
)
|
339 |
+
elif isinstance(c, dict):
|
340 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
341 |
+
e_t_uncond = self.model.apply_model(
|
342 |
+
x, t, unconditional_conditioning, **kwargs
|
343 |
+
)
|
344 |
+
else:
|
345 |
+
raise NotImplementedError
|
346 |
+
# text cfg
|
347 |
+
if uc_type is None:
|
348 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
349 |
+
else:
|
350 |
+
if uc_type == "cfg_original":
|
351 |
+
e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond)
|
352 |
+
elif uc_type == "cfg_ours":
|
353 |
+
e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
|
354 |
+
else:
|
355 |
+
raise NotImplementedError
|
356 |
+
# temporal guidance
|
357 |
+
if conditional_guidance_scale_temporal is not None:
|
358 |
+
e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
|
359 |
+
e_t_image = self.model.apply_model(
|
360 |
+
x, t, c, no_temporal_attn=True, **kwargs
|
361 |
+
)
|
362 |
+
e_t = e_t + conditional_guidance_scale_temporal * (
|
363 |
+
e_t_temporal - e_t_image
|
364 |
+
)
|
365 |
+
|
366 |
+
if score_corrector is not None:
|
367 |
+
assert self.model.parameterization == "eps"
|
368 |
+
e_t = score_corrector.modify_score(
|
369 |
+
self.model, e_t, x, t, c, **corrector_kwargs
|
370 |
+
)
|
371 |
+
|
372 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
373 |
+
alphas_prev = (
|
374 |
+
self.model.alphas_cumprod_prev
|
375 |
+
if use_original_steps
|
376 |
+
else self.ddim_alphas_prev
|
377 |
+
)
|
378 |
+
sqrt_one_minus_alphas = (
|
379 |
+
self.model.sqrt_one_minus_alphas_cumprod
|
380 |
+
if use_original_steps
|
381 |
+
else self.ddim_sqrt_one_minus_alphas
|
382 |
+
)
|
383 |
+
sigmas = (
|
384 |
+
self.model.ddim_sigmas_for_original_num_steps
|
385 |
+
if use_original_steps
|
386 |
+
else self.ddim_sigmas
|
387 |
+
)
|
388 |
+
# select parameters corresponding to the currently considered timestep
|
389 |
+
|
390 |
+
if is_video:
|
391 |
+
size = (b, 1, 1, 1, 1)
|
392 |
+
else:
|
393 |
+
size = (b, 1, 1, 1)
|
394 |
+
a_t = torch.full(size, alphas[index], device=device)
|
395 |
+
a_prev = torch.full(size, alphas_prev[index], device=device)
|
396 |
+
sigma_t = torch.full(size, sigmas[index], device=device)
|
397 |
+
sqrt_one_minus_at = torch.full(
|
398 |
+
size, sqrt_one_minus_alphas[index], device=device
|
399 |
+
)
|
400 |
+
|
401 |
+
# current prediction for x_0
|
402 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
403 |
+
if quantize_denoised:
|
404 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
405 |
+
# direction pointing to x_t
|
406 |
+
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
407 |
+
|
408 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
409 |
+
if noise_dropout > 0.0:
|
410 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
411 |
+
|
412 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
413 |
+
if self.use_scale:
|
414 |
+
scale_arr = (
|
415 |
+
self.model.scale_arr if use_original_steps else self.ddim_scale_arr
|
416 |
+
)
|
417 |
+
scale_t = torch.full(size, scale_arr[index], device=device)
|
418 |
+
scale_arr_prev = (
|
419 |
+
self.model.scale_arr_prev
|
420 |
+
if use_original_steps
|
421 |
+
else self.ddim_scale_arr_prev
|
422 |
+
)
|
423 |
+
scale_t_prev = torch.full(size, scale_arr_prev[index], device=device)
|
424 |
+
pred_x0 /= scale_t
|
425 |
+
x_prev = a_prev.sqrt() * scale_t_prev * pred_x0 + dir_xt + noise
|
426 |
+
else:
|
427 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
428 |
+
|
429 |
+
return x_prev, pred_x0
|
430 |
+
|
431 |
+
@torch.no_grad()
|
432 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
433 |
+
# fast, but does not allow for exact reconstruction
|
434 |
+
# t serves as an index to gather the correct alphas
|
435 |
+
if use_original_steps:
|
436 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
437 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
438 |
+
else:
|
439 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
440 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
441 |
+
|
442 |
+
if noise is None:
|
443 |
+
noise = torch.randn_like(x0)
|
444 |
+
|
445 |
+
def extract_into_tensor(a, t, x_shape):
|
446 |
+
b, *_ = t.shape
|
447 |
+
out = a.gather(-1, t)
|
448 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
449 |
+
|
450 |
+
return (
|
451 |
+
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
452 |
+
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
453 |
+
)
|
454 |
+
|
455 |
+
@torch.no_grad()
|
456 |
+
def decode(
|
457 |
+
self,
|
458 |
+
x_latent,
|
459 |
+
cond,
|
460 |
+
t_start,
|
461 |
+
unconditional_guidance_scale=1.0,
|
462 |
+
unconditional_conditioning=None,
|
463 |
+
use_original_steps=False,
|
464 |
+
):
|
465 |
+
|
466 |
+
timesteps = (
|
467 |
+
np.arange(self.ddpm_num_timesteps)
|
468 |
+
if use_original_steps
|
469 |
+
else self.ddim_timesteps
|
470 |
+
)
|
471 |
+
timesteps = timesteps[:t_start]
|
472 |
+
|
473 |
+
time_range = np.flip(timesteps)
|
474 |
+
total_steps = timesteps.shape[0]
|
475 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
476 |
+
|
477 |
+
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
478 |
+
x_dec = x_latent
|
479 |
+
for i, step in enumerate(iterator):
|
480 |
+
index = total_steps - i - 1
|
481 |
+
ts = torch.full(
|
482 |
+
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
483 |
+
)
|
484 |
+
x_dec, _ = self.p_sample_ddim(
|
485 |
+
x_dec,
|
486 |
+
cond,
|
487 |
+
ts,
|
488 |
+
index=index,
|
489 |
+
use_original_steps=use_original_steps,
|
490 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
491 |
+
unconditional_conditioning=unconditional_conditioning,
|
492 |
+
)
|
493 |
+
return x_dec
|
lvdm/models/utils_diffusion.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
from einops import repeat
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
9 |
+
"""
|
10 |
+
Create sinusoidal timestep embeddings.
|
11 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
12 |
+
These may be fractional.
|
13 |
+
:param dim: the dimension of the output.
|
14 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
15 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
16 |
+
"""
|
17 |
+
if not repeat_only:
|
18 |
+
half = dim // 2
|
19 |
+
freqs = torch.exp(
|
20 |
+
-math.log(max_period)
|
21 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
22 |
+
/ half
|
23 |
+
).to(device=timesteps.device)
|
24 |
+
args = timesteps[:, None].float() * freqs[None]
|
25 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
26 |
+
if dim % 2:
|
27 |
+
embedding = torch.cat(
|
28 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
29 |
+
)
|
30 |
+
else:
|
31 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
32 |
+
return embedding
|
33 |
+
|
34 |
+
|
35 |
+
def make_beta_schedule(
|
36 |
+
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
|
37 |
+
):
|
38 |
+
if schedule == "linear":
|
39 |
+
betas = (
|
40 |
+
torch.linspace(
|
41 |
+
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
42 |
+
)
|
43 |
+
** 2
|
44 |
+
)
|
45 |
+
|
46 |
+
elif schedule == "cosine":
|
47 |
+
timesteps = (
|
48 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
49 |
+
)
|
50 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
51 |
+
alphas = torch.cos(alphas).pow(2)
|
52 |
+
alphas = alphas / alphas[0]
|
53 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
54 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
55 |
+
|
56 |
+
elif schedule == "sqrt_linear":
|
57 |
+
betas = torch.linspace(
|
58 |
+
linear_start, linear_end, n_timestep, dtype=torch.float64
|
59 |
+
)
|
60 |
+
elif schedule == "sqrt":
|
61 |
+
betas = (
|
62 |
+
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
63 |
+
** 0.5
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
67 |
+
return betas.numpy()
|
68 |
+
|
69 |
+
|
70 |
+
def make_ddim_timesteps(
|
71 |
+
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
|
72 |
+
):
|
73 |
+
if ddim_discr_method == "uniform":
|
74 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
75 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
76 |
+
elif ddim_discr_method == "quad":
|
77 |
+
ddim_timesteps = (
|
78 |
+
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
|
79 |
+
).astype(int)
|
80 |
+
else:
|
81 |
+
raise NotImplementedError(
|
82 |
+
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
83 |
+
)
|
84 |
+
|
85 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
86 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
87 |
+
steps_out = ddim_timesteps + 1
|
88 |
+
if verbose:
|
89 |
+
print(f"Selected timesteps for ddim sampler: {steps_out}")
|
90 |
+
return steps_out
|
91 |
+
|
92 |
+
|
93 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
94 |
+
# select alphas for computing the variance schedule
|
95 |
+
# print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
|
96 |
+
alphas = alphacums[ddim_timesteps]
|
97 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
98 |
+
|
99 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
100 |
+
sigmas = eta * np.sqrt(
|
101 |
+
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
|
102 |
+
)
|
103 |
+
if verbose:
|
104 |
+
print(
|
105 |
+
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
|
106 |
+
)
|
107 |
+
print(
|
108 |
+
f"For the chosen value of eta, which is {eta}, "
|
109 |
+
f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
|
110 |
+
)
|
111 |
+
return sigmas, alphas, alphas_prev
|
112 |
+
|
113 |
+
|
114 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
115 |
+
"""
|
116 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
117 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
118 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
119 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
120 |
+
produces the cumulative product of (1-beta) up to that
|
121 |
+
part of the diffusion process.
|
122 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
123 |
+
prevent singularities.
|
124 |
+
"""
|
125 |
+
betas = []
|
126 |
+
for i in range(num_diffusion_timesteps):
|
127 |
+
t1 = i / num_diffusion_timesteps
|
128 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
129 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
130 |
+
return np.array(betas)
|
lvdm/modules/__pycache__/attention.cpython-311.pyc
ADDED
Binary file (29.6 kB). View file
|
|
lvdm/modules/attention.py
ADDED
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import torch
|
3 |
+
from torch import nn, einsum
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
try:
|
8 |
+
import xformers
|
9 |
+
import xformers.ops
|
10 |
+
|
11 |
+
XFORMERS_IS_AVAILBLE = True
|
12 |
+
except:
|
13 |
+
XFORMERS_IS_AVAILBLE = False
|
14 |
+
from lvdm.common import (
|
15 |
+
checkpoint,
|
16 |
+
exists,
|
17 |
+
default,
|
18 |
+
)
|
19 |
+
from lvdm.basics import (
|
20 |
+
zero_module,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
class RelativePosition(nn.Module):
|
25 |
+
"""https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py"""
|
26 |
+
|
27 |
+
def __init__(self, num_units, max_relative_position):
|
28 |
+
super().__init__()
|
29 |
+
self.num_units = num_units
|
30 |
+
self.max_relative_position = max_relative_position
|
31 |
+
self.embeddings_table = nn.Parameter(
|
32 |
+
torch.Tensor(max_relative_position * 2 + 1, num_units)
|
33 |
+
)
|
34 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
35 |
+
|
36 |
+
def forward(self, length_q, length_k):
|
37 |
+
device = self.embeddings_table.device
|
38 |
+
range_vec_q = torch.arange(length_q, device=device)
|
39 |
+
range_vec_k = torch.arange(length_k, device=device)
|
40 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
41 |
+
distance_mat_clipped = torch.clamp(
|
42 |
+
distance_mat, -self.max_relative_position, self.max_relative_position
|
43 |
+
)
|
44 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
45 |
+
final_mat = final_mat.long()
|
46 |
+
embeddings = self.embeddings_table[final_mat]
|
47 |
+
return embeddings
|
48 |
+
|
49 |
+
|
50 |
+
class CrossAttention(nn.Module):
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
query_dim,
|
55 |
+
context_dim=None,
|
56 |
+
heads=8,
|
57 |
+
dim_head=64,
|
58 |
+
dropout=0.0,
|
59 |
+
relative_position=False,
|
60 |
+
temporal_length=None,
|
61 |
+
img_cross_attention=False,
|
62 |
+
):
|
63 |
+
super().__init__()
|
64 |
+
inner_dim = dim_head * heads
|
65 |
+
context_dim = default(context_dim, query_dim)
|
66 |
+
|
67 |
+
self.scale = dim_head**-0.5
|
68 |
+
self.heads = heads
|
69 |
+
self.dim_head = dim_head
|
70 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
71 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
72 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
73 |
+
self.to_out = nn.Sequential(
|
74 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
75 |
+
)
|
76 |
+
|
77 |
+
self.image_cross_attention_scale = 1.0
|
78 |
+
self.text_context_len = 77
|
79 |
+
self.img_cross_attention = img_cross_attention
|
80 |
+
if self.img_cross_attention:
|
81 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
82 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
83 |
+
|
84 |
+
self.relative_position = relative_position
|
85 |
+
if self.relative_position:
|
86 |
+
assert temporal_length is not None
|
87 |
+
self.relative_position_k = RelativePosition(
|
88 |
+
num_units=dim_head, max_relative_position=temporal_length
|
89 |
+
)
|
90 |
+
self.relative_position_v = RelativePosition(
|
91 |
+
num_units=dim_head, max_relative_position=temporal_length
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
## only used for spatial attention, while NOT for temporal attention
|
95 |
+
if XFORMERS_IS_AVAILBLE and temporal_length is None:
|
96 |
+
self.forward = self.efficient_forward
|
97 |
+
|
98 |
+
def forward(self, x, context=None, mask=None):
|
99 |
+
h = self.heads
|
100 |
+
|
101 |
+
q = self.to_q(x)
|
102 |
+
context = default(context, x)
|
103 |
+
## considering image token additionally
|
104 |
+
if context is not None and self.img_cross_attention:
|
105 |
+
context, context_img = (
|
106 |
+
context[:, : self.text_context_len, :],
|
107 |
+
context[:, self.text_context_len :, :],
|
108 |
+
)
|
109 |
+
k = self.to_k(context)
|
110 |
+
v = self.to_v(context)
|
111 |
+
k_ip = self.to_k_ip(context_img)
|
112 |
+
v_ip = self.to_v_ip(context_img)
|
113 |
+
else:
|
114 |
+
k = self.to_k(context)
|
115 |
+
v = self.to_v(context)
|
116 |
+
|
117 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
118 |
+
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
|
119 |
+
if self.relative_position:
|
120 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
121 |
+
k2 = self.relative_position_k(len_q, len_k)
|
122 |
+
sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check
|
123 |
+
sim += sim2
|
124 |
+
del k
|
125 |
+
|
126 |
+
if exists(mask):
|
127 |
+
## feasible for causal attention mask only
|
128 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
129 |
+
mask = repeat(mask, "b i j -> (b h) i j", h=h)
|
130 |
+
sim.masked_fill_(~(mask > 0.5), max_neg_value)
|
131 |
+
|
132 |
+
# attention, what we cannot get enough of
|
133 |
+
sim = sim.softmax(dim=-1)
|
134 |
+
out = torch.einsum("b i j, b j d -> b i d", sim, v)
|
135 |
+
if self.relative_position:
|
136 |
+
v2 = self.relative_position_v(len_q, len_v)
|
137 |
+
out2 = einsum("b t s, t s d -> b t d", sim, v2) # TODO check
|
138 |
+
out += out2
|
139 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
140 |
+
|
141 |
+
## considering image token additionally
|
142 |
+
if context is not None and self.img_cross_attention:
|
143 |
+
k_ip, v_ip = map(
|
144 |
+
lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (k_ip, v_ip)
|
145 |
+
)
|
146 |
+
sim_ip = torch.einsum("b i d, b j d -> b i j", q, k_ip) * self.scale
|
147 |
+
del k_ip
|
148 |
+
sim_ip = sim_ip.softmax(dim=-1)
|
149 |
+
out_ip = torch.einsum("b i j, b j d -> b i d", sim_ip, v_ip)
|
150 |
+
out_ip = rearrange(out_ip, "(b h) n d -> b n (h d)", h=h)
|
151 |
+
out = out + self.image_cross_attention_scale * out_ip
|
152 |
+
del q
|
153 |
+
|
154 |
+
return self.to_out(out)
|
155 |
+
|
156 |
+
def efficient_forward(self, x, context=None, mask=None):
|
157 |
+
q = self.to_q(x)
|
158 |
+
context = default(context, x)
|
159 |
+
|
160 |
+
## considering image token additionally
|
161 |
+
if context is not None and self.img_cross_attention:
|
162 |
+
context, context_img = (
|
163 |
+
context[:, : self.text_context_len, :],
|
164 |
+
context[:, self.text_context_len :, :],
|
165 |
+
)
|
166 |
+
k = self.to_k(context)
|
167 |
+
v = self.to_v(context)
|
168 |
+
k_ip = self.to_k_ip(context_img)
|
169 |
+
v_ip = self.to_v_ip(context_img)
|
170 |
+
else:
|
171 |
+
k = self.to_k(context)
|
172 |
+
v = self.to_v(context)
|
173 |
+
|
174 |
+
b, _, _ = q.shape
|
175 |
+
q, k, v = map(
|
176 |
+
lambda t: t.unsqueeze(3)
|
177 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
178 |
+
.permute(0, 2, 1, 3)
|
179 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
180 |
+
.contiguous(),
|
181 |
+
(q, k, v),
|
182 |
+
)
|
183 |
+
# actually compute the attention, what we cannot get enough of
|
184 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
185 |
+
|
186 |
+
## considering image token additionally
|
187 |
+
if context is not None and self.img_cross_attention:
|
188 |
+
k_ip, v_ip = map(
|
189 |
+
lambda t: t.unsqueeze(3)
|
190 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
191 |
+
.permute(0, 2, 1, 3)
|
192 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
193 |
+
.contiguous(),
|
194 |
+
(k_ip, v_ip),
|
195 |
+
)
|
196 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
197 |
+
q, k_ip, v_ip, attn_bias=None, op=None
|
198 |
+
)
|
199 |
+
out_ip = (
|
200 |
+
out_ip.unsqueeze(0)
|
201 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
202 |
+
.permute(0, 2, 1, 3)
|
203 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
204 |
+
)
|
205 |
+
|
206 |
+
if exists(mask):
|
207 |
+
raise NotImplementedError
|
208 |
+
out = (
|
209 |
+
out.unsqueeze(0)
|
210 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
211 |
+
.permute(0, 2, 1, 3)
|
212 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
213 |
+
)
|
214 |
+
if context is not None and self.img_cross_attention:
|
215 |
+
out = out + self.image_cross_attention_scale * out_ip
|
216 |
+
return self.to_out(out)
|
217 |
+
|
218 |
+
|
219 |
+
class BasicTransformerBlock(nn.Module):
|
220 |
+
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
dim,
|
224 |
+
n_heads,
|
225 |
+
d_head,
|
226 |
+
dropout=0.0,
|
227 |
+
context_dim=None,
|
228 |
+
gated_ff=True,
|
229 |
+
checkpoint=True,
|
230 |
+
disable_self_attn=False,
|
231 |
+
attention_cls=None,
|
232 |
+
img_cross_attention=False,
|
233 |
+
):
|
234 |
+
super().__init__()
|
235 |
+
attn_cls = CrossAttention if attention_cls is None else attention_cls
|
236 |
+
self.disable_self_attn = disable_self_attn
|
237 |
+
self.attn1 = attn_cls(
|
238 |
+
query_dim=dim,
|
239 |
+
heads=n_heads,
|
240 |
+
dim_head=d_head,
|
241 |
+
dropout=dropout,
|
242 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
243 |
+
)
|
244 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
245 |
+
self.attn2 = attn_cls(
|
246 |
+
query_dim=dim,
|
247 |
+
context_dim=context_dim,
|
248 |
+
heads=n_heads,
|
249 |
+
dim_head=d_head,
|
250 |
+
dropout=dropout,
|
251 |
+
img_cross_attention=img_cross_attention,
|
252 |
+
)
|
253 |
+
self.norm1 = nn.LayerNorm(dim)
|
254 |
+
self.norm2 = nn.LayerNorm(dim)
|
255 |
+
self.norm3 = nn.LayerNorm(dim)
|
256 |
+
self.checkpoint = checkpoint
|
257 |
+
|
258 |
+
def forward(self, x, context=None, mask=None):
|
259 |
+
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
|
260 |
+
input_tuple = (
|
261 |
+
x,
|
262 |
+
) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
|
263 |
+
if context is not None:
|
264 |
+
input_tuple = (x, context)
|
265 |
+
if mask is not None:
|
266 |
+
forward_mask = partial(self._forward, mask=mask)
|
267 |
+
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
|
268 |
+
if context is not None and mask is not None:
|
269 |
+
input_tuple = (x, context, mask)
|
270 |
+
return checkpoint(
|
271 |
+
self._forward, input_tuple, self.parameters(), self.checkpoint
|
272 |
+
)
|
273 |
+
|
274 |
+
def _forward(self, x, context=None, mask=None):
|
275 |
+
x = (
|
276 |
+
self.attn1(
|
277 |
+
self.norm1(x),
|
278 |
+
context=context if self.disable_self_attn else None,
|
279 |
+
mask=mask,
|
280 |
+
)
|
281 |
+
+ x
|
282 |
+
)
|
283 |
+
x = self.attn2(self.norm2(x), context=context, mask=mask) + x
|
284 |
+
x = self.ff(self.norm3(x)) + x
|
285 |
+
return x
|
286 |
+
|
287 |
+
|
288 |
+
class SpatialTransformer(nn.Module):
|
289 |
+
"""
|
290 |
+
Transformer block for image-like data in spatial axis.
|
291 |
+
First, project the input (aka embedding)
|
292 |
+
and reshape to b, t, d.
|
293 |
+
Then apply standard transformer action.
|
294 |
+
Finally, reshape to image
|
295 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
296 |
+
"""
|
297 |
+
|
298 |
+
def __init__(
|
299 |
+
self,
|
300 |
+
in_channels,
|
301 |
+
n_heads,
|
302 |
+
d_head,
|
303 |
+
depth=1,
|
304 |
+
dropout=0.0,
|
305 |
+
context_dim=None,
|
306 |
+
use_checkpoint=True,
|
307 |
+
disable_self_attn=False,
|
308 |
+
use_linear=False,
|
309 |
+
img_cross_attention=False,
|
310 |
+
):
|
311 |
+
super().__init__()
|
312 |
+
self.in_channels = in_channels
|
313 |
+
inner_dim = n_heads * d_head
|
314 |
+
self.norm = torch.nn.GroupNorm(
|
315 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
316 |
+
)
|
317 |
+
if not use_linear:
|
318 |
+
self.proj_in = nn.Conv2d(
|
319 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
323 |
+
|
324 |
+
self.transformer_blocks = nn.ModuleList(
|
325 |
+
[
|
326 |
+
BasicTransformerBlock(
|
327 |
+
inner_dim,
|
328 |
+
n_heads,
|
329 |
+
d_head,
|
330 |
+
dropout=dropout,
|
331 |
+
context_dim=context_dim,
|
332 |
+
img_cross_attention=img_cross_attention,
|
333 |
+
disable_self_attn=disable_self_attn,
|
334 |
+
checkpoint=use_checkpoint,
|
335 |
+
)
|
336 |
+
for d in range(depth)
|
337 |
+
]
|
338 |
+
)
|
339 |
+
if not use_linear:
|
340 |
+
self.proj_out = zero_module(
|
341 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
342 |
+
)
|
343 |
+
else:
|
344 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
345 |
+
self.use_linear = use_linear
|
346 |
+
|
347 |
+
def forward(self, x, context=None):
|
348 |
+
b, c, h, w = x.shape
|
349 |
+
x_in = x
|
350 |
+
x = self.norm(x)
|
351 |
+
if not self.use_linear:
|
352 |
+
x = self.proj_in(x)
|
353 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
354 |
+
if self.use_linear:
|
355 |
+
x = self.proj_in(x)
|
356 |
+
for i, block in enumerate(self.transformer_blocks):
|
357 |
+
x = block(x, context=context)
|
358 |
+
if self.use_linear:
|
359 |
+
x = self.proj_out(x)
|
360 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
361 |
+
if not self.use_linear:
|
362 |
+
x = self.proj_out(x)
|
363 |
+
return x + x_in
|
364 |
+
|
365 |
+
|
366 |
+
class TemporalTransformer(nn.Module):
|
367 |
+
"""
|
368 |
+
Transformer block for image-like data in temporal axis.
|
369 |
+
First, reshape to b, t, d.
|
370 |
+
Then apply standard transformer action.
|
371 |
+
Finally, reshape to image
|
372 |
+
"""
|
373 |
+
|
374 |
+
def __init__(
|
375 |
+
self,
|
376 |
+
in_channels,
|
377 |
+
n_heads,
|
378 |
+
d_head,
|
379 |
+
depth=1,
|
380 |
+
dropout=0.0,
|
381 |
+
context_dim=None,
|
382 |
+
use_checkpoint=True,
|
383 |
+
use_linear=False,
|
384 |
+
only_self_att=True,
|
385 |
+
causal_attention=False,
|
386 |
+
relative_position=False,
|
387 |
+
temporal_length=None,
|
388 |
+
):
|
389 |
+
super().__init__()
|
390 |
+
self.only_self_att = only_self_att
|
391 |
+
self.relative_position = relative_position
|
392 |
+
self.causal_attention = causal_attention
|
393 |
+
self.in_channels = in_channels
|
394 |
+
inner_dim = n_heads * d_head
|
395 |
+
self.norm = torch.nn.GroupNorm(
|
396 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
397 |
+
)
|
398 |
+
self.proj_in = nn.Conv1d(
|
399 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
400 |
+
)
|
401 |
+
if not use_linear:
|
402 |
+
self.proj_in = nn.Conv1d(
|
403 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
404 |
+
)
|
405 |
+
else:
|
406 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
407 |
+
|
408 |
+
if relative_position:
|
409 |
+
assert temporal_length is not None
|
410 |
+
attention_cls = partial(
|
411 |
+
CrossAttention, relative_position=True, temporal_length=temporal_length
|
412 |
+
)
|
413 |
+
else:
|
414 |
+
attention_cls = None
|
415 |
+
if self.causal_attention:
|
416 |
+
assert temporal_length is not None
|
417 |
+
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
|
418 |
+
|
419 |
+
if self.only_self_att:
|
420 |
+
context_dim = None
|
421 |
+
self.transformer_blocks = nn.ModuleList(
|
422 |
+
[
|
423 |
+
BasicTransformerBlock(
|
424 |
+
inner_dim,
|
425 |
+
n_heads,
|
426 |
+
d_head,
|
427 |
+
dropout=dropout,
|
428 |
+
context_dim=context_dim,
|
429 |
+
attention_cls=attention_cls,
|
430 |
+
checkpoint=use_checkpoint,
|
431 |
+
)
|
432 |
+
for d in range(depth)
|
433 |
+
]
|
434 |
+
)
|
435 |
+
if not use_linear:
|
436 |
+
self.proj_out = zero_module(
|
437 |
+
nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
438 |
+
)
|
439 |
+
else:
|
440 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
441 |
+
self.use_linear = use_linear
|
442 |
+
|
443 |
+
def forward(self, x, context=None):
|
444 |
+
b, c, t, h, w = x.shape
|
445 |
+
x_in = x
|
446 |
+
x = self.norm(x)
|
447 |
+
x = rearrange(x, "b c t h w -> (b h w) c t").contiguous()
|
448 |
+
if not self.use_linear:
|
449 |
+
x = self.proj_in(x)
|
450 |
+
x = rearrange(x, "bhw c t -> bhw t c").contiguous()
|
451 |
+
if self.use_linear:
|
452 |
+
x = self.proj_in(x)
|
453 |
+
|
454 |
+
if self.causal_attention:
|
455 |
+
mask = self.mask.to(x.device)
|
456 |
+
mask = repeat(mask, "l i j -> (l bhw) i j", bhw=b * h * w)
|
457 |
+
else:
|
458 |
+
mask = None
|
459 |
+
|
460 |
+
if self.only_self_att:
|
461 |
+
## note: if no context is given, cross-attention defaults to self-attention
|
462 |
+
for i, block in enumerate(self.transformer_blocks):
|
463 |
+
x = block(x, mask=mask)
|
464 |
+
x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous()
|
465 |
+
else:
|
466 |
+
x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous()
|
467 |
+
context = rearrange(context, "(b t) l con -> b t l con", t=t).contiguous()
|
468 |
+
for i, block in enumerate(self.transformer_blocks):
|
469 |
+
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
|
470 |
+
for j in range(b):
|
471 |
+
context_j = repeat(
|
472 |
+
context[j], "t l con -> (t r) l con", r=(h * w) // t, t=t
|
473 |
+
).contiguous()
|
474 |
+
## note: causal mask will not applied in cross-attention case
|
475 |
+
x[j] = block(x[j], context=context_j)
|
476 |
+
|
477 |
+
if self.use_linear:
|
478 |
+
x = self.proj_out(x)
|
479 |
+
x = rearrange(x, "b (h w) t c -> b c t h w", h=h, w=w).contiguous()
|
480 |
+
if not self.use_linear:
|
481 |
+
x = rearrange(x, "b hw t c -> (b hw) c t").contiguous()
|
482 |
+
x = self.proj_out(x)
|
483 |
+
x = rearrange(x, "(b h w) c t -> b c t h w", b=b, h=h, w=w).contiguous()
|
484 |
+
|
485 |
+
return x + x_in
|
486 |
+
|
487 |
+
|
488 |
+
class GEGLU(nn.Module):
|
489 |
+
def __init__(self, dim_in, dim_out):
|
490 |
+
super().__init__()
|
491 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
492 |
+
|
493 |
+
def forward(self, x):
|
494 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
495 |
+
return x * F.gelu(gate)
|
496 |
+
|
497 |
+
|
498 |
+
class FeedForward(nn.Module):
|
499 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
500 |
+
super().__init__()
|
501 |
+
inner_dim = int(dim * mult)
|
502 |
+
dim_out = default(dim_out, dim)
|
503 |
+
project_in = (
|
504 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
505 |
+
if not glu
|
506 |
+
else GEGLU(dim, inner_dim)
|
507 |
+
)
|
508 |
+
|
509 |
+
self.net = nn.Sequential(
|
510 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
511 |
+
)
|
512 |
+
|
513 |
+
def forward(self, x):
|
514 |
+
return self.net(x)
|
515 |
+
|
516 |
+
|
517 |
+
class LinearAttention(nn.Module):
|
518 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
519 |
+
super().__init__()
|
520 |
+
self.heads = heads
|
521 |
+
hidden_dim = dim_head * heads
|
522 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
523 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
524 |
+
|
525 |
+
def forward(self, x):
|
526 |
+
b, c, h, w = x.shape
|
527 |
+
qkv = self.to_qkv(x)
|
528 |
+
q, k, v = rearrange(
|
529 |
+
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
530 |
+
)
|
531 |
+
k = k.softmax(dim=-1)
|
532 |
+
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
533 |
+
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
534 |
+
out = rearrange(
|
535 |
+
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
536 |
+
)
|
537 |
+
return self.to_out(out)
|
538 |
+
|
539 |
+
|
540 |
+
class SpatialSelfAttention(nn.Module):
|
541 |
+
def __init__(self, in_channels):
|
542 |
+
super().__init__()
|
543 |
+
self.in_channels = in_channels
|
544 |
+
|
545 |
+
self.norm = torch.nn.GroupNorm(
|
546 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
547 |
+
)
|
548 |
+
self.q = torch.nn.Conv2d(
|
549 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
550 |
+
)
|
551 |
+
self.k = torch.nn.Conv2d(
|
552 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
553 |
+
)
|
554 |
+
self.v = torch.nn.Conv2d(
|
555 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
556 |
+
)
|
557 |
+
self.proj_out = torch.nn.Conv2d(
|
558 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
559 |
+
)
|
560 |
+
|
561 |
+
def forward(self, x):
|
562 |
+
h_ = x
|
563 |
+
h_ = self.norm(h_)
|
564 |
+
q = self.q(h_)
|
565 |
+
k = self.k(h_)
|
566 |
+
v = self.v(h_)
|
567 |
+
|
568 |
+
# compute attention
|
569 |
+
b, c, h, w = q.shape
|
570 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
571 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
572 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
573 |
+
|
574 |
+
w_ = w_ * (int(c) ** (-0.5))
|
575 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
576 |
+
|
577 |
+
# attend to values
|
578 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
579 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
580 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
581 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
582 |
+
h_ = self.proj_out(h_)
|
583 |
+
|
584 |
+
return x + h_
|
lvdm/modules/encoders/__pycache__/condition.cpython-311.pyc
ADDED
Binary file (25 kB). View file
|
|
lvdm/modules/encoders/__pycache__/ip_resampler.cpython-311.pyc
ADDED
Binary file (7.94 kB). View file
|
|
lvdm/modules/encoders/condition.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.checkpoint import checkpoint
|
4 |
+
import kornia
|
5 |
+
import open_clip
|
6 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
7 |
+
from lvdm.common import autocast
|
8 |
+
from utils.utils import count_params
|
9 |
+
|
10 |
+
|
11 |
+
class AbstractEncoder(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
def encode(self, *args, **kwargs):
|
16 |
+
raise NotImplementedError
|
17 |
+
|
18 |
+
|
19 |
+
class IdentityEncoder(AbstractEncoder):
|
20 |
+
|
21 |
+
def encode(self, x):
|
22 |
+
return x
|
23 |
+
|
24 |
+
|
25 |
+
class ClassEmbedder(nn.Module):
|
26 |
+
def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1):
|
27 |
+
super().__init__()
|
28 |
+
self.key = key
|
29 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
30 |
+
self.n_classes = n_classes
|
31 |
+
self.ucg_rate = ucg_rate
|
32 |
+
|
33 |
+
def forward(self, batch, key=None, disable_dropout=False):
|
34 |
+
if key is None:
|
35 |
+
key = self.key
|
36 |
+
# this is for use in crossattn
|
37 |
+
c = batch[key][:, None]
|
38 |
+
if self.ucg_rate > 0.0 and not disable_dropout:
|
39 |
+
mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
40 |
+
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
41 |
+
c = c.long()
|
42 |
+
c = self.embedding(c)
|
43 |
+
return c
|
44 |
+
|
45 |
+
def get_unconditional_conditioning(self, bs, device="cuda"):
|
46 |
+
uc_class = (
|
47 |
+
self.n_classes - 1
|
48 |
+
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
49 |
+
uc = torch.ones((bs,), device=device) * uc_class
|
50 |
+
uc = {self.key: uc}
|
51 |
+
return uc
|
52 |
+
|
53 |
+
|
54 |
+
def disabled_train(self, mode=True):
|
55 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
56 |
+
does not change anymore."""
|
57 |
+
return self
|
58 |
+
|
59 |
+
|
60 |
+
class FrozenT5Embedder(AbstractEncoder):
|
61 |
+
"""Uses the T5 transformer encoder for text"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True
|
65 |
+
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
66 |
+
super().__init__()
|
67 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
68 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
69 |
+
self.device = device
|
70 |
+
self.max_length = max_length # TODO: typical value?
|
71 |
+
if freeze:
|
72 |
+
self.freeze()
|
73 |
+
|
74 |
+
def freeze(self):
|
75 |
+
self.transformer = self.transformer.eval()
|
76 |
+
# self.train = disabled_train
|
77 |
+
for param in self.parameters():
|
78 |
+
param.requires_grad = False
|
79 |
+
|
80 |
+
def forward(self, text):
|
81 |
+
batch_encoding = self.tokenizer(
|
82 |
+
text,
|
83 |
+
truncation=True,
|
84 |
+
max_length=self.max_length,
|
85 |
+
return_length=True,
|
86 |
+
return_overflowing_tokens=False,
|
87 |
+
padding="max_length",
|
88 |
+
return_tensors="pt",
|
89 |
+
)
|
90 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
91 |
+
outputs = self.transformer(input_ids=tokens)
|
92 |
+
|
93 |
+
z = outputs.last_hidden_state
|
94 |
+
return z
|
95 |
+
|
96 |
+
def encode(self, text):
|
97 |
+
return self(text)
|
98 |
+
|
99 |
+
|
100 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
101 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
102 |
+
|
103 |
+
LAYERS = ["last", "pooled", "hidden"]
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
version="openai/clip-vit-large-patch14",
|
108 |
+
device="cuda",
|
109 |
+
max_length=77,
|
110 |
+
freeze=True,
|
111 |
+
layer="last",
|
112 |
+
layer_idx=None,
|
113 |
+
): # clip-vit-base-patch32
|
114 |
+
super().__init__()
|
115 |
+
assert layer in self.LAYERS
|
116 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
117 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
118 |
+
self.device = device
|
119 |
+
self.max_length = max_length
|
120 |
+
if freeze:
|
121 |
+
self.freeze()
|
122 |
+
self.layer = layer
|
123 |
+
self.layer_idx = layer_idx
|
124 |
+
if layer == "hidden":
|
125 |
+
assert layer_idx is not None
|
126 |
+
assert 0 <= abs(layer_idx) <= 12
|
127 |
+
|
128 |
+
def freeze(self):
|
129 |
+
self.transformer = self.transformer.eval()
|
130 |
+
# self.train = disabled_train
|
131 |
+
for param in self.parameters():
|
132 |
+
param.requires_grad = False
|
133 |
+
|
134 |
+
def forward(self, text):
|
135 |
+
batch_encoding = self.tokenizer(
|
136 |
+
text,
|
137 |
+
truncation=True,
|
138 |
+
max_length=self.max_length,
|
139 |
+
return_length=True,
|
140 |
+
return_overflowing_tokens=False,
|
141 |
+
padding="max_length",
|
142 |
+
return_tensors="pt",
|
143 |
+
)
|
144 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
145 |
+
outputs = self.transformer(
|
146 |
+
input_ids=tokens, output_hidden_states=self.layer == "hidden"
|
147 |
+
)
|
148 |
+
if self.layer == "last":
|
149 |
+
z = outputs.last_hidden_state
|
150 |
+
elif self.layer == "pooled":
|
151 |
+
z = outputs.pooler_output[:, None, :]
|
152 |
+
else:
|
153 |
+
z = outputs.hidden_states[self.layer_idx]
|
154 |
+
return z
|
155 |
+
|
156 |
+
def encode(self, text):
|
157 |
+
return self(text)
|
158 |
+
|
159 |
+
|
160 |
+
class ClipImageEmbedder(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
model,
|
164 |
+
jit=False,
|
165 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
166 |
+
antialias=True,
|
167 |
+
ucg_rate=0.0,
|
168 |
+
):
|
169 |
+
super().__init__()
|
170 |
+
from clip import load as load_clip
|
171 |
+
|
172 |
+
self.model, _ = load_clip(name=model, device=device, jit=jit)
|
173 |
+
|
174 |
+
self.antialias = antialias
|
175 |
+
|
176 |
+
self.register_buffer(
|
177 |
+
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
178 |
+
)
|
179 |
+
self.register_buffer(
|
180 |
+
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
181 |
+
)
|
182 |
+
self.ucg_rate = ucg_rate
|
183 |
+
|
184 |
+
def preprocess(self, x):
|
185 |
+
# normalize to [0,1]
|
186 |
+
x = kornia.geometry.resize(
|
187 |
+
x,
|
188 |
+
(224, 224),
|
189 |
+
interpolation="bicubic",
|
190 |
+
align_corners=True,
|
191 |
+
antialias=self.antialias,
|
192 |
+
)
|
193 |
+
x = (x + 1.0) / 2.0
|
194 |
+
# re-normalize according to clip
|
195 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
196 |
+
return x
|
197 |
+
|
198 |
+
def forward(self, x, no_dropout=False):
|
199 |
+
# x is assumed to be in range [-1,1]
|
200 |
+
out = self.model.encode_image(self.preprocess(x))
|
201 |
+
out = out.to(x.dtype)
|
202 |
+
if self.ucg_rate > 0.0 and not no_dropout:
|
203 |
+
out = (
|
204 |
+
torch.bernoulli(
|
205 |
+
(1.0 - self.ucg_rate) * torch.ones(out.shape[0], device=out.device)
|
206 |
+
)[:, None]
|
207 |
+
* out
|
208 |
+
)
|
209 |
+
return out
|
210 |
+
|
211 |
+
|
212 |
+
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
213 |
+
"""
|
214 |
+
Uses the OpenCLIP transformer encoder for text
|
215 |
+
"""
|
216 |
+
|
217 |
+
LAYERS = [
|
218 |
+
# "pooled",
|
219 |
+
"last",
|
220 |
+
"penultimate",
|
221 |
+
]
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
arch="ViT-H-14",
|
226 |
+
version="laion2b_s32b_b79k",
|
227 |
+
device="cuda",
|
228 |
+
max_length=77,
|
229 |
+
freeze=True,
|
230 |
+
layer="last",
|
231 |
+
):
|
232 |
+
super().__init__()
|
233 |
+
assert layer in self.LAYERS
|
234 |
+
model, _, _ = open_clip.create_model_and_transforms(
|
235 |
+
arch, device=torch.device("cpu")
|
236 |
+
)
|
237 |
+
del model.visual
|
238 |
+
self.model = model
|
239 |
+
|
240 |
+
self.device = device
|
241 |
+
self.max_length = max_length
|
242 |
+
if freeze:
|
243 |
+
self.freeze()
|
244 |
+
self.layer = layer
|
245 |
+
if self.layer == "last":
|
246 |
+
self.layer_idx = 0
|
247 |
+
elif self.layer == "penultimate":
|
248 |
+
self.layer_idx = 1
|
249 |
+
else:
|
250 |
+
raise NotImplementedError()
|
251 |
+
|
252 |
+
def freeze(self):
|
253 |
+
self.model = self.model.eval()
|
254 |
+
for param in self.parameters():
|
255 |
+
param.requires_grad = False
|
256 |
+
|
257 |
+
def forward(self, text):
|
258 |
+
self.device = self.model.positional_embedding.device
|
259 |
+
tokens = open_clip.tokenize(text)
|
260 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
261 |
+
return z
|
262 |
+
|
263 |
+
def encode_with_transformer(self, text):
|
264 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
265 |
+
x = x + self.model.positional_embedding
|
266 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
267 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
268 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
269 |
+
x = self.model.ln_final(x)
|
270 |
+
return x
|
271 |
+
|
272 |
+
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
273 |
+
for i, r in enumerate(self.model.transformer.resblocks):
|
274 |
+
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
275 |
+
break
|
276 |
+
if (
|
277 |
+
self.model.transformer.grad_checkpointing
|
278 |
+
and not torch.jit.is_scripting()
|
279 |
+
):
|
280 |
+
x = checkpoint(r, x, attn_mask)
|
281 |
+
else:
|
282 |
+
x = r(x, attn_mask=attn_mask)
|
283 |
+
return x
|
284 |
+
|
285 |
+
def encode(self, text):
|
286 |
+
return self(text)
|
287 |
+
|
288 |
+
|
289 |
+
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
290 |
+
"""
|
291 |
+
Uses the OpenCLIP vision transformer encoder for images
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(
|
295 |
+
self,
|
296 |
+
arch="ViT-H-14",
|
297 |
+
version="laion2b_s32b_b79k",
|
298 |
+
device="cuda",
|
299 |
+
max_length=77,
|
300 |
+
freeze=True,
|
301 |
+
layer="pooled",
|
302 |
+
antialias=True,
|
303 |
+
ucg_rate=0.0,
|
304 |
+
):
|
305 |
+
super().__init__()
|
306 |
+
model, _, _ = open_clip.create_model_and_transforms(
|
307 |
+
arch,
|
308 |
+
device=torch.device("cpu"),
|
309 |
+
pretrained=version,
|
310 |
+
)
|
311 |
+
del model.transformer
|
312 |
+
self.model = model
|
313 |
+
|
314 |
+
self.device = device
|
315 |
+
self.max_length = max_length
|
316 |
+
if freeze:
|
317 |
+
self.freeze()
|
318 |
+
self.layer = layer
|
319 |
+
if self.layer == "penultimate":
|
320 |
+
raise NotImplementedError()
|
321 |
+
self.layer_idx = 1
|
322 |
+
|
323 |
+
self.antialias = antialias
|
324 |
+
|
325 |
+
self.register_buffer(
|
326 |
+
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
327 |
+
)
|
328 |
+
self.register_buffer(
|
329 |
+
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
330 |
+
)
|
331 |
+
self.ucg_rate = ucg_rate
|
332 |
+
|
333 |
+
def preprocess(self, x):
|
334 |
+
# normalize to [0,1]
|
335 |
+
x = kornia.geometry.resize(
|
336 |
+
x,
|
337 |
+
(224, 224),
|
338 |
+
interpolation="bicubic",
|
339 |
+
align_corners=True,
|
340 |
+
antialias=self.antialias,
|
341 |
+
)
|
342 |
+
x = (x + 1.0) / 2.0
|
343 |
+
# renormalize according to clip
|
344 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
345 |
+
return x
|
346 |
+
|
347 |
+
def freeze(self):
|
348 |
+
self.model = self.model.eval()
|
349 |
+
for param in self.parameters():
|
350 |
+
param.requires_grad = False
|
351 |
+
|
352 |
+
@autocast
|
353 |
+
def forward(self, image, no_dropout=False):
|
354 |
+
z = self.encode_with_vision_transformer(image)
|
355 |
+
if self.ucg_rate > 0.0 and not no_dropout:
|
356 |
+
z = (
|
357 |
+
torch.bernoulli(
|
358 |
+
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
|
359 |
+
)[:, None]
|
360 |
+
* z
|
361 |
+
)
|
362 |
+
return z
|
363 |
+
|
364 |
+
def encode_with_vision_transformer(self, img):
|
365 |
+
img = self.preprocess(img)
|
366 |
+
x = self.model.visual(img)
|
367 |
+
return x
|
368 |
+
|
369 |
+
def encode(self, text):
|
370 |
+
return self(text)
|
371 |
+
|
372 |
+
|
373 |
+
class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder):
|
374 |
+
"""
|
375 |
+
Uses the OpenCLIP vision transformer encoder for images
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(
|
379 |
+
self,
|
380 |
+
arch="ViT-H-14",
|
381 |
+
version="laion2b_s32b_b79k",
|
382 |
+
device="cuda",
|
383 |
+
freeze=True,
|
384 |
+
layer="pooled",
|
385 |
+
antialias=True,
|
386 |
+
):
|
387 |
+
super().__init__()
|
388 |
+
model, _, _ = open_clip.create_model_and_transforms(
|
389 |
+
arch,
|
390 |
+
device=torch.device("cpu"),
|
391 |
+
pretrained=version,
|
392 |
+
)
|
393 |
+
del model.transformer
|
394 |
+
self.model = model
|
395 |
+
self.device = device
|
396 |
+
|
397 |
+
if freeze:
|
398 |
+
self.freeze()
|
399 |
+
self.layer = layer
|
400 |
+
if self.layer == "penultimate":
|
401 |
+
raise NotImplementedError()
|
402 |
+
self.layer_idx = 1
|
403 |
+
|
404 |
+
self.antialias = antialias
|
405 |
+
self.register_buffer(
|
406 |
+
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
|
407 |
+
)
|
408 |
+
self.register_buffer(
|
409 |
+
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
|
410 |
+
)
|
411 |
+
|
412 |
+
def preprocess(self, x):
|
413 |
+
# normalize to [0,1]
|
414 |
+
x = kornia.geometry.resize(
|
415 |
+
x,
|
416 |
+
(224, 224),
|
417 |
+
interpolation="bicubic",
|
418 |
+
align_corners=True,
|
419 |
+
antialias=self.antialias,
|
420 |
+
)
|
421 |
+
x = (x + 1.0) / 2.0
|
422 |
+
# renormalize according to clip
|
423 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
424 |
+
return x
|
425 |
+
|
426 |
+
def freeze(self):
|
427 |
+
self.model = self.model.eval()
|
428 |
+
for param in self.model.parameters():
|
429 |
+
param.requires_grad = False
|
430 |
+
|
431 |
+
def forward(self, image, no_dropout=False):
|
432 |
+
## image: b c h w
|
433 |
+
z = self.encode_with_vision_transformer(image)
|
434 |
+
return z
|
435 |
+
|
436 |
+
def encode_with_vision_transformer(self, x):
|
437 |
+
x = self.preprocess(x)
|
438 |
+
|
439 |
+
# to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
|
440 |
+
if self.model.visual.input_patchnorm:
|
441 |
+
# einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
|
442 |
+
x = x.reshape(
|
443 |
+
x.shape[0],
|
444 |
+
x.shape[1],
|
445 |
+
self.model.visual.grid_size[0],
|
446 |
+
self.model.visual.patch_size[0],
|
447 |
+
self.model.visual.grid_size[1],
|
448 |
+
self.model.visual.patch_size[1],
|
449 |
+
)
|
450 |
+
x = x.permute(0, 2, 4, 1, 3, 5)
|
451 |
+
x = x.reshape(
|
452 |
+
x.shape[0],
|
453 |
+
self.model.visual.grid_size[0] * self.model.visual.grid_size[1],
|
454 |
+
-1,
|
455 |
+
)
|
456 |
+
x = self.model.visual.patchnorm_pre_ln(x)
|
457 |
+
x = self.model.visual.conv1(x)
|
458 |
+
else:
|
459 |
+
x = self.model.visual.conv1(x) # shape = [*, width, grid, grid]
|
460 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
461 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
462 |
+
|
463 |
+
# class embeddings and positional embeddings
|
464 |
+
x = torch.cat(
|
465 |
+
[
|
466 |
+
self.model.visual.class_embedding.to(x.dtype)
|
467 |
+
+ torch.zeros(
|
468 |
+
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
|
469 |
+
),
|
470 |
+
x,
|
471 |
+
],
|
472 |
+
dim=1,
|
473 |
+
) # shape = [*, grid ** 2 + 1, width]
|
474 |
+
x = x + self.model.visual.positional_embedding.to(x.dtype)
|
475 |
+
|
476 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
477 |
+
x = self.model.visual.patch_dropout(x)
|
478 |
+
x = self.model.visual.ln_pre(x)
|
479 |
+
|
480 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
481 |
+
x = self.model.visual.transformer(x)
|
482 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
483 |
+
|
484 |
+
return x
|
485 |
+
|
486 |
+
|
487 |
+
class FrozenCLIPT5Encoder(AbstractEncoder):
|
488 |
+
def __init__(
|
489 |
+
self,
|
490 |
+
clip_version="openai/clip-vit-large-patch14",
|
491 |
+
t5_version="google/t5-v1_1-xl",
|
492 |
+
device="cuda",
|
493 |
+
clip_max_length=77,
|
494 |
+
t5_max_length=77,
|
495 |
+
):
|
496 |
+
super().__init__()
|
497 |
+
self.clip_encoder = FrozenCLIPEmbedder(
|
498 |
+
clip_version, device, max_length=clip_max_length
|
499 |
+
)
|
500 |
+
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
501 |
+
print(
|
502 |
+
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
|
503 |
+
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params."
|
504 |
+
)
|
505 |
+
|
506 |
+
def encode(self, text):
|
507 |
+
return self(text)
|
508 |
+
|
509 |
+
def forward(self, text):
|
510 |
+
clip_z = self.clip_encoder.encode(text)
|
511 |
+
t5_z = self.t5_encoder.encode(text)
|
512 |
+
return [clip_z, t5_z]
|
lvdm/modules/encoders/ip_resampler.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ImageProjModel(nn.Module):
|
8 |
+
"""Projection Model"""
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
cross_attention_dim=1024,
|
13 |
+
clip_embeddings_dim=1024,
|
14 |
+
clip_extra_context_tokens=4,
|
15 |
+
):
|
16 |
+
super().__init__()
|
17 |
+
self.cross_attention_dim = cross_attention_dim
|
18 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
19 |
+
self.proj = nn.Linear(
|
20 |
+
clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim
|
21 |
+
)
|
22 |
+
self.norm = nn.LayerNorm(cross_attention_dim)
|
23 |
+
|
24 |
+
def forward(self, image_embeds):
|
25 |
+
# embeds = image_embeds
|
26 |
+
embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
|
27 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
28 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
29 |
+
)
|
30 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
31 |
+
return clip_extra_context_tokens
|
32 |
+
|
33 |
+
|
34 |
+
# FFN
|
35 |
+
def FeedForward(dim, mult=4):
|
36 |
+
inner_dim = int(dim * mult)
|
37 |
+
return nn.Sequential(
|
38 |
+
nn.LayerNorm(dim),
|
39 |
+
nn.Linear(dim, inner_dim, bias=False),
|
40 |
+
nn.GELU(),
|
41 |
+
nn.Linear(inner_dim, dim, bias=False),
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def reshape_tensor(x, heads):
|
46 |
+
bs, length, width = x.shape
|
47 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
48 |
+
x = x.view(bs, length, heads, -1)
|
49 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
50 |
+
x = x.transpose(1, 2)
|
51 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
52 |
+
x = x.reshape(bs, heads, length, -1)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class PerceiverAttention(nn.Module):
|
57 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
58 |
+
super().__init__()
|
59 |
+
self.scale = dim_head**-0.5
|
60 |
+
self.dim_head = dim_head
|
61 |
+
self.heads = heads
|
62 |
+
inner_dim = dim_head * heads
|
63 |
+
|
64 |
+
self.norm1 = nn.LayerNorm(dim)
|
65 |
+
self.norm2 = nn.LayerNorm(dim)
|
66 |
+
|
67 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
68 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
69 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
70 |
+
|
71 |
+
def forward(self, x, latents):
|
72 |
+
"""
|
73 |
+
Args:
|
74 |
+
x (torch.Tensor): image features
|
75 |
+
shape (b, n1, D)
|
76 |
+
latent (torch.Tensor): latent features
|
77 |
+
shape (b, n2, D)
|
78 |
+
"""
|
79 |
+
x = self.norm1(x)
|
80 |
+
latents = self.norm2(latents)
|
81 |
+
|
82 |
+
b, l, _ = latents.shape
|
83 |
+
|
84 |
+
q = self.to_q(latents)
|
85 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
86 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
87 |
+
|
88 |
+
q = reshape_tensor(q, self.heads)
|
89 |
+
k = reshape_tensor(k, self.heads)
|
90 |
+
v = reshape_tensor(v, self.heads)
|
91 |
+
|
92 |
+
# attention
|
93 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
94 |
+
weight = (q * scale) @ (k * scale).transpose(
|
95 |
+
-2, -1
|
96 |
+
) # More stable with f16 than dividing afterwards
|
97 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
98 |
+
out = weight @ v
|
99 |
+
|
100 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
101 |
+
|
102 |
+
return self.to_out(out)
|
103 |
+
|
104 |
+
|
105 |
+
class Resampler(nn.Module):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
dim=1024,
|
109 |
+
depth=8,
|
110 |
+
dim_head=64,
|
111 |
+
heads=16,
|
112 |
+
num_queries=8,
|
113 |
+
embedding_dim=768,
|
114 |
+
output_dim=1024,
|
115 |
+
ff_mult=4,
|
116 |
+
):
|
117 |
+
super().__init__()
|
118 |
+
|
119 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
120 |
+
|
121 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
122 |
+
|
123 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
124 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
125 |
+
|
126 |
+
self.layers = nn.ModuleList([])
|
127 |
+
for _ in range(depth):
|
128 |
+
self.layers.append(
|
129 |
+
nn.ModuleList(
|
130 |
+
[
|
131 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
132 |
+
FeedForward(dim=dim, mult=ff_mult),
|
133 |
+
]
|
134 |
+
)
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
|
139 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
140 |
+
|
141 |
+
x = self.proj_in(x)
|
142 |
+
|
143 |
+
for attn, ff in self.layers:
|
144 |
+
latents = attn(x, latents) + latents
|
145 |
+
latents = ff(latents) + latents
|
146 |
+
|
147 |
+
latents = self.proj_out(latents)
|
148 |
+
return self.norm_out(latents)
|
lvdm/modules/networks/__pycache__/ae_modules.cpython-311.pyc
ADDED
Binary file (43.8 kB). View file
|
|
lvdm/modules/networks/__pycache__/openaimodel3d.cpython-311.pyc
ADDED
Binary file (26.4 kB). View file
|
|
lvdm/modules/networks/ae_modules.py
ADDED
@@ -0,0 +1,1025 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange
|
7 |
+
from utils.utils import instantiate_from_config
|
8 |
+
from lvdm.modules.attention import LinearAttention
|
9 |
+
|
10 |
+
|
11 |
+
def nonlinearity(x):
|
12 |
+
# swish
|
13 |
+
return x * torch.sigmoid(x)
|
14 |
+
|
15 |
+
|
16 |
+
def Normalize(in_channels, num_groups=32):
|
17 |
+
return torch.nn.GroupNorm(
|
18 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
class LinAttnBlock(LinearAttention):
|
23 |
+
"""to match AttnBlock usage"""
|
24 |
+
|
25 |
+
def __init__(self, in_channels):
|
26 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
27 |
+
|
28 |
+
|
29 |
+
class AttnBlock(nn.Module):
|
30 |
+
def __init__(self, in_channels):
|
31 |
+
super().__init__()
|
32 |
+
self.in_channels = in_channels
|
33 |
+
|
34 |
+
self.norm = Normalize(in_channels)
|
35 |
+
self.q = torch.nn.Conv2d(
|
36 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
37 |
+
)
|
38 |
+
self.k = torch.nn.Conv2d(
|
39 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
40 |
+
)
|
41 |
+
self.v = torch.nn.Conv2d(
|
42 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
43 |
+
)
|
44 |
+
self.proj_out = torch.nn.Conv2d(
|
45 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
46 |
+
)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
h_ = x
|
50 |
+
h_ = self.norm(h_)
|
51 |
+
q = self.q(h_)
|
52 |
+
k = self.k(h_)
|
53 |
+
v = self.v(h_)
|
54 |
+
|
55 |
+
# compute attention
|
56 |
+
b, c, h, w = q.shape
|
57 |
+
q = q.reshape(b, c, h * w) # bcl
|
58 |
+
q = q.permute(0, 2, 1) # bcl -> blc l=hw
|
59 |
+
k = k.reshape(b, c, h * w) # bcl
|
60 |
+
|
61 |
+
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
62 |
+
w_ = w_ * (int(c) ** (-0.5))
|
63 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
64 |
+
|
65 |
+
# attend to values
|
66 |
+
v = v.reshape(b, c, h * w)
|
67 |
+
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
68 |
+
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
69 |
+
h_ = h_.reshape(b, c, h, w)
|
70 |
+
|
71 |
+
h_ = self.proj_out(h_)
|
72 |
+
|
73 |
+
return x + h_
|
74 |
+
|
75 |
+
|
76 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
77 |
+
assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown"
|
78 |
+
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
79 |
+
if attn_type == "vanilla":
|
80 |
+
return AttnBlock(in_channels)
|
81 |
+
elif attn_type == "none":
|
82 |
+
return nn.Identity(in_channels)
|
83 |
+
else:
|
84 |
+
return LinAttnBlock(in_channels)
|
85 |
+
|
86 |
+
|
87 |
+
class Downsample(nn.Module):
|
88 |
+
def __init__(self, in_channels, with_conv):
|
89 |
+
super().__init__()
|
90 |
+
self.with_conv = with_conv
|
91 |
+
self.in_channels = in_channels
|
92 |
+
if self.with_conv:
|
93 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
94 |
+
self.conv = torch.nn.Conv2d(
|
95 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
96 |
+
)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
if self.with_conv:
|
100 |
+
pad = (0, 1, 0, 1)
|
101 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
102 |
+
x = self.conv(x)
|
103 |
+
else:
|
104 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class Upsample(nn.Module):
|
109 |
+
def __init__(self, in_channels, with_conv):
|
110 |
+
super().__init__()
|
111 |
+
self.with_conv = with_conv
|
112 |
+
self.in_channels = in_channels
|
113 |
+
if self.with_conv:
|
114 |
+
self.conv = torch.nn.Conv2d(
|
115 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
116 |
+
)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
120 |
+
if self.with_conv:
|
121 |
+
x = self.conv(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
126 |
+
"""
|
127 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
128 |
+
From Fairseq.
|
129 |
+
Build sinusoidal embeddings.
|
130 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
131 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
132 |
+
"""
|
133 |
+
assert len(timesteps.shape) == 1
|
134 |
+
|
135 |
+
half_dim = embedding_dim // 2
|
136 |
+
emb = math.log(10000) / (half_dim - 1)
|
137 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
138 |
+
emb = emb.to(device=timesteps.device)
|
139 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
140 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
141 |
+
if embedding_dim % 2 == 1: # zero pad
|
142 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
143 |
+
return emb
|
144 |
+
|
145 |
+
|
146 |
+
class ResnetBlock(nn.Module):
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
*,
|
150 |
+
in_channels,
|
151 |
+
out_channels=None,
|
152 |
+
conv_shortcut=False,
|
153 |
+
dropout,
|
154 |
+
temb_channels=512,
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
self.in_channels = in_channels
|
158 |
+
out_channels = in_channels if out_channels is None else out_channels
|
159 |
+
self.out_channels = out_channels
|
160 |
+
self.use_conv_shortcut = conv_shortcut
|
161 |
+
|
162 |
+
self.norm1 = Normalize(in_channels)
|
163 |
+
self.conv1 = torch.nn.Conv2d(
|
164 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
165 |
+
)
|
166 |
+
if temb_channels > 0:
|
167 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
168 |
+
self.norm2 = Normalize(out_channels)
|
169 |
+
self.dropout = torch.nn.Dropout(dropout)
|
170 |
+
self.conv2 = torch.nn.Conv2d(
|
171 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
172 |
+
)
|
173 |
+
if self.in_channels != self.out_channels:
|
174 |
+
if self.use_conv_shortcut:
|
175 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
176 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
180 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
181 |
+
)
|
182 |
+
|
183 |
+
def forward(self, x, temb):
|
184 |
+
h = x
|
185 |
+
h = self.norm1(h)
|
186 |
+
h = nonlinearity(h)
|
187 |
+
h = self.conv1(h)
|
188 |
+
|
189 |
+
if temb is not None:
|
190 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
191 |
+
|
192 |
+
h = self.norm2(h)
|
193 |
+
h = nonlinearity(h)
|
194 |
+
h = self.dropout(h)
|
195 |
+
h = self.conv2(h)
|
196 |
+
|
197 |
+
if self.in_channels != self.out_channels:
|
198 |
+
if self.use_conv_shortcut:
|
199 |
+
x = self.conv_shortcut(x)
|
200 |
+
else:
|
201 |
+
x = self.nin_shortcut(x)
|
202 |
+
|
203 |
+
return x + h
|
204 |
+
|
205 |
+
|
206 |
+
class Model(nn.Module):
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
*,
|
210 |
+
ch,
|
211 |
+
out_ch,
|
212 |
+
ch_mult=(1, 2, 4, 8),
|
213 |
+
num_res_blocks,
|
214 |
+
attn_resolutions,
|
215 |
+
dropout=0.0,
|
216 |
+
resamp_with_conv=True,
|
217 |
+
in_channels,
|
218 |
+
resolution,
|
219 |
+
use_timestep=True,
|
220 |
+
use_linear_attn=False,
|
221 |
+
attn_type="vanilla",
|
222 |
+
):
|
223 |
+
super().__init__()
|
224 |
+
if use_linear_attn:
|
225 |
+
attn_type = "linear"
|
226 |
+
self.ch = ch
|
227 |
+
self.temb_ch = self.ch * 4
|
228 |
+
self.num_resolutions = len(ch_mult)
|
229 |
+
self.num_res_blocks = num_res_blocks
|
230 |
+
self.resolution = resolution
|
231 |
+
self.in_channels = in_channels
|
232 |
+
|
233 |
+
self.use_timestep = use_timestep
|
234 |
+
if self.use_timestep:
|
235 |
+
# timestep embedding
|
236 |
+
self.temb = nn.Module()
|
237 |
+
self.temb.dense = nn.ModuleList(
|
238 |
+
[
|
239 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
240 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
241 |
+
]
|
242 |
+
)
|
243 |
+
|
244 |
+
# downsampling
|
245 |
+
self.conv_in = torch.nn.Conv2d(
|
246 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
247 |
+
)
|
248 |
+
|
249 |
+
curr_res = resolution
|
250 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
251 |
+
self.down = nn.ModuleList()
|
252 |
+
for i_level in range(self.num_resolutions):
|
253 |
+
block = nn.ModuleList()
|
254 |
+
attn = nn.ModuleList()
|
255 |
+
block_in = ch * in_ch_mult[i_level]
|
256 |
+
block_out = ch * ch_mult[i_level]
|
257 |
+
for i_block in range(self.num_res_blocks):
|
258 |
+
block.append(
|
259 |
+
ResnetBlock(
|
260 |
+
in_channels=block_in,
|
261 |
+
out_channels=block_out,
|
262 |
+
temb_channels=self.temb_ch,
|
263 |
+
dropout=dropout,
|
264 |
+
)
|
265 |
+
)
|
266 |
+
block_in = block_out
|
267 |
+
if curr_res in attn_resolutions:
|
268 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
269 |
+
down = nn.Module()
|
270 |
+
down.block = block
|
271 |
+
down.attn = attn
|
272 |
+
if i_level != self.num_resolutions - 1:
|
273 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
274 |
+
curr_res = curr_res // 2
|
275 |
+
self.down.append(down)
|
276 |
+
|
277 |
+
# middle
|
278 |
+
self.mid = nn.Module()
|
279 |
+
self.mid.block_1 = ResnetBlock(
|
280 |
+
in_channels=block_in,
|
281 |
+
out_channels=block_in,
|
282 |
+
temb_channels=self.temb_ch,
|
283 |
+
dropout=dropout,
|
284 |
+
)
|
285 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
286 |
+
self.mid.block_2 = ResnetBlock(
|
287 |
+
in_channels=block_in,
|
288 |
+
out_channels=block_in,
|
289 |
+
temb_channels=self.temb_ch,
|
290 |
+
dropout=dropout,
|
291 |
+
)
|
292 |
+
|
293 |
+
# upsampling
|
294 |
+
self.up = nn.ModuleList()
|
295 |
+
for i_level in reversed(range(self.num_resolutions)):
|
296 |
+
block = nn.ModuleList()
|
297 |
+
attn = nn.ModuleList()
|
298 |
+
block_out = ch * ch_mult[i_level]
|
299 |
+
skip_in = ch * ch_mult[i_level]
|
300 |
+
for i_block in range(self.num_res_blocks + 1):
|
301 |
+
if i_block == self.num_res_blocks:
|
302 |
+
skip_in = ch * in_ch_mult[i_level]
|
303 |
+
block.append(
|
304 |
+
ResnetBlock(
|
305 |
+
in_channels=block_in + skip_in,
|
306 |
+
out_channels=block_out,
|
307 |
+
temb_channels=self.temb_ch,
|
308 |
+
dropout=dropout,
|
309 |
+
)
|
310 |
+
)
|
311 |
+
block_in = block_out
|
312 |
+
if curr_res in attn_resolutions:
|
313 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
314 |
+
up = nn.Module()
|
315 |
+
up.block = block
|
316 |
+
up.attn = attn
|
317 |
+
if i_level != 0:
|
318 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
319 |
+
curr_res = curr_res * 2
|
320 |
+
self.up.insert(0, up) # prepend to get consistent order
|
321 |
+
|
322 |
+
# end
|
323 |
+
self.norm_out = Normalize(block_in)
|
324 |
+
self.conv_out = torch.nn.Conv2d(
|
325 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
326 |
+
)
|
327 |
+
|
328 |
+
def forward(self, x, t=None, context=None):
|
329 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
330 |
+
if context is not None:
|
331 |
+
# assume aligned context, cat along channel axis
|
332 |
+
x = torch.cat((x, context), dim=1)
|
333 |
+
if self.use_timestep:
|
334 |
+
# timestep embedding
|
335 |
+
assert t is not None
|
336 |
+
temb = get_timestep_embedding(t, self.ch)
|
337 |
+
temb = self.temb.dense[0](temb)
|
338 |
+
temb = nonlinearity(temb)
|
339 |
+
temb = self.temb.dense[1](temb)
|
340 |
+
else:
|
341 |
+
temb = None
|
342 |
+
|
343 |
+
# downsampling
|
344 |
+
hs = [self.conv_in(x)]
|
345 |
+
for i_level in range(self.num_resolutions):
|
346 |
+
for i_block in range(self.num_res_blocks):
|
347 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
348 |
+
if len(self.down[i_level].attn) > 0:
|
349 |
+
h = self.down[i_level].attn[i_block](h)
|
350 |
+
hs.append(h)
|
351 |
+
if i_level != self.num_resolutions - 1:
|
352 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
353 |
+
|
354 |
+
# middle
|
355 |
+
h = hs[-1]
|
356 |
+
h = self.mid.block_1(h, temb)
|
357 |
+
h = self.mid.attn_1(h)
|
358 |
+
h = self.mid.block_2(h, temb)
|
359 |
+
|
360 |
+
# upsampling
|
361 |
+
for i_level in reversed(range(self.num_resolutions)):
|
362 |
+
for i_block in range(self.num_res_blocks + 1):
|
363 |
+
h = self.up[i_level].block[i_block](
|
364 |
+
torch.cat([h, hs.pop()], dim=1), temb
|
365 |
+
)
|
366 |
+
if len(self.up[i_level].attn) > 0:
|
367 |
+
h = self.up[i_level].attn[i_block](h)
|
368 |
+
if i_level != 0:
|
369 |
+
h = self.up[i_level].upsample(h)
|
370 |
+
|
371 |
+
# end
|
372 |
+
h = self.norm_out(h)
|
373 |
+
h = nonlinearity(h)
|
374 |
+
h = self.conv_out(h)
|
375 |
+
return h
|
376 |
+
|
377 |
+
def get_last_layer(self):
|
378 |
+
return self.conv_out.weight
|
379 |
+
|
380 |
+
|
381 |
+
class Encoder(nn.Module):
|
382 |
+
def __init__(
|
383 |
+
self,
|
384 |
+
*,
|
385 |
+
ch,
|
386 |
+
out_ch,
|
387 |
+
ch_mult=(1, 2, 4, 8),
|
388 |
+
num_res_blocks,
|
389 |
+
attn_resolutions,
|
390 |
+
dropout=0.0,
|
391 |
+
resamp_with_conv=True,
|
392 |
+
in_channels,
|
393 |
+
resolution,
|
394 |
+
z_channels,
|
395 |
+
double_z=True,
|
396 |
+
use_linear_attn=False,
|
397 |
+
attn_type="vanilla",
|
398 |
+
**ignore_kwargs,
|
399 |
+
):
|
400 |
+
super().__init__()
|
401 |
+
if use_linear_attn:
|
402 |
+
attn_type = "linear"
|
403 |
+
self.ch = ch
|
404 |
+
self.temb_ch = 0
|
405 |
+
self.num_resolutions = len(ch_mult)
|
406 |
+
self.num_res_blocks = num_res_blocks
|
407 |
+
self.resolution = resolution
|
408 |
+
self.in_channels = in_channels
|
409 |
+
|
410 |
+
# downsampling
|
411 |
+
self.conv_in = torch.nn.Conv2d(
|
412 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
413 |
+
)
|
414 |
+
|
415 |
+
curr_res = resolution
|
416 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
417 |
+
self.in_ch_mult = in_ch_mult
|
418 |
+
self.down = nn.ModuleList()
|
419 |
+
for i_level in range(self.num_resolutions):
|
420 |
+
block = nn.ModuleList()
|
421 |
+
attn = nn.ModuleList()
|
422 |
+
block_in = ch * in_ch_mult[i_level]
|
423 |
+
block_out = ch * ch_mult[i_level]
|
424 |
+
for i_block in range(self.num_res_blocks):
|
425 |
+
block.append(
|
426 |
+
ResnetBlock(
|
427 |
+
in_channels=block_in,
|
428 |
+
out_channels=block_out,
|
429 |
+
temb_channels=self.temb_ch,
|
430 |
+
dropout=dropout,
|
431 |
+
)
|
432 |
+
)
|
433 |
+
block_in = block_out
|
434 |
+
if curr_res in attn_resolutions:
|
435 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
436 |
+
down = nn.Module()
|
437 |
+
down.block = block
|
438 |
+
down.attn = attn
|
439 |
+
if i_level != self.num_resolutions - 1:
|
440 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
441 |
+
curr_res = curr_res // 2
|
442 |
+
self.down.append(down)
|
443 |
+
|
444 |
+
# middle
|
445 |
+
self.mid = nn.Module()
|
446 |
+
self.mid.block_1 = ResnetBlock(
|
447 |
+
in_channels=block_in,
|
448 |
+
out_channels=block_in,
|
449 |
+
temb_channels=self.temb_ch,
|
450 |
+
dropout=dropout,
|
451 |
+
)
|
452 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
453 |
+
self.mid.block_2 = ResnetBlock(
|
454 |
+
in_channels=block_in,
|
455 |
+
out_channels=block_in,
|
456 |
+
temb_channels=self.temb_ch,
|
457 |
+
dropout=dropout,
|
458 |
+
)
|
459 |
+
|
460 |
+
# end
|
461 |
+
self.norm_out = Normalize(block_in)
|
462 |
+
self.conv_out = torch.nn.Conv2d(
|
463 |
+
block_in,
|
464 |
+
2 * z_channels if double_z else z_channels,
|
465 |
+
kernel_size=3,
|
466 |
+
stride=1,
|
467 |
+
padding=1,
|
468 |
+
)
|
469 |
+
|
470 |
+
def forward(self, x):
|
471 |
+
# timestep embedding
|
472 |
+
temb = None
|
473 |
+
|
474 |
+
# print(f'encoder-input={x.shape}')
|
475 |
+
# downsampling
|
476 |
+
hs = [self.conv_in(x)]
|
477 |
+
# print(f'encoder-conv in feat={hs[0].shape}')
|
478 |
+
for i_level in range(self.num_resolutions):
|
479 |
+
for i_block in range(self.num_res_blocks):
|
480 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
481 |
+
# print(f'encoder-down feat={h.shape}')
|
482 |
+
if len(self.down[i_level].attn) > 0:
|
483 |
+
h = self.down[i_level].attn[i_block](h)
|
484 |
+
hs.append(h)
|
485 |
+
if i_level != self.num_resolutions - 1:
|
486 |
+
# print(f'encoder-downsample (input)={hs[-1].shape}')
|
487 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
488 |
+
# print(f'encoder-downsample (output)={hs[-1].shape}')
|
489 |
+
|
490 |
+
# middle
|
491 |
+
h = hs[-1]
|
492 |
+
h = self.mid.block_1(h, temb)
|
493 |
+
# print(f'encoder-mid1 feat={h.shape}')
|
494 |
+
h = self.mid.attn_1(h)
|
495 |
+
h = self.mid.block_2(h, temb)
|
496 |
+
# print(f'encoder-mid2 feat={h.shape}')
|
497 |
+
|
498 |
+
# end
|
499 |
+
h = self.norm_out(h)
|
500 |
+
h = nonlinearity(h)
|
501 |
+
h = self.conv_out(h)
|
502 |
+
# print(f'end feat={h.shape}')
|
503 |
+
return h
|
504 |
+
|
505 |
+
|
506 |
+
class Decoder(nn.Module):
|
507 |
+
def __init__(
|
508 |
+
self,
|
509 |
+
*,
|
510 |
+
ch,
|
511 |
+
out_ch,
|
512 |
+
ch_mult=(1, 2, 4, 8),
|
513 |
+
num_res_blocks,
|
514 |
+
attn_resolutions,
|
515 |
+
dropout=0.0,
|
516 |
+
resamp_with_conv=True,
|
517 |
+
in_channels,
|
518 |
+
resolution,
|
519 |
+
z_channels,
|
520 |
+
give_pre_end=False,
|
521 |
+
tanh_out=False,
|
522 |
+
use_linear_attn=False,
|
523 |
+
attn_type="vanilla",
|
524 |
+
**ignorekwargs,
|
525 |
+
):
|
526 |
+
super().__init__()
|
527 |
+
if use_linear_attn:
|
528 |
+
attn_type = "linear"
|
529 |
+
self.ch = ch
|
530 |
+
self.temb_ch = 0
|
531 |
+
self.num_resolutions = len(ch_mult)
|
532 |
+
self.num_res_blocks = num_res_blocks
|
533 |
+
self.resolution = resolution
|
534 |
+
self.in_channels = in_channels
|
535 |
+
self.give_pre_end = give_pre_end
|
536 |
+
self.tanh_out = tanh_out
|
537 |
+
|
538 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
539 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
540 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
541 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
542 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
543 |
+
print(
|
544 |
+
"AE working on z of shape {} = {} dimensions.".format(
|
545 |
+
self.z_shape, np.prod(self.z_shape)
|
546 |
+
)
|
547 |
+
)
|
548 |
+
|
549 |
+
# z to block_in
|
550 |
+
self.conv_in = torch.nn.Conv2d(
|
551 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
552 |
+
)
|
553 |
+
|
554 |
+
# middle
|
555 |
+
self.mid = nn.Module()
|
556 |
+
self.mid.block_1 = ResnetBlock(
|
557 |
+
in_channels=block_in,
|
558 |
+
out_channels=block_in,
|
559 |
+
temb_channels=self.temb_ch,
|
560 |
+
dropout=dropout,
|
561 |
+
)
|
562 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
563 |
+
self.mid.block_2 = ResnetBlock(
|
564 |
+
in_channels=block_in,
|
565 |
+
out_channels=block_in,
|
566 |
+
temb_channels=self.temb_ch,
|
567 |
+
dropout=dropout,
|
568 |
+
)
|
569 |
+
|
570 |
+
# upsampling
|
571 |
+
self.up = nn.ModuleList()
|
572 |
+
for i_level in reversed(range(self.num_resolutions)):
|
573 |
+
block = nn.ModuleList()
|
574 |
+
attn = nn.ModuleList()
|
575 |
+
block_out = ch * ch_mult[i_level]
|
576 |
+
for i_block in range(self.num_res_blocks + 1):
|
577 |
+
block.append(
|
578 |
+
ResnetBlock(
|
579 |
+
in_channels=block_in,
|
580 |
+
out_channels=block_out,
|
581 |
+
temb_channels=self.temb_ch,
|
582 |
+
dropout=dropout,
|
583 |
+
)
|
584 |
+
)
|
585 |
+
block_in = block_out
|
586 |
+
if curr_res in attn_resolutions:
|
587 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
588 |
+
up = nn.Module()
|
589 |
+
up.block = block
|
590 |
+
up.attn = attn
|
591 |
+
if i_level != 0:
|
592 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
593 |
+
curr_res = curr_res * 2
|
594 |
+
self.up.insert(0, up) # prepend to get consistent order
|
595 |
+
|
596 |
+
# end
|
597 |
+
self.norm_out = Normalize(block_in)
|
598 |
+
self.conv_out = torch.nn.Conv2d(
|
599 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
600 |
+
)
|
601 |
+
|
602 |
+
def forward(self, z):
|
603 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
604 |
+
self.last_z_shape = z.shape
|
605 |
+
|
606 |
+
# print(f'decoder-input={z.shape}')
|
607 |
+
# timestep embedding
|
608 |
+
temb = None
|
609 |
+
|
610 |
+
# z to block_in
|
611 |
+
h = self.conv_in(z)
|
612 |
+
# print(f'decoder-conv in feat={h.shape}')
|
613 |
+
|
614 |
+
# middle
|
615 |
+
h = self.mid.block_1(h, temb)
|
616 |
+
h = self.mid.attn_1(h)
|
617 |
+
h = self.mid.block_2(h, temb)
|
618 |
+
# print(f'decoder-mid feat={h.shape}')
|
619 |
+
|
620 |
+
# upsampling
|
621 |
+
for i_level in reversed(range(self.num_resolutions)):
|
622 |
+
for i_block in range(self.num_res_blocks + 1):
|
623 |
+
h = self.up[i_level].block[i_block](h, temb)
|
624 |
+
if len(self.up[i_level].attn) > 0:
|
625 |
+
h = self.up[i_level].attn[i_block](h)
|
626 |
+
# print(f'decoder-up feat={h.shape}')
|
627 |
+
if i_level != 0:
|
628 |
+
h = self.up[i_level].upsample(h)
|
629 |
+
# print(f'decoder-upsample feat={h.shape}')
|
630 |
+
|
631 |
+
# end
|
632 |
+
if self.give_pre_end:
|
633 |
+
return h
|
634 |
+
|
635 |
+
h = self.norm_out(h)
|
636 |
+
h = nonlinearity(h)
|
637 |
+
h = self.conv_out(h)
|
638 |
+
# print(f'decoder-conv_out feat={h.shape}')
|
639 |
+
if self.tanh_out:
|
640 |
+
h = torch.tanh(h)
|
641 |
+
return h
|
642 |
+
|
643 |
+
|
644 |
+
class SimpleDecoder(nn.Module):
|
645 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
646 |
+
super().__init__()
|
647 |
+
self.model = nn.ModuleList(
|
648 |
+
[
|
649 |
+
nn.Conv2d(in_channels, in_channels, 1),
|
650 |
+
ResnetBlock(
|
651 |
+
in_channels=in_channels,
|
652 |
+
out_channels=2 * in_channels,
|
653 |
+
temb_channels=0,
|
654 |
+
dropout=0.0,
|
655 |
+
),
|
656 |
+
ResnetBlock(
|
657 |
+
in_channels=2 * in_channels,
|
658 |
+
out_channels=4 * in_channels,
|
659 |
+
temb_channels=0,
|
660 |
+
dropout=0.0,
|
661 |
+
),
|
662 |
+
ResnetBlock(
|
663 |
+
in_channels=4 * in_channels,
|
664 |
+
out_channels=2 * in_channels,
|
665 |
+
temb_channels=0,
|
666 |
+
dropout=0.0,
|
667 |
+
),
|
668 |
+
nn.Conv2d(2 * in_channels, in_channels, 1),
|
669 |
+
Upsample(in_channels, with_conv=True),
|
670 |
+
]
|
671 |
+
)
|
672 |
+
# end
|
673 |
+
self.norm_out = Normalize(in_channels)
|
674 |
+
self.conv_out = torch.nn.Conv2d(
|
675 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
676 |
+
)
|
677 |
+
|
678 |
+
def forward(self, x):
|
679 |
+
for i, layer in enumerate(self.model):
|
680 |
+
if i in [1, 2, 3]:
|
681 |
+
x = layer(x, None)
|
682 |
+
else:
|
683 |
+
x = layer(x)
|
684 |
+
|
685 |
+
h = self.norm_out(x)
|
686 |
+
h = nonlinearity(h)
|
687 |
+
x = self.conv_out(h)
|
688 |
+
return x
|
689 |
+
|
690 |
+
|
691 |
+
class UpsampleDecoder(nn.Module):
|
692 |
+
def __init__(
|
693 |
+
self,
|
694 |
+
in_channels,
|
695 |
+
out_channels,
|
696 |
+
ch,
|
697 |
+
num_res_blocks,
|
698 |
+
resolution,
|
699 |
+
ch_mult=(2, 2),
|
700 |
+
dropout=0.0,
|
701 |
+
):
|
702 |
+
super().__init__()
|
703 |
+
# upsampling
|
704 |
+
self.temb_ch = 0
|
705 |
+
self.num_resolutions = len(ch_mult)
|
706 |
+
self.num_res_blocks = num_res_blocks
|
707 |
+
block_in = in_channels
|
708 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
709 |
+
self.res_blocks = nn.ModuleList()
|
710 |
+
self.upsample_blocks = nn.ModuleList()
|
711 |
+
for i_level in range(self.num_resolutions):
|
712 |
+
res_block = []
|
713 |
+
block_out = ch * ch_mult[i_level]
|
714 |
+
for i_block in range(self.num_res_blocks + 1):
|
715 |
+
res_block.append(
|
716 |
+
ResnetBlock(
|
717 |
+
in_channels=block_in,
|
718 |
+
out_channels=block_out,
|
719 |
+
temb_channels=self.temb_ch,
|
720 |
+
dropout=dropout,
|
721 |
+
)
|
722 |
+
)
|
723 |
+
block_in = block_out
|
724 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
725 |
+
if i_level != self.num_resolutions - 1:
|
726 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
727 |
+
curr_res = curr_res * 2
|
728 |
+
|
729 |
+
# end
|
730 |
+
self.norm_out = Normalize(block_in)
|
731 |
+
self.conv_out = torch.nn.Conv2d(
|
732 |
+
block_in, out_channels, kernel_size=3, stride=1, padding=1
|
733 |
+
)
|
734 |
+
|
735 |
+
def forward(self, x):
|
736 |
+
# upsampling
|
737 |
+
h = x
|
738 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
739 |
+
for i_block in range(self.num_res_blocks + 1):
|
740 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
741 |
+
if i_level != self.num_resolutions - 1:
|
742 |
+
h = self.upsample_blocks[k](h)
|
743 |
+
h = self.norm_out(h)
|
744 |
+
h = nonlinearity(h)
|
745 |
+
h = self.conv_out(h)
|
746 |
+
return h
|
747 |
+
|
748 |
+
|
749 |
+
class LatentRescaler(nn.Module):
|
750 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
751 |
+
super().__init__()
|
752 |
+
# residual block, interpolate, residual block
|
753 |
+
self.factor = factor
|
754 |
+
self.conv_in = nn.Conv2d(
|
755 |
+
in_channels, mid_channels, kernel_size=3, stride=1, padding=1
|
756 |
+
)
|
757 |
+
self.res_block1 = nn.ModuleList(
|
758 |
+
[
|
759 |
+
ResnetBlock(
|
760 |
+
in_channels=mid_channels,
|
761 |
+
out_channels=mid_channels,
|
762 |
+
temb_channels=0,
|
763 |
+
dropout=0.0,
|
764 |
+
)
|
765 |
+
for _ in range(depth)
|
766 |
+
]
|
767 |
+
)
|
768 |
+
self.attn = AttnBlock(mid_channels)
|
769 |
+
self.res_block2 = nn.ModuleList(
|
770 |
+
[
|
771 |
+
ResnetBlock(
|
772 |
+
in_channels=mid_channels,
|
773 |
+
out_channels=mid_channels,
|
774 |
+
temb_channels=0,
|
775 |
+
dropout=0.0,
|
776 |
+
)
|
777 |
+
for _ in range(depth)
|
778 |
+
]
|
779 |
+
)
|
780 |
+
|
781 |
+
self.conv_out = nn.Conv2d(
|
782 |
+
mid_channels,
|
783 |
+
out_channels,
|
784 |
+
kernel_size=1,
|
785 |
+
)
|
786 |
+
|
787 |
+
def forward(self, x):
|
788 |
+
x = self.conv_in(x)
|
789 |
+
for block in self.res_block1:
|
790 |
+
x = block(x, None)
|
791 |
+
x = torch.nn.functional.interpolate(
|
792 |
+
x,
|
793 |
+
size=(
|
794 |
+
int(round(x.shape[2] * self.factor)),
|
795 |
+
int(round(x.shape[3] * self.factor)),
|
796 |
+
),
|
797 |
+
)
|
798 |
+
x = self.attn(x)
|
799 |
+
for block in self.res_block2:
|
800 |
+
x = block(x, None)
|
801 |
+
x = self.conv_out(x)
|
802 |
+
return x
|
803 |
+
|
804 |
+
|
805 |
+
class MergedRescaleEncoder(nn.Module):
|
806 |
+
def __init__(
|
807 |
+
self,
|
808 |
+
in_channels,
|
809 |
+
ch,
|
810 |
+
resolution,
|
811 |
+
out_ch,
|
812 |
+
num_res_blocks,
|
813 |
+
attn_resolutions,
|
814 |
+
dropout=0.0,
|
815 |
+
resamp_with_conv=True,
|
816 |
+
ch_mult=(1, 2, 4, 8),
|
817 |
+
rescale_factor=1.0,
|
818 |
+
rescale_module_depth=1,
|
819 |
+
):
|
820 |
+
super().__init__()
|
821 |
+
intermediate_chn = ch * ch_mult[-1]
|
822 |
+
self.encoder = Encoder(
|
823 |
+
in_channels=in_channels,
|
824 |
+
num_res_blocks=num_res_blocks,
|
825 |
+
ch=ch,
|
826 |
+
ch_mult=ch_mult,
|
827 |
+
z_channels=intermediate_chn,
|
828 |
+
double_z=False,
|
829 |
+
resolution=resolution,
|
830 |
+
attn_resolutions=attn_resolutions,
|
831 |
+
dropout=dropout,
|
832 |
+
resamp_with_conv=resamp_with_conv,
|
833 |
+
out_ch=None,
|
834 |
+
)
|
835 |
+
self.rescaler = LatentRescaler(
|
836 |
+
factor=rescale_factor,
|
837 |
+
in_channels=intermediate_chn,
|
838 |
+
mid_channels=intermediate_chn,
|
839 |
+
out_channels=out_ch,
|
840 |
+
depth=rescale_module_depth,
|
841 |
+
)
|
842 |
+
|
843 |
+
def forward(self, x):
|
844 |
+
x = self.encoder(x)
|
845 |
+
x = self.rescaler(x)
|
846 |
+
return x
|
847 |
+
|
848 |
+
|
849 |
+
class MergedRescaleDecoder(nn.Module):
|
850 |
+
def __init__(
|
851 |
+
self,
|
852 |
+
z_channels,
|
853 |
+
out_ch,
|
854 |
+
resolution,
|
855 |
+
num_res_blocks,
|
856 |
+
attn_resolutions,
|
857 |
+
ch,
|
858 |
+
ch_mult=(1, 2, 4, 8),
|
859 |
+
dropout=0.0,
|
860 |
+
resamp_with_conv=True,
|
861 |
+
rescale_factor=1.0,
|
862 |
+
rescale_module_depth=1,
|
863 |
+
):
|
864 |
+
super().__init__()
|
865 |
+
tmp_chn = z_channels * ch_mult[-1]
|
866 |
+
self.decoder = Decoder(
|
867 |
+
out_ch=out_ch,
|
868 |
+
z_channels=tmp_chn,
|
869 |
+
attn_resolutions=attn_resolutions,
|
870 |
+
dropout=dropout,
|
871 |
+
resamp_with_conv=resamp_with_conv,
|
872 |
+
in_channels=None,
|
873 |
+
num_res_blocks=num_res_blocks,
|
874 |
+
ch_mult=ch_mult,
|
875 |
+
resolution=resolution,
|
876 |
+
ch=ch,
|
877 |
+
)
|
878 |
+
self.rescaler = LatentRescaler(
|
879 |
+
factor=rescale_factor,
|
880 |
+
in_channels=z_channels,
|
881 |
+
mid_channels=tmp_chn,
|
882 |
+
out_channels=tmp_chn,
|
883 |
+
depth=rescale_module_depth,
|
884 |
+
)
|
885 |
+
|
886 |
+
def forward(self, x):
|
887 |
+
x = self.rescaler(x)
|
888 |
+
x = self.decoder(x)
|
889 |
+
return x
|
890 |
+
|
891 |
+
|
892 |
+
class Upsampler(nn.Module):
|
893 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
894 |
+
super().__init__()
|
895 |
+
assert out_size >= in_size
|
896 |
+
num_blocks = int(np.log2(out_size // in_size)) + 1
|
897 |
+
factor_up = 1.0 + (out_size % in_size)
|
898 |
+
print(
|
899 |
+
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
|
900 |
+
)
|
901 |
+
self.rescaler = LatentRescaler(
|
902 |
+
factor=factor_up,
|
903 |
+
in_channels=in_channels,
|
904 |
+
mid_channels=2 * in_channels,
|
905 |
+
out_channels=in_channels,
|
906 |
+
)
|
907 |
+
self.decoder = Decoder(
|
908 |
+
out_ch=out_channels,
|
909 |
+
resolution=out_size,
|
910 |
+
z_channels=in_channels,
|
911 |
+
num_res_blocks=2,
|
912 |
+
attn_resolutions=[],
|
913 |
+
in_channels=None,
|
914 |
+
ch=in_channels,
|
915 |
+
ch_mult=[ch_mult for _ in range(num_blocks)],
|
916 |
+
)
|
917 |
+
|
918 |
+
def forward(self, x):
|
919 |
+
x = self.rescaler(x)
|
920 |
+
x = self.decoder(x)
|
921 |
+
return x
|
922 |
+
|
923 |
+
|
924 |
+
class Resize(nn.Module):
|
925 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
926 |
+
super().__init__()
|
927 |
+
self.with_conv = learned
|
928 |
+
self.mode = mode
|
929 |
+
if self.with_conv:
|
930 |
+
print(
|
931 |
+
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
|
932 |
+
)
|
933 |
+
raise NotImplementedError()
|
934 |
+
assert in_channels is not None
|
935 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
936 |
+
self.conv = torch.nn.Conv2d(
|
937 |
+
in_channels, in_channels, kernel_size=4, stride=2, padding=1
|
938 |
+
)
|
939 |
+
|
940 |
+
def forward(self, x, scale_factor=1.0):
|
941 |
+
if scale_factor == 1.0:
|
942 |
+
return x
|
943 |
+
else:
|
944 |
+
x = torch.nn.functional.interpolate(
|
945 |
+
x, mode=self.mode, align_corners=False, scale_factor=scale_factor
|
946 |
+
)
|
947 |
+
return x
|
948 |
+
|
949 |
+
|
950 |
+
class FirstStagePostProcessor(nn.Module):
|
951 |
+
|
952 |
+
def __init__(
|
953 |
+
self,
|
954 |
+
ch_mult: list,
|
955 |
+
in_channels,
|
956 |
+
pretrained_model: nn.Module = None,
|
957 |
+
reshape=False,
|
958 |
+
n_channels=None,
|
959 |
+
dropout=0.0,
|
960 |
+
pretrained_config=None,
|
961 |
+
):
|
962 |
+
super().__init__()
|
963 |
+
if pretrained_config is None:
|
964 |
+
assert (
|
965 |
+
pretrained_model is not None
|
966 |
+
), 'Either "pretrained_model" or "pretrained_config" must not be None'
|
967 |
+
self.pretrained_model = pretrained_model
|
968 |
+
else:
|
969 |
+
assert (
|
970 |
+
pretrained_config is not None
|
971 |
+
), 'Either "pretrained_model" or "pretrained_config" must not be None'
|
972 |
+
self.instantiate_pretrained(pretrained_config)
|
973 |
+
|
974 |
+
self.do_reshape = reshape
|
975 |
+
|
976 |
+
if n_channels is None:
|
977 |
+
n_channels = self.pretrained_model.encoder.ch
|
978 |
+
|
979 |
+
self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2)
|
980 |
+
self.proj = nn.Conv2d(
|
981 |
+
in_channels, n_channels, kernel_size=3, stride=1, padding=1
|
982 |
+
)
|
983 |
+
|
984 |
+
blocks = []
|
985 |
+
downs = []
|
986 |
+
ch_in = n_channels
|
987 |
+
for m in ch_mult:
|
988 |
+
blocks.append(
|
989 |
+
ResnetBlock(
|
990 |
+
in_channels=ch_in, out_channels=m * n_channels, dropout=dropout
|
991 |
+
)
|
992 |
+
)
|
993 |
+
ch_in = m * n_channels
|
994 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
995 |
+
|
996 |
+
self.model = nn.ModuleList(blocks)
|
997 |
+
self.downsampler = nn.ModuleList(downs)
|
998 |
+
|
999 |
+
def instantiate_pretrained(self, config):
|
1000 |
+
model = instantiate_from_config(config)
|
1001 |
+
self.pretrained_model = model.eval()
|
1002 |
+
# self.pretrained_model.train = False
|
1003 |
+
for param in self.pretrained_model.parameters():
|
1004 |
+
param.requires_grad = False
|
1005 |
+
|
1006 |
+
@torch.no_grad()
|
1007 |
+
def encode_with_pretrained(self, x):
|
1008 |
+
c = self.pretrained_model.encode(x)
|
1009 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
1010 |
+
c = c.mode()
|
1011 |
+
return c
|
1012 |
+
|
1013 |
+
def forward(self, x):
|
1014 |
+
z_fs = self.encode_with_pretrained(x)
|
1015 |
+
z = self.proj_norm(z_fs)
|
1016 |
+
z = self.proj(z)
|
1017 |
+
z = nonlinearity(z)
|
1018 |
+
|
1019 |
+
for submodel, downmodel in zip(self.model, self.downsampler):
|
1020 |
+
z = submodel(z, temb=None)
|
1021 |
+
z = downmodel(z)
|
1022 |
+
|
1023 |
+
if self.do_reshape:
|
1024 |
+
z = rearrange(z, "b c h w -> b (h w) c")
|
1025 |
+
return z
|
lvdm/modules/networks/openaimodel3d.py
ADDED
@@ -0,0 +1,710 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from abc import abstractmethod
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from lvdm.models.utils_diffusion import timestep_embedding
|
8 |
+
from lvdm.common import checkpoint
|
9 |
+
from lvdm.basics import zero_module, conv_nd, linear, avg_pool_nd, normalization
|
10 |
+
from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
|
11 |
+
|
12 |
+
|
13 |
+
class TimestepBlock(nn.Module):
|
14 |
+
"""
|
15 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
16 |
+
"""
|
17 |
+
|
18 |
+
@abstractmethod
|
19 |
+
def forward(self, x, emb):
|
20 |
+
"""
|
21 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
22 |
+
"""
|
23 |
+
|
24 |
+
|
25 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
26 |
+
"""
|
27 |
+
A sequential module that passes timestep embeddings to the children that
|
28 |
+
support it as an extra input.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def forward(self, x, emb, context=None, batch_size=None):
|
32 |
+
for layer in self:
|
33 |
+
if isinstance(layer, TimestepBlock):
|
34 |
+
x = layer(x, emb, batch_size)
|
35 |
+
elif isinstance(layer, SpatialTransformer):
|
36 |
+
x = layer(x, context)
|
37 |
+
elif isinstance(layer, TemporalTransformer):
|
38 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", b=batch_size)
|
39 |
+
x = layer(x, context)
|
40 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
41 |
+
else:
|
42 |
+
x = layer(
|
43 |
+
x,
|
44 |
+
)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Downsample(nn.Module):
|
49 |
+
"""
|
50 |
+
A downsampling layer with an optional convolution.
|
51 |
+
:param channels: channels in the inputs and outputs.
|
52 |
+
:param use_conv: a bool determining if a convolution is applied.
|
53 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
54 |
+
downsampling occurs in the inner-two dimensions.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
58 |
+
super().__init__()
|
59 |
+
self.channels = channels
|
60 |
+
self.out_channels = out_channels or channels
|
61 |
+
self.use_conv = use_conv
|
62 |
+
self.dims = dims
|
63 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
64 |
+
if use_conv:
|
65 |
+
self.op = conv_nd(
|
66 |
+
dims,
|
67 |
+
self.channels,
|
68 |
+
self.out_channels,
|
69 |
+
3,
|
70 |
+
stride=stride,
|
71 |
+
padding=padding,
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
assert self.channels == self.out_channels
|
75 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
assert x.shape[1] == self.channels
|
79 |
+
return self.op(x)
|
80 |
+
|
81 |
+
|
82 |
+
class Upsample(nn.Module):
|
83 |
+
"""
|
84 |
+
An upsampling layer with an optional convolution.
|
85 |
+
:param channels: channels in the inputs and outputs.
|
86 |
+
:param use_conv: a bool determining if a convolution is applied.
|
87 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
88 |
+
upsampling occurs in the inner-two dimensions.
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
92 |
+
super().__init__()
|
93 |
+
self.channels = channels
|
94 |
+
self.out_channels = out_channels or channels
|
95 |
+
self.use_conv = use_conv
|
96 |
+
self.dims = dims
|
97 |
+
if use_conv:
|
98 |
+
self.conv = conv_nd(
|
99 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
100 |
+
)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
assert x.shape[1] == self.channels
|
104 |
+
if self.dims == 3:
|
105 |
+
x = F.interpolate(
|
106 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
110 |
+
if self.use_conv:
|
111 |
+
x = self.conv(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
|
115 |
+
class ResBlock(TimestepBlock):
|
116 |
+
"""
|
117 |
+
A residual block that can optionally change the number of channels.
|
118 |
+
:param channels: the number of input channels.
|
119 |
+
:param emb_channels: the number of timestep embedding channels.
|
120 |
+
:param dropout: the rate of dropout.
|
121 |
+
:param out_channels: if specified, the number of out channels.
|
122 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
123 |
+
convolution instead of a smaller 1x1 convolution to change the
|
124 |
+
channels in the skip connection.
|
125 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
126 |
+
:param up: if True, use this block for upsampling.
|
127 |
+
:param down: if True, use this block for downsampling.
|
128 |
+
"""
|
129 |
+
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
channels,
|
133 |
+
emb_channels,
|
134 |
+
dropout,
|
135 |
+
out_channels=None,
|
136 |
+
use_scale_shift_norm=False,
|
137 |
+
dims=2,
|
138 |
+
use_checkpoint=False,
|
139 |
+
use_conv=False,
|
140 |
+
up=False,
|
141 |
+
down=False,
|
142 |
+
use_temporal_conv=False,
|
143 |
+
tempspatial_aware=False,
|
144 |
+
):
|
145 |
+
super().__init__()
|
146 |
+
self.channels = channels
|
147 |
+
self.emb_channels = emb_channels
|
148 |
+
self.dropout = dropout
|
149 |
+
self.out_channels = out_channels or channels
|
150 |
+
self.use_conv = use_conv
|
151 |
+
self.use_checkpoint = use_checkpoint
|
152 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
153 |
+
self.use_temporal_conv = use_temporal_conv
|
154 |
+
|
155 |
+
self.in_layers = nn.Sequential(
|
156 |
+
normalization(channels),
|
157 |
+
nn.SiLU(),
|
158 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
159 |
+
)
|
160 |
+
|
161 |
+
self.updown = up or down
|
162 |
+
|
163 |
+
if up:
|
164 |
+
self.h_upd = Upsample(channels, False, dims)
|
165 |
+
self.x_upd = Upsample(channels, False, dims)
|
166 |
+
elif down:
|
167 |
+
self.h_upd = Downsample(channels, False, dims)
|
168 |
+
self.x_upd = Downsample(channels, False, dims)
|
169 |
+
else:
|
170 |
+
self.h_upd = self.x_upd = nn.Identity()
|
171 |
+
|
172 |
+
self.emb_layers = nn.Sequential(
|
173 |
+
nn.SiLU(),
|
174 |
+
nn.Linear(
|
175 |
+
emb_channels,
|
176 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
177 |
+
),
|
178 |
+
)
|
179 |
+
self.out_layers = nn.Sequential(
|
180 |
+
normalization(self.out_channels),
|
181 |
+
nn.SiLU(),
|
182 |
+
nn.Dropout(p=dropout),
|
183 |
+
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
|
184 |
+
)
|
185 |
+
|
186 |
+
if self.out_channels == channels:
|
187 |
+
self.skip_connection = nn.Identity()
|
188 |
+
elif use_conv:
|
189 |
+
self.skip_connection = conv_nd(
|
190 |
+
dims, channels, self.out_channels, 3, padding=1
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
194 |
+
|
195 |
+
if self.use_temporal_conv:
|
196 |
+
self.temopral_conv = TemporalConvBlock(
|
197 |
+
self.out_channels,
|
198 |
+
self.out_channels,
|
199 |
+
dropout=0.1,
|
200 |
+
spatial_aware=tempspatial_aware,
|
201 |
+
)
|
202 |
+
|
203 |
+
def forward(self, x, emb, batch_size=None):
|
204 |
+
"""
|
205 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
206 |
+
:param x: an [N x C x ...] Tensor of features.
|
207 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
208 |
+
:return: an [N x C x ...] Tensor of outputs.
|
209 |
+
"""
|
210 |
+
input_tuple = (
|
211 |
+
x,
|
212 |
+
emb,
|
213 |
+
)
|
214 |
+
if batch_size:
|
215 |
+
forward_batchsize = partial(self._forward, batch_size=batch_size)
|
216 |
+
return checkpoint(
|
217 |
+
forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint
|
218 |
+
)
|
219 |
+
return checkpoint(
|
220 |
+
self._forward, input_tuple, self.parameters(), self.use_checkpoint
|
221 |
+
)
|
222 |
+
|
223 |
+
def _forward(
|
224 |
+
self,
|
225 |
+
x,
|
226 |
+
emb,
|
227 |
+
batch_size=None,
|
228 |
+
):
|
229 |
+
if self.updown:
|
230 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
231 |
+
h = in_rest(x)
|
232 |
+
h = self.h_upd(h)
|
233 |
+
x = self.x_upd(x)
|
234 |
+
h = in_conv(h)
|
235 |
+
else:
|
236 |
+
h = self.in_layers(x)
|
237 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
238 |
+
while len(emb_out.shape) < len(h.shape):
|
239 |
+
emb_out = emb_out[..., None]
|
240 |
+
if self.use_scale_shift_norm:
|
241 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
242 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
243 |
+
h = out_norm(h) * (1 + scale) + shift
|
244 |
+
h = out_rest(h)
|
245 |
+
else:
|
246 |
+
h = h + emb_out
|
247 |
+
h = self.out_layers(h)
|
248 |
+
h = self.skip_connection(x) + h
|
249 |
+
|
250 |
+
if self.use_temporal_conv and batch_size:
|
251 |
+
h = rearrange(h, "(b t) c h w -> b c t h w", b=batch_size)
|
252 |
+
h = self.temopral_conv(h)
|
253 |
+
h = rearrange(h, "b c t h w -> (b t) c h w")
|
254 |
+
return h
|
255 |
+
|
256 |
+
|
257 |
+
class TemporalConvBlock(nn.Module):
|
258 |
+
"""
|
259 |
+
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
|
260 |
+
"""
|
261 |
+
|
262 |
+
def __init__(
|
263 |
+
self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False
|
264 |
+
):
|
265 |
+
super(TemporalConvBlock, self).__init__()
|
266 |
+
if out_channels is None:
|
267 |
+
out_channels = in_channels
|
268 |
+
self.in_channels = in_channels
|
269 |
+
self.out_channels = out_channels
|
270 |
+
kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 3)
|
271 |
+
padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 1)
|
272 |
+
|
273 |
+
# conv layers
|
274 |
+
self.conv1 = nn.Sequential(
|
275 |
+
nn.GroupNorm(32, in_channels),
|
276 |
+
nn.SiLU(),
|
277 |
+
nn.Conv3d(in_channels, out_channels, kernel_shape, padding=padding_shape),
|
278 |
+
)
|
279 |
+
self.conv2 = nn.Sequential(
|
280 |
+
nn.GroupNorm(32, out_channels),
|
281 |
+
nn.SiLU(),
|
282 |
+
nn.Dropout(dropout),
|
283 |
+
nn.Conv3d(out_channels, in_channels, kernel_shape, padding=padding_shape),
|
284 |
+
)
|
285 |
+
self.conv3 = nn.Sequential(
|
286 |
+
nn.GroupNorm(32, out_channels),
|
287 |
+
nn.SiLU(),
|
288 |
+
nn.Dropout(dropout),
|
289 |
+
nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)),
|
290 |
+
)
|
291 |
+
self.conv4 = nn.Sequential(
|
292 |
+
nn.GroupNorm(32, out_channels),
|
293 |
+
nn.SiLU(),
|
294 |
+
nn.Dropout(dropout),
|
295 |
+
nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)),
|
296 |
+
)
|
297 |
+
|
298 |
+
# zero out the last layer params,so the conv block is identity
|
299 |
+
nn.init.zeros_(self.conv4[-1].weight)
|
300 |
+
nn.init.zeros_(self.conv4[-1].bias)
|
301 |
+
|
302 |
+
def forward(self, x):
|
303 |
+
identity = x
|
304 |
+
x = self.conv1(x)
|
305 |
+
x = self.conv2(x)
|
306 |
+
x = self.conv3(x)
|
307 |
+
x = self.conv4(x)
|
308 |
+
|
309 |
+
return x + identity
|
310 |
+
|
311 |
+
|
312 |
+
class UNetModel(nn.Module):
|
313 |
+
"""
|
314 |
+
The full UNet model with attention and timestep embedding.
|
315 |
+
:param in_channels: in_channels in the input Tensor.
|
316 |
+
:param model_channels: base channel count for the model.
|
317 |
+
:param out_channels: channels in the output Tensor.
|
318 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
319 |
+
:param attention_resolutions: a collection of downsample rates at which
|
320 |
+
attention will take place. May be a set, list, or tuple.
|
321 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
322 |
+
will be used.
|
323 |
+
:param dropout: the dropout probability.
|
324 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
325 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
326 |
+
downsampling.
|
327 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
328 |
+
:param num_classes: if specified (as an int), then this model will be
|
329 |
+
class-conditional with `num_classes` classes.
|
330 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
331 |
+
:param num_heads: the number of attention heads in each attention layer.
|
332 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
333 |
+
a fixed channel width per attention head.
|
334 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
335 |
+
of heads for upsampling. Deprecated.
|
336 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
337 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
338 |
+
"""
|
339 |
+
|
340 |
+
def __init__(
|
341 |
+
self,
|
342 |
+
in_channels,
|
343 |
+
model_channels,
|
344 |
+
out_channels,
|
345 |
+
num_res_blocks,
|
346 |
+
attention_resolutions,
|
347 |
+
dropout=0.0,
|
348 |
+
channel_mult=(1, 2, 4, 8),
|
349 |
+
conv_resample=True,
|
350 |
+
dims=2,
|
351 |
+
context_dim=None,
|
352 |
+
use_scale_shift_norm=False,
|
353 |
+
resblock_updown=False,
|
354 |
+
num_heads=-1,
|
355 |
+
num_head_channels=-1,
|
356 |
+
transformer_depth=1,
|
357 |
+
use_linear=False,
|
358 |
+
use_checkpoint=False,
|
359 |
+
temporal_conv=False,
|
360 |
+
tempspatial_aware=False,
|
361 |
+
temporal_attention=True,
|
362 |
+
temporal_selfatt_only=True,
|
363 |
+
use_relative_position=True,
|
364 |
+
use_causal_attention=False,
|
365 |
+
temporal_length=None,
|
366 |
+
use_fp16=False,
|
367 |
+
addition_attention=False,
|
368 |
+
use_image_attention=False,
|
369 |
+
temporal_transformer_depth=1,
|
370 |
+
fps_cond=False,
|
371 |
+
time_cond_proj_dim=None,
|
372 |
+
):
|
373 |
+
super(UNetModel, self).__init__()
|
374 |
+
if num_heads == -1:
|
375 |
+
assert (
|
376 |
+
num_head_channels != -1
|
377 |
+
), "Either num_heads or num_head_channels has to be set"
|
378 |
+
if num_head_channels == -1:
|
379 |
+
assert (
|
380 |
+
num_heads != -1
|
381 |
+
), "Either num_heads or num_head_channels has to be set"
|
382 |
+
|
383 |
+
self.in_channels = in_channels
|
384 |
+
self.model_channels = model_channels
|
385 |
+
self.out_channels = out_channels
|
386 |
+
self.num_res_blocks = num_res_blocks
|
387 |
+
self.attention_resolutions = attention_resolutions
|
388 |
+
self.dropout = dropout
|
389 |
+
self.channel_mult = channel_mult
|
390 |
+
self.conv_resample = conv_resample
|
391 |
+
self.temporal_attention = temporal_attention
|
392 |
+
time_embed_dim = model_channels * 4
|
393 |
+
self.use_checkpoint = use_checkpoint
|
394 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
395 |
+
self.addition_attention = addition_attention
|
396 |
+
self.use_image_attention = use_image_attention
|
397 |
+
self.fps_cond = fps_cond
|
398 |
+
self.time_cond_proj_dim = time_cond_proj_dim
|
399 |
+
|
400 |
+
self.time_embed = nn.Sequential(
|
401 |
+
linear(model_channels, time_embed_dim),
|
402 |
+
nn.SiLU(),
|
403 |
+
linear(time_embed_dim, time_embed_dim),
|
404 |
+
)
|
405 |
+
if self.fps_cond:
|
406 |
+
self.fps_embedding = nn.Sequential(
|
407 |
+
linear(model_channels, time_embed_dim),
|
408 |
+
nn.SiLU(),
|
409 |
+
linear(time_embed_dim, time_embed_dim),
|
410 |
+
)
|
411 |
+
if time_cond_proj_dim is not None:
|
412 |
+
self.time_cond_proj = nn.Linear(
|
413 |
+
time_cond_proj_dim, model_channels, bias=False
|
414 |
+
)
|
415 |
+
else:
|
416 |
+
self.time_cond_proj = None
|
417 |
+
|
418 |
+
self.input_blocks = nn.ModuleList(
|
419 |
+
[
|
420 |
+
TimestepEmbedSequential(
|
421 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
422 |
+
)
|
423 |
+
]
|
424 |
+
)
|
425 |
+
if self.addition_attention:
|
426 |
+
self.init_attn = TimestepEmbedSequential(
|
427 |
+
TemporalTransformer(
|
428 |
+
model_channels,
|
429 |
+
n_heads=8,
|
430 |
+
d_head=num_head_channels,
|
431 |
+
depth=transformer_depth,
|
432 |
+
context_dim=context_dim,
|
433 |
+
use_checkpoint=use_checkpoint,
|
434 |
+
only_self_att=temporal_selfatt_only,
|
435 |
+
causal_attention=use_causal_attention,
|
436 |
+
relative_position=use_relative_position,
|
437 |
+
temporal_length=temporal_length,
|
438 |
+
)
|
439 |
+
)
|
440 |
+
|
441 |
+
input_block_chans = [model_channels]
|
442 |
+
ch = model_channels
|
443 |
+
ds = 1
|
444 |
+
for level, mult in enumerate(channel_mult):
|
445 |
+
for _ in range(num_res_blocks):
|
446 |
+
layers = [
|
447 |
+
ResBlock(
|
448 |
+
ch,
|
449 |
+
time_embed_dim,
|
450 |
+
dropout,
|
451 |
+
out_channels=mult * model_channels,
|
452 |
+
dims=dims,
|
453 |
+
use_checkpoint=use_checkpoint,
|
454 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
455 |
+
tempspatial_aware=tempspatial_aware,
|
456 |
+
use_temporal_conv=temporal_conv,
|
457 |
+
)
|
458 |
+
]
|
459 |
+
ch = mult * model_channels
|
460 |
+
if ds in attention_resolutions:
|
461 |
+
if num_head_channels == -1:
|
462 |
+
dim_head = ch // num_heads
|
463 |
+
else:
|
464 |
+
num_heads = ch // num_head_channels
|
465 |
+
dim_head = num_head_channels
|
466 |
+
layers.append(
|
467 |
+
SpatialTransformer(
|
468 |
+
ch,
|
469 |
+
num_heads,
|
470 |
+
dim_head,
|
471 |
+
depth=transformer_depth,
|
472 |
+
context_dim=context_dim,
|
473 |
+
use_linear=use_linear,
|
474 |
+
use_checkpoint=use_checkpoint,
|
475 |
+
disable_self_attn=False,
|
476 |
+
img_cross_attention=self.use_image_attention,
|
477 |
+
)
|
478 |
+
)
|
479 |
+
if self.temporal_attention:
|
480 |
+
layers.append(
|
481 |
+
TemporalTransformer(
|
482 |
+
ch,
|
483 |
+
num_heads,
|
484 |
+
dim_head,
|
485 |
+
depth=temporal_transformer_depth,
|
486 |
+
context_dim=context_dim,
|
487 |
+
use_linear=use_linear,
|
488 |
+
use_checkpoint=use_checkpoint,
|
489 |
+
only_self_att=temporal_selfatt_only,
|
490 |
+
causal_attention=use_causal_attention,
|
491 |
+
relative_position=use_relative_position,
|
492 |
+
temporal_length=temporal_length,
|
493 |
+
)
|
494 |
+
)
|
495 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
496 |
+
input_block_chans.append(ch)
|
497 |
+
if level != len(channel_mult) - 1:
|
498 |
+
out_ch = ch
|
499 |
+
self.input_blocks.append(
|
500 |
+
TimestepEmbedSequential(
|
501 |
+
ResBlock(
|
502 |
+
ch,
|
503 |
+
time_embed_dim,
|
504 |
+
dropout,
|
505 |
+
out_channels=out_ch,
|
506 |
+
dims=dims,
|
507 |
+
use_checkpoint=use_checkpoint,
|
508 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
509 |
+
down=True,
|
510 |
+
)
|
511 |
+
if resblock_updown
|
512 |
+
else Downsample(
|
513 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
514 |
+
)
|
515 |
+
)
|
516 |
+
)
|
517 |
+
ch = out_ch
|
518 |
+
input_block_chans.append(ch)
|
519 |
+
ds *= 2
|
520 |
+
|
521 |
+
if num_head_channels == -1:
|
522 |
+
dim_head = ch // num_heads
|
523 |
+
else:
|
524 |
+
num_heads = ch // num_head_channels
|
525 |
+
dim_head = num_head_channels
|
526 |
+
layers = [
|
527 |
+
ResBlock(
|
528 |
+
ch,
|
529 |
+
time_embed_dim,
|
530 |
+
dropout,
|
531 |
+
dims=dims,
|
532 |
+
use_checkpoint=use_checkpoint,
|
533 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
534 |
+
tempspatial_aware=tempspatial_aware,
|
535 |
+
use_temporal_conv=temporal_conv,
|
536 |
+
),
|
537 |
+
SpatialTransformer(
|
538 |
+
ch,
|
539 |
+
num_heads,
|
540 |
+
dim_head,
|
541 |
+
depth=transformer_depth,
|
542 |
+
context_dim=context_dim,
|
543 |
+
use_linear=use_linear,
|
544 |
+
use_checkpoint=use_checkpoint,
|
545 |
+
disable_self_attn=False,
|
546 |
+
img_cross_attention=self.use_image_attention,
|
547 |
+
),
|
548 |
+
]
|
549 |
+
if self.temporal_attention:
|
550 |
+
layers.append(
|
551 |
+
TemporalTransformer(
|
552 |
+
ch,
|
553 |
+
num_heads,
|
554 |
+
dim_head,
|
555 |
+
depth=temporal_transformer_depth,
|
556 |
+
context_dim=context_dim,
|
557 |
+
use_linear=use_linear,
|
558 |
+
use_checkpoint=use_checkpoint,
|
559 |
+
only_self_att=temporal_selfatt_only,
|
560 |
+
causal_attention=use_causal_attention,
|
561 |
+
relative_position=use_relative_position,
|
562 |
+
temporal_length=temporal_length,
|
563 |
+
)
|
564 |
+
)
|
565 |
+
layers.append(
|
566 |
+
ResBlock(
|
567 |
+
ch,
|
568 |
+
time_embed_dim,
|
569 |
+
dropout,
|
570 |
+
dims=dims,
|
571 |
+
use_checkpoint=use_checkpoint,
|
572 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
573 |
+
tempspatial_aware=tempspatial_aware,
|
574 |
+
use_temporal_conv=temporal_conv,
|
575 |
+
)
|
576 |
+
)
|
577 |
+
self.middle_block = TimestepEmbedSequential(*layers)
|
578 |
+
|
579 |
+
self.output_blocks = nn.ModuleList([])
|
580 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
581 |
+
for i in range(num_res_blocks + 1):
|
582 |
+
ich = input_block_chans.pop()
|
583 |
+
layers = [
|
584 |
+
ResBlock(
|
585 |
+
ch + ich,
|
586 |
+
time_embed_dim,
|
587 |
+
dropout,
|
588 |
+
out_channels=mult * model_channels,
|
589 |
+
dims=dims,
|
590 |
+
use_checkpoint=use_checkpoint,
|
591 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
592 |
+
tempspatial_aware=tempspatial_aware,
|
593 |
+
use_temporal_conv=temporal_conv,
|
594 |
+
)
|
595 |
+
]
|
596 |
+
ch = model_channels * mult
|
597 |
+
if ds in attention_resolutions:
|
598 |
+
if num_head_channels == -1:
|
599 |
+
dim_head = ch // num_heads
|
600 |
+
else:
|
601 |
+
num_heads = ch // num_head_channels
|
602 |
+
dim_head = num_head_channels
|
603 |
+
layers.append(
|
604 |
+
SpatialTransformer(
|
605 |
+
ch,
|
606 |
+
num_heads,
|
607 |
+
dim_head,
|
608 |
+
depth=transformer_depth,
|
609 |
+
context_dim=context_dim,
|
610 |
+
use_linear=use_linear,
|
611 |
+
use_checkpoint=use_checkpoint,
|
612 |
+
disable_self_attn=False,
|
613 |
+
img_cross_attention=self.use_image_attention,
|
614 |
+
)
|
615 |
+
)
|
616 |
+
if self.temporal_attention:
|
617 |
+
layers.append(
|
618 |
+
TemporalTransformer(
|
619 |
+
ch,
|
620 |
+
num_heads,
|
621 |
+
dim_head,
|
622 |
+
depth=temporal_transformer_depth,
|
623 |
+
context_dim=context_dim,
|
624 |
+
use_linear=use_linear,
|
625 |
+
use_checkpoint=use_checkpoint,
|
626 |
+
only_self_att=temporal_selfatt_only,
|
627 |
+
causal_attention=use_causal_attention,
|
628 |
+
relative_position=use_relative_position,
|
629 |
+
temporal_length=temporal_length,
|
630 |
+
)
|
631 |
+
)
|
632 |
+
if level and i == num_res_blocks:
|
633 |
+
out_ch = ch
|
634 |
+
layers.append(
|
635 |
+
ResBlock(
|
636 |
+
ch,
|
637 |
+
time_embed_dim,
|
638 |
+
dropout,
|
639 |
+
out_channels=out_ch,
|
640 |
+
dims=dims,
|
641 |
+
use_checkpoint=use_checkpoint,
|
642 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
643 |
+
up=True,
|
644 |
+
)
|
645 |
+
if resblock_updown
|
646 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
647 |
+
)
|
648 |
+
ds //= 2
|
649 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
650 |
+
|
651 |
+
self.out = nn.Sequential(
|
652 |
+
normalization(ch),
|
653 |
+
nn.SiLU(),
|
654 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
655 |
+
)
|
656 |
+
|
657 |
+
def forward(
|
658 |
+
self,
|
659 |
+
x,
|
660 |
+
timesteps,
|
661 |
+
context=None,
|
662 |
+
features_adapter=None,
|
663 |
+
fps=16,
|
664 |
+
timestep_cond=None,
|
665 |
+
**kwargs
|
666 |
+
):
|
667 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
668 |
+
if timestep_cond is not None:
|
669 |
+
t_emb = t_emb + self.time_cond_proj(timestep_cond)
|
670 |
+
emb = self.time_embed(t_emb)
|
671 |
+
|
672 |
+
if self.fps_cond:
|
673 |
+
if type(fps) == int:
|
674 |
+
fps = torch.full_like(timesteps, fps)
|
675 |
+
fps_emb = timestep_embedding(fps, self.model_channels, repeat_only=False)
|
676 |
+
emb += self.fps_embedding(fps_emb)
|
677 |
+
|
678 |
+
b, _, t, _, _ = x.shape
|
679 |
+
## repeat t times for context [(b t) 77 768] & time embedding
|
680 |
+
context = context.repeat_interleave(repeats=t, dim=0)
|
681 |
+
emb = emb.repeat_interleave(repeats=t, dim=0)
|
682 |
+
|
683 |
+
## always in shape (b t) c h w, except for temporal layer
|
684 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
685 |
+
|
686 |
+
h = x.type(self.dtype)
|
687 |
+
adapter_idx = 0
|
688 |
+
hs = []
|
689 |
+
for id, module in enumerate(self.input_blocks):
|
690 |
+
h = module(h, emb, context=context, batch_size=b)
|
691 |
+
if id == 0 and self.addition_attention:
|
692 |
+
h = self.init_attn(h, emb, context=context, batch_size=b)
|
693 |
+
## plug-in adapter features
|
694 |
+
if ((id + 1) % 3 == 0) and features_adapter is not None:
|
695 |
+
h = h + features_adapter[adapter_idx]
|
696 |
+
adapter_idx += 1
|
697 |
+
hs.append(h)
|
698 |
+
if features_adapter is not None:
|
699 |
+
assert len(features_adapter) == adapter_idx, "Wrong features_adapter"
|
700 |
+
|
701 |
+
h = self.middle_block(h, emb, context=context, batch_size=b)
|
702 |
+
for module in self.output_blocks:
|
703 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
704 |
+
h = module(h, emb, context=context, batch_size=b)
|
705 |
+
h = h.type(x.dtype)
|
706 |
+
y = self.out(h)
|
707 |
+
|
708 |
+
# reshape back to (b c t h w)
|
709 |
+
y = rearrange(y, "(b t) c h w -> b c t h w", b=b)
|
710 |
+
return y
|
lvdm/modules/x_transformer.py
ADDED
@@ -0,0 +1,704 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
2 |
+
|
3 |
+
from functools import partial
|
4 |
+
from inspect import isfunction
|
5 |
+
from collections import namedtuple
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
import torch
|
8 |
+
from torch import nn, einsum
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
# constants
|
12 |
+
DEFAULT_DIM_HEAD = 64
|
13 |
+
|
14 |
+
Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"])
|
15 |
+
|
16 |
+
LayerIntermediates = namedtuple("Intermediates", ["hiddens", "attn_intermediates"])
|
17 |
+
|
18 |
+
|
19 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
20 |
+
def __init__(self, dim, max_seq_len):
|
21 |
+
super().__init__()
|
22 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
23 |
+
self.init_()
|
24 |
+
|
25 |
+
def init_(self):
|
26 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
n = torch.arange(x.shape[1], device=x.device)
|
30 |
+
return self.emb(n)[None, :, :]
|
31 |
+
|
32 |
+
|
33 |
+
class FixedPositionalEmbedding(nn.Module):
|
34 |
+
def __init__(self, dim):
|
35 |
+
super().__init__()
|
36 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
37 |
+
self.register_buffer("inv_freq", inv_freq)
|
38 |
+
|
39 |
+
def forward(self, x, seq_dim=1, offset=0):
|
40 |
+
t = (
|
41 |
+
torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
|
42 |
+
+ offset
|
43 |
+
)
|
44 |
+
sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq)
|
45 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
46 |
+
return emb[None, :, :]
|
47 |
+
|
48 |
+
|
49 |
+
# helpers
|
50 |
+
|
51 |
+
|
52 |
+
def exists(val):
|
53 |
+
return val is not None
|
54 |
+
|
55 |
+
|
56 |
+
def default(val, d):
|
57 |
+
if exists(val):
|
58 |
+
return val
|
59 |
+
return d() if isfunction(d) else d
|
60 |
+
|
61 |
+
|
62 |
+
def always(val):
|
63 |
+
def inner(*args, **kwargs):
|
64 |
+
return val
|
65 |
+
|
66 |
+
return inner
|
67 |
+
|
68 |
+
|
69 |
+
def not_equals(val):
|
70 |
+
def inner(x):
|
71 |
+
return x != val
|
72 |
+
|
73 |
+
return inner
|
74 |
+
|
75 |
+
|
76 |
+
def equals(val):
|
77 |
+
def inner(x):
|
78 |
+
return x == val
|
79 |
+
|
80 |
+
return inner
|
81 |
+
|
82 |
+
|
83 |
+
def max_neg_value(tensor):
|
84 |
+
return -torch.finfo(tensor.dtype).max
|
85 |
+
|
86 |
+
|
87 |
+
# keyword argument helpers
|
88 |
+
|
89 |
+
|
90 |
+
def pick_and_pop(keys, d):
|
91 |
+
values = list(map(lambda key: d.pop(key), keys))
|
92 |
+
return dict(zip(keys, values))
|
93 |
+
|
94 |
+
|
95 |
+
def group_dict_by_key(cond, d):
|
96 |
+
return_val = [dict(), dict()]
|
97 |
+
for key in d.keys():
|
98 |
+
match = bool(cond(key))
|
99 |
+
ind = int(not match)
|
100 |
+
return_val[ind][key] = d[key]
|
101 |
+
return (*return_val,)
|
102 |
+
|
103 |
+
|
104 |
+
def string_begins_with(prefix, str):
|
105 |
+
return str.startswith(prefix)
|
106 |
+
|
107 |
+
|
108 |
+
def group_by_key_prefix(prefix, d):
|
109 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
110 |
+
|
111 |
+
|
112 |
+
def groupby_prefix_and_trim(prefix, d):
|
113 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(
|
114 |
+
partial(string_begins_with, prefix), d
|
115 |
+
)
|
116 |
+
kwargs_without_prefix = dict(
|
117 |
+
map(lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items()))
|
118 |
+
)
|
119 |
+
return kwargs_without_prefix, kwargs
|
120 |
+
|
121 |
+
|
122 |
+
# classes
|
123 |
+
class Scale(nn.Module):
|
124 |
+
def __init__(self, value, fn):
|
125 |
+
super().__init__()
|
126 |
+
self.value = value
|
127 |
+
self.fn = fn
|
128 |
+
|
129 |
+
def forward(self, x, **kwargs):
|
130 |
+
x, *rest = self.fn(x, **kwargs)
|
131 |
+
return (x * self.value, *rest)
|
132 |
+
|
133 |
+
|
134 |
+
class Rezero(nn.Module):
|
135 |
+
def __init__(self, fn):
|
136 |
+
super().__init__()
|
137 |
+
self.fn = fn
|
138 |
+
self.g = nn.Parameter(torch.zeros(1))
|
139 |
+
|
140 |
+
def forward(self, x, **kwargs):
|
141 |
+
x, *rest = self.fn(x, **kwargs)
|
142 |
+
return (x * self.g, *rest)
|
143 |
+
|
144 |
+
|
145 |
+
class ScaleNorm(nn.Module):
|
146 |
+
def __init__(self, dim, eps=1e-5):
|
147 |
+
super().__init__()
|
148 |
+
self.scale = dim**-0.5
|
149 |
+
self.eps = eps
|
150 |
+
self.g = nn.Parameter(torch.ones(1))
|
151 |
+
|
152 |
+
def forward(self, x):
|
153 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
154 |
+
return x / norm.clamp(min=self.eps) * self.g
|
155 |
+
|
156 |
+
|
157 |
+
class RMSNorm(nn.Module):
|
158 |
+
def __init__(self, dim, eps=1e-8):
|
159 |
+
super().__init__()
|
160 |
+
self.scale = dim**-0.5
|
161 |
+
self.eps = eps
|
162 |
+
self.g = nn.Parameter(torch.ones(dim))
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
166 |
+
return x / norm.clamp(min=self.eps) * self.g
|
167 |
+
|
168 |
+
|
169 |
+
class Residual(nn.Module):
|
170 |
+
def forward(self, x, residual):
|
171 |
+
return x + residual
|
172 |
+
|
173 |
+
|
174 |
+
class GRUGating(nn.Module):
|
175 |
+
def __init__(self, dim):
|
176 |
+
super().__init__()
|
177 |
+
self.gru = nn.GRUCell(dim, dim)
|
178 |
+
|
179 |
+
def forward(self, x, residual):
|
180 |
+
gated_output = self.gru(
|
181 |
+
rearrange(x, "b n d -> (b n) d"), rearrange(residual, "b n d -> (b n) d")
|
182 |
+
)
|
183 |
+
|
184 |
+
return gated_output.reshape_as(x)
|
185 |
+
|
186 |
+
|
187 |
+
# feedforward
|
188 |
+
|
189 |
+
|
190 |
+
class GEGLU(nn.Module):
|
191 |
+
def __init__(self, dim_in, dim_out):
|
192 |
+
super().__init__()
|
193 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
194 |
+
|
195 |
+
def forward(self, x):
|
196 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
197 |
+
return x * F.gelu(gate)
|
198 |
+
|
199 |
+
|
200 |
+
class FeedForward(nn.Module):
|
201 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
202 |
+
super().__init__()
|
203 |
+
inner_dim = int(dim * mult)
|
204 |
+
dim_out = default(dim_out, dim)
|
205 |
+
project_in = (
|
206 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
207 |
+
if not glu
|
208 |
+
else GEGLU(dim, inner_dim)
|
209 |
+
)
|
210 |
+
|
211 |
+
self.net = nn.Sequential(
|
212 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
213 |
+
)
|
214 |
+
|
215 |
+
def forward(self, x):
|
216 |
+
return self.net(x)
|
217 |
+
|
218 |
+
|
219 |
+
# attention.
|
220 |
+
class Attention(nn.Module):
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
dim,
|
224 |
+
dim_head=DEFAULT_DIM_HEAD,
|
225 |
+
heads=8,
|
226 |
+
causal=False,
|
227 |
+
mask=None,
|
228 |
+
talking_heads=False,
|
229 |
+
sparse_topk=None,
|
230 |
+
use_entmax15=False,
|
231 |
+
num_mem_kv=0,
|
232 |
+
dropout=0.0,
|
233 |
+
on_attn=False,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
if use_entmax15:
|
237 |
+
raise NotImplementedError(
|
238 |
+
"Check out entmax activation instead of softmax activation!"
|
239 |
+
)
|
240 |
+
self.scale = dim_head**-0.5
|
241 |
+
self.heads = heads
|
242 |
+
self.causal = causal
|
243 |
+
self.mask = mask
|
244 |
+
|
245 |
+
inner_dim = dim_head * heads
|
246 |
+
|
247 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
248 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
249 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
250 |
+
self.dropout = nn.Dropout(dropout)
|
251 |
+
|
252 |
+
# talking heads
|
253 |
+
self.talking_heads = talking_heads
|
254 |
+
if talking_heads:
|
255 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
256 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
257 |
+
|
258 |
+
# explicit topk sparse attention
|
259 |
+
self.sparse_topk = sparse_topk
|
260 |
+
|
261 |
+
# entmax
|
262 |
+
# self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
263 |
+
self.attn_fn = F.softmax
|
264 |
+
|
265 |
+
# add memory key / values
|
266 |
+
self.num_mem_kv = num_mem_kv
|
267 |
+
if num_mem_kv > 0:
|
268 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
269 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
270 |
+
|
271 |
+
# attention on attention
|
272 |
+
self.attn_on_attn = on_attn
|
273 |
+
self.to_out = (
|
274 |
+
nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU())
|
275 |
+
if on_attn
|
276 |
+
else nn.Linear(inner_dim, dim)
|
277 |
+
)
|
278 |
+
|
279 |
+
def forward(
|
280 |
+
self,
|
281 |
+
x,
|
282 |
+
context=None,
|
283 |
+
mask=None,
|
284 |
+
context_mask=None,
|
285 |
+
rel_pos=None,
|
286 |
+
sinusoidal_emb=None,
|
287 |
+
prev_attn=None,
|
288 |
+
mem=None,
|
289 |
+
):
|
290 |
+
b, n, _, h, talking_heads, device = (
|
291 |
+
*x.shape,
|
292 |
+
self.heads,
|
293 |
+
self.talking_heads,
|
294 |
+
x.device,
|
295 |
+
)
|
296 |
+
kv_input = default(context, x)
|
297 |
+
|
298 |
+
q_input = x
|
299 |
+
k_input = kv_input
|
300 |
+
v_input = kv_input
|
301 |
+
|
302 |
+
if exists(mem):
|
303 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
304 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
305 |
+
|
306 |
+
if exists(sinusoidal_emb):
|
307 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
308 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
309 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
310 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
311 |
+
|
312 |
+
q = self.to_q(q_input)
|
313 |
+
k = self.to_k(k_input)
|
314 |
+
v = self.to_v(v_input)
|
315 |
+
|
316 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
317 |
+
|
318 |
+
input_mask = None
|
319 |
+
if any(map(exists, (mask, context_mask))):
|
320 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
321 |
+
k_mask = q_mask if not exists(context) else context_mask
|
322 |
+
k_mask = default(
|
323 |
+
k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()
|
324 |
+
)
|
325 |
+
q_mask = rearrange(q_mask, "b i -> b () i ()")
|
326 |
+
k_mask = rearrange(k_mask, "b j -> b () () j")
|
327 |
+
input_mask = q_mask * k_mask
|
328 |
+
|
329 |
+
if self.num_mem_kv > 0:
|
330 |
+
mem_k, mem_v = map(
|
331 |
+
lambda t: repeat(t, "h n d -> b h n d", b=b), (self.mem_k, self.mem_v)
|
332 |
+
)
|
333 |
+
k = torch.cat((mem_k, k), dim=-2)
|
334 |
+
v = torch.cat((mem_v, v), dim=-2)
|
335 |
+
if exists(input_mask):
|
336 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
337 |
+
|
338 |
+
dots = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
|
339 |
+
mask_value = max_neg_value(dots)
|
340 |
+
|
341 |
+
if exists(prev_attn):
|
342 |
+
dots = dots + prev_attn
|
343 |
+
|
344 |
+
pre_softmax_attn = dots
|
345 |
+
|
346 |
+
if talking_heads:
|
347 |
+
dots = einsum(
|
348 |
+
"b h i j, h k -> b k i j", dots, self.pre_softmax_proj
|
349 |
+
).contiguous()
|
350 |
+
|
351 |
+
if exists(rel_pos):
|
352 |
+
dots = rel_pos(dots)
|
353 |
+
|
354 |
+
if exists(input_mask):
|
355 |
+
dots.masked_fill_(~input_mask, mask_value)
|
356 |
+
del input_mask
|
357 |
+
|
358 |
+
if self.causal:
|
359 |
+
i, j = dots.shape[-2:]
|
360 |
+
r = torch.arange(i, device=device)
|
361 |
+
mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j")
|
362 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
363 |
+
dots.masked_fill_(mask, mask_value)
|
364 |
+
del mask
|
365 |
+
|
366 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
367 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
368 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
369 |
+
mask = dots < vk
|
370 |
+
dots.masked_fill_(mask, mask_value)
|
371 |
+
del mask
|
372 |
+
|
373 |
+
attn = self.attn_fn(dots, dim=-1)
|
374 |
+
post_softmax_attn = attn
|
375 |
+
|
376 |
+
attn = self.dropout(attn)
|
377 |
+
|
378 |
+
if talking_heads:
|
379 |
+
attn = einsum(
|
380 |
+
"b h i j, h k -> b k i j", attn, self.post_softmax_proj
|
381 |
+
).contiguous()
|
382 |
+
|
383 |
+
out = einsum("b h i j, b h j d -> b h i d", attn, v)
|
384 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
385 |
+
|
386 |
+
intermediates = Intermediates(
|
387 |
+
pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn
|
388 |
+
)
|
389 |
+
|
390 |
+
return self.to_out(out), intermediates
|
391 |
+
|
392 |
+
|
393 |
+
class AttentionLayers(nn.Module):
|
394 |
+
def __init__(
|
395 |
+
self,
|
396 |
+
dim,
|
397 |
+
depth,
|
398 |
+
heads=8,
|
399 |
+
causal=False,
|
400 |
+
cross_attend=False,
|
401 |
+
only_cross=False,
|
402 |
+
use_scalenorm=False,
|
403 |
+
use_rmsnorm=False,
|
404 |
+
use_rezero=False,
|
405 |
+
rel_pos_num_buckets=32,
|
406 |
+
rel_pos_max_distance=128,
|
407 |
+
position_infused_attn=False,
|
408 |
+
custom_layers=None,
|
409 |
+
sandwich_coef=None,
|
410 |
+
par_ratio=None,
|
411 |
+
residual_attn=False,
|
412 |
+
cross_residual_attn=False,
|
413 |
+
macaron=False,
|
414 |
+
pre_norm=True,
|
415 |
+
gate_residual=False,
|
416 |
+
**kwargs,
|
417 |
+
):
|
418 |
+
super().__init__()
|
419 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs)
|
420 |
+
attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs)
|
421 |
+
|
422 |
+
dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD)
|
423 |
+
|
424 |
+
self.dim = dim
|
425 |
+
self.depth = depth
|
426 |
+
self.layers = nn.ModuleList([])
|
427 |
+
|
428 |
+
self.has_pos_emb = position_infused_attn
|
429 |
+
self.pia_pos_emb = (
|
430 |
+
FixedPositionalEmbedding(dim) if position_infused_attn else None
|
431 |
+
)
|
432 |
+
self.rotary_pos_emb = always(None)
|
433 |
+
|
434 |
+
assert (
|
435 |
+
rel_pos_num_buckets <= rel_pos_max_distance
|
436 |
+
), "number of relative position buckets must be less than the relative position max distance"
|
437 |
+
self.rel_pos = None
|
438 |
+
|
439 |
+
self.pre_norm = pre_norm
|
440 |
+
|
441 |
+
self.residual_attn = residual_attn
|
442 |
+
self.cross_residual_attn = cross_residual_attn
|
443 |
+
|
444 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
445 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
446 |
+
norm_fn = partial(norm_class, dim)
|
447 |
+
|
448 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
449 |
+
branch_fn = Rezero if use_rezero else None
|
450 |
+
|
451 |
+
if cross_attend and not only_cross:
|
452 |
+
default_block = ("a", "c", "f")
|
453 |
+
elif cross_attend and only_cross:
|
454 |
+
default_block = ("c", "f")
|
455 |
+
else:
|
456 |
+
default_block = ("a", "f")
|
457 |
+
|
458 |
+
if macaron:
|
459 |
+
default_block = ("f",) + default_block
|
460 |
+
|
461 |
+
if exists(custom_layers):
|
462 |
+
layer_types = custom_layers
|
463 |
+
elif exists(par_ratio):
|
464 |
+
par_depth = depth * len(default_block)
|
465 |
+
assert 1 < par_ratio <= par_depth, "par ratio out of range"
|
466 |
+
default_block = tuple(filter(not_equals("f"), default_block))
|
467 |
+
par_attn = par_depth // par_ratio
|
468 |
+
depth_cut = (
|
469 |
+
par_depth * 2 // 3
|
470 |
+
) # 2 / 3 attention layer cutoff suggested by PAR paper
|
471 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
472 |
+
assert (
|
473 |
+
len(default_block) <= par_width
|
474 |
+
), "default block is too large for par_ratio"
|
475 |
+
par_block = default_block + ("f",) * (par_width - len(default_block))
|
476 |
+
par_head = par_block * par_attn
|
477 |
+
layer_types = par_head + ("f",) * (par_depth - len(par_head))
|
478 |
+
elif exists(sandwich_coef):
|
479 |
+
assert (
|
480 |
+
sandwich_coef > 0 and sandwich_coef <= depth
|
481 |
+
), "sandwich coefficient should be less than the depth"
|
482 |
+
layer_types = (
|
483 |
+
("a",) * sandwich_coef
|
484 |
+
+ default_block * (depth - sandwich_coef)
|
485 |
+
+ ("f",) * sandwich_coef
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
layer_types = default_block * depth
|
489 |
+
|
490 |
+
self.layer_types = layer_types
|
491 |
+
self.num_attn_layers = len(list(filter(equals("a"), layer_types)))
|
492 |
+
|
493 |
+
for layer_type in self.layer_types:
|
494 |
+
if layer_type == "a":
|
495 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
496 |
+
elif layer_type == "c":
|
497 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
498 |
+
elif layer_type == "f":
|
499 |
+
layer = FeedForward(dim, **ff_kwargs)
|
500 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
501 |
+
else:
|
502 |
+
raise Exception(f"invalid layer type {layer_type}")
|
503 |
+
|
504 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
505 |
+
layer = branch_fn(layer)
|
506 |
+
|
507 |
+
if gate_residual:
|
508 |
+
residual_fn = GRUGating(dim)
|
509 |
+
else:
|
510 |
+
residual_fn = Residual()
|
511 |
+
|
512 |
+
self.layers.append(nn.ModuleList([norm_fn(), layer, residual_fn]))
|
513 |
+
|
514 |
+
def forward(
|
515 |
+
self,
|
516 |
+
x,
|
517 |
+
context=None,
|
518 |
+
mask=None,
|
519 |
+
context_mask=None,
|
520 |
+
mems=None,
|
521 |
+
return_hiddens=False,
|
522 |
+
):
|
523 |
+
hiddens = []
|
524 |
+
intermediates = []
|
525 |
+
prev_attn = None
|
526 |
+
prev_cross_attn = None
|
527 |
+
|
528 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
529 |
+
|
530 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(
|
531 |
+
zip(self.layer_types, self.layers)
|
532 |
+
):
|
533 |
+
is_last = ind == (len(self.layers) - 1)
|
534 |
+
|
535 |
+
if layer_type == "a":
|
536 |
+
hiddens.append(x)
|
537 |
+
layer_mem = mems.pop(0)
|
538 |
+
|
539 |
+
residual = x
|
540 |
+
|
541 |
+
if self.pre_norm:
|
542 |
+
x = norm(x)
|
543 |
+
|
544 |
+
if layer_type == "a":
|
545 |
+
out, inter = block(
|
546 |
+
x,
|
547 |
+
mask=mask,
|
548 |
+
sinusoidal_emb=self.pia_pos_emb,
|
549 |
+
rel_pos=self.rel_pos,
|
550 |
+
prev_attn=prev_attn,
|
551 |
+
mem=layer_mem,
|
552 |
+
)
|
553 |
+
elif layer_type == "c":
|
554 |
+
out, inter = block(
|
555 |
+
x,
|
556 |
+
context=context,
|
557 |
+
mask=mask,
|
558 |
+
context_mask=context_mask,
|
559 |
+
prev_attn=prev_cross_attn,
|
560 |
+
)
|
561 |
+
elif layer_type == "f":
|
562 |
+
out = block(x)
|
563 |
+
|
564 |
+
x = residual_fn(out, residual)
|
565 |
+
|
566 |
+
if layer_type in ("a", "c"):
|
567 |
+
intermediates.append(inter)
|
568 |
+
|
569 |
+
if layer_type == "a" and self.residual_attn:
|
570 |
+
prev_attn = inter.pre_softmax_attn
|
571 |
+
elif layer_type == "c" and self.cross_residual_attn:
|
572 |
+
prev_cross_attn = inter.pre_softmax_attn
|
573 |
+
|
574 |
+
if not self.pre_norm and not is_last:
|
575 |
+
x = norm(x)
|
576 |
+
|
577 |
+
if return_hiddens:
|
578 |
+
intermediates = LayerIntermediates(
|
579 |
+
hiddens=hiddens, attn_intermediates=intermediates
|
580 |
+
)
|
581 |
+
|
582 |
+
return x, intermediates
|
583 |
+
|
584 |
+
return x
|
585 |
+
|
586 |
+
|
587 |
+
class Encoder(AttentionLayers):
|
588 |
+
def __init__(self, **kwargs):
|
589 |
+
assert "causal" not in kwargs, "cannot set causality on encoder"
|
590 |
+
super().__init__(causal=False, **kwargs)
|
591 |
+
|
592 |
+
|
593 |
+
class TransformerWrapper(nn.Module):
|
594 |
+
def __init__(
|
595 |
+
self,
|
596 |
+
*,
|
597 |
+
num_tokens,
|
598 |
+
max_seq_len,
|
599 |
+
attn_layers,
|
600 |
+
emb_dim=None,
|
601 |
+
max_mem_len=0.0,
|
602 |
+
emb_dropout=0.0,
|
603 |
+
num_memory_tokens=None,
|
604 |
+
tie_embedding=False,
|
605 |
+
use_pos_emb=True,
|
606 |
+
):
|
607 |
+
super().__init__()
|
608 |
+
assert isinstance(
|
609 |
+
attn_layers, AttentionLayers
|
610 |
+
), "attention layers must be one of Encoder or Decoder"
|
611 |
+
|
612 |
+
dim = attn_layers.dim
|
613 |
+
emb_dim = default(emb_dim, dim)
|
614 |
+
|
615 |
+
self.max_seq_len = max_seq_len
|
616 |
+
self.max_mem_len = max_mem_len
|
617 |
+
self.num_tokens = num_tokens
|
618 |
+
|
619 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
620 |
+
self.pos_emb = (
|
621 |
+
AbsolutePositionalEmbedding(emb_dim, max_seq_len)
|
622 |
+
if (use_pos_emb and not attn_layers.has_pos_emb)
|
623 |
+
else always(0)
|
624 |
+
)
|
625 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
626 |
+
|
627 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
628 |
+
self.attn_layers = attn_layers
|
629 |
+
self.norm = nn.LayerNorm(dim)
|
630 |
+
|
631 |
+
self.init_()
|
632 |
+
|
633 |
+
self.to_logits = (
|
634 |
+
nn.Linear(dim, num_tokens)
|
635 |
+
if not tie_embedding
|
636 |
+
else lambda t: t @ self.token_emb.weight.t()
|
637 |
+
)
|
638 |
+
|
639 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
640 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
641 |
+
self.num_memory_tokens = num_memory_tokens
|
642 |
+
if num_memory_tokens > 0:
|
643 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
644 |
+
|
645 |
+
# let funnel encoder know number of memory tokens, if specified
|
646 |
+
if hasattr(attn_layers, "num_memory_tokens"):
|
647 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
648 |
+
|
649 |
+
def init_(self):
|
650 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
651 |
+
|
652 |
+
def forward(
|
653 |
+
self,
|
654 |
+
x,
|
655 |
+
return_embeddings=False,
|
656 |
+
mask=None,
|
657 |
+
return_mems=False,
|
658 |
+
return_attn=False,
|
659 |
+
mems=None,
|
660 |
+
**kwargs,
|
661 |
+
):
|
662 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
663 |
+
x = self.token_emb(x)
|
664 |
+
x += self.pos_emb(x)
|
665 |
+
x = self.emb_dropout(x)
|
666 |
+
|
667 |
+
x = self.project_emb(x)
|
668 |
+
|
669 |
+
if num_mem > 0:
|
670 |
+
mem = repeat(self.memory_tokens, "n d -> b n d", b=b)
|
671 |
+
x = torch.cat((mem, x), dim=1)
|
672 |
+
|
673 |
+
# auto-handle masking after appending memory tokens
|
674 |
+
if exists(mask):
|
675 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
676 |
+
|
677 |
+
x, intermediates = self.attn_layers(
|
678 |
+
x, mask=mask, mems=mems, return_hiddens=True, **kwargs
|
679 |
+
)
|
680 |
+
x = self.norm(x)
|
681 |
+
|
682 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
683 |
+
|
684 |
+
out = self.to_logits(x) if not return_embeddings else x
|
685 |
+
|
686 |
+
if return_mems:
|
687 |
+
hiddens = intermediates.hiddens
|
688 |
+
new_mems = (
|
689 |
+
list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens)))
|
690 |
+
if exists(mems)
|
691 |
+
else hiddens
|
692 |
+
)
|
693 |
+
new_mems = list(
|
694 |
+
map(lambda t: t[..., -self.max_mem_len :, :].detach(), new_mems)
|
695 |
+
)
|
696 |
+
return out, new_mems
|
697 |
+
|
698 |
+
if return_attn:
|
699 |
+
attn_maps = list(
|
700 |
+
map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)
|
701 |
+
)
|
702 |
+
return out, attn_maps
|
703 |
+
|
704 |
+
return out
|
pipeline/__init__.py
ADDED
File without changes
|
pipeline/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (174 Bytes). View file
|
|
pipeline/__pycache__/model_scope_vlcm_pipeline.cpython-311.pyc
ADDED
Binary file (10 kB). View file
|
|
pipeline/__pycache__/t2v_turbo_ms_pipeline.cpython-311.pyc
ADDED
Binary file (9.86 kB). View file
|
|
pipeline/__pycache__/t2v_turbo_vc2_pipeline.cpython-311.pyc
ADDED
Binary file (9.03 kB). View file
|
|
pipeline/__pycache__/vlcm_pipeline.cpython-311.pyc
ADDED
Binary file (9.09 kB). View file
|
|
pipeline/t2v_turbo_ms_pipeline.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
|
4 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
5 |
+
|
6 |
+
from diffusers import logging
|
7 |
+
from diffusers.utils.torch_utils import randn_tensor
|
8 |
+
from diffusers.models import AutoencoderKL
|
9 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
10 |
+
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
13 |
+
|
14 |
+
|
15 |
+
class T2VTurboMSPipeline(DiffusionPipeline):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
unet,
|
19 |
+
vae: AutoencoderKL,
|
20 |
+
text_encoder: CLIPTextModel,
|
21 |
+
tokenizer: CLIPTokenizer,
|
22 |
+
scheduler: T2VTurboScheduler,
|
23 |
+
):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.register_modules(
|
27 |
+
unet=unet,
|
28 |
+
vae=vae,
|
29 |
+
text_encoder=text_encoder,
|
30 |
+
tokenizer=tokenizer,
|
31 |
+
scheduler=scheduler,
|
32 |
+
)
|
33 |
+
|
34 |
+
self.vae_scale_factor = 8
|
35 |
+
|
36 |
+
def _encode_prompt(
|
37 |
+
self,
|
38 |
+
prompt,
|
39 |
+
device,
|
40 |
+
num_videos_per_prompt,
|
41 |
+
prompt_embeds: None,
|
42 |
+
):
|
43 |
+
r"""
|
44 |
+
Encodes the prompt into text encoder hidden states.
|
45 |
+
Args:
|
46 |
+
prompt (`str` or `List[str]`, *optional*):
|
47 |
+
prompt to be encoded
|
48 |
+
device: (`torch.device`):
|
49 |
+
torch device
|
50 |
+
num_videos_per_prompt (`int`):
|
51 |
+
number of images that should be generated per prompt
|
52 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
53 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
54 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
55 |
+
"""
|
56 |
+
if prompt_embeds is None:
|
57 |
+
with torch.no_grad():
|
58 |
+
text_inputs = self.tokenizer(
|
59 |
+
prompt,
|
60 |
+
padding="max_length",
|
61 |
+
max_length=self.tokenizer.model_max_length,
|
62 |
+
truncation=True,
|
63 |
+
return_tensors="pt",
|
64 |
+
)
|
65 |
+
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
|
66 |
+
prompt_embeds = self.text_encoder(text_input_ids)[0]
|
67 |
+
|
68 |
+
prompt_embeds = prompt_embeds.to(device=device)
|
69 |
+
|
70 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
71 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
72 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
73 |
+
prompt_embeds = prompt_embeds.view(
|
74 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
75 |
+
)
|
76 |
+
|
77 |
+
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
78 |
+
return prompt_embeds
|
79 |
+
|
80 |
+
def prepare_latents(
|
81 |
+
self,
|
82 |
+
batch_size,
|
83 |
+
num_channels_latents,
|
84 |
+
frames,
|
85 |
+
height,
|
86 |
+
width,
|
87 |
+
dtype,
|
88 |
+
device,
|
89 |
+
generator,
|
90 |
+
latents=None,
|
91 |
+
):
|
92 |
+
shape = (
|
93 |
+
batch_size,
|
94 |
+
num_channels_latents,
|
95 |
+
frames,
|
96 |
+
height // self.vae_scale_factor,
|
97 |
+
width // self.vae_scale_factor,
|
98 |
+
)
|
99 |
+
if latents is None:
|
100 |
+
latents = randn_tensor(
|
101 |
+
shape, generator=generator, device=device, dtype=dtype
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
latents = latents.to(device)
|
105 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
106 |
+
latents = latents * self.scheduler.init_noise_sigma
|
107 |
+
return latents
|
108 |
+
|
109 |
+
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
110 |
+
"""
|
111 |
+
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
112 |
+
Args:
|
113 |
+
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
114 |
+
embedding_dim: int: dimension of the embeddings to generate
|
115 |
+
dtype: data type of the generated embeddings
|
116 |
+
Returns:
|
117 |
+
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
118 |
+
"""
|
119 |
+
assert len(w.shape) == 1
|
120 |
+
w = w * 1000.0
|
121 |
+
|
122 |
+
half_dim = embedding_dim // 2
|
123 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
124 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
125 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
126 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
127 |
+
if embedding_dim % 2 == 1: # zero pad
|
128 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
129 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
130 |
+
return emb
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def __call__(
|
134 |
+
self,
|
135 |
+
prompt: Union[str, List[str]] = None,
|
136 |
+
height: Optional[int] = 256,
|
137 |
+
width: Optional[int] = 256,
|
138 |
+
frames: int = 16,
|
139 |
+
guidance_scale: float = 7.5,
|
140 |
+
num_videos_per_prompt: Optional[int] = 1,
|
141 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
142 |
+
latents: Optional[torch.FloatTensor] = None,
|
143 |
+
num_inference_steps: int = 4,
|
144 |
+
lcm_origin_steps: int = 50,
|
145 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
146 |
+
output_type: Optional[str] = "pil",
|
147 |
+
):
|
148 |
+
# 2. Define call parameters
|
149 |
+
if prompt is not None and isinstance(prompt, str):
|
150 |
+
batch_size = 1
|
151 |
+
elif prompt is not None and isinstance(prompt, list):
|
152 |
+
batch_size = len(prompt)
|
153 |
+
else:
|
154 |
+
batch_size = prompt_embeds.shape[0]
|
155 |
+
|
156 |
+
device = self._execution_device
|
157 |
+
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
158 |
+
|
159 |
+
# 3. Encode input prompt
|
160 |
+
prompt_embeds = self._encode_prompt(
|
161 |
+
prompt,
|
162 |
+
device,
|
163 |
+
num_videos_per_prompt,
|
164 |
+
prompt_embeds=prompt_embeds,
|
165 |
+
)
|
166 |
+
|
167 |
+
# 4. Prepare timesteps
|
168 |
+
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
|
169 |
+
timesteps = self.scheduler.timesteps
|
170 |
+
|
171 |
+
# 5. Prepare latent variable
|
172 |
+
num_channels_latents = self.unet.config.in_channels
|
173 |
+
latents = self.prepare_latents(
|
174 |
+
batch_size * num_videos_per_prompt,
|
175 |
+
num_channels_latents,
|
176 |
+
frames,
|
177 |
+
height,
|
178 |
+
width,
|
179 |
+
prompt_embeds.dtype,
|
180 |
+
device,
|
181 |
+
generator,
|
182 |
+
latents,
|
183 |
+
)
|
184 |
+
|
185 |
+
bs = batch_size * num_videos_per_prompt
|
186 |
+
|
187 |
+
# 6. Get Guidance Scale Embedding
|
188 |
+
w = torch.tensor(guidance_scale).repeat(bs)
|
189 |
+
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device)
|
190 |
+
|
191 |
+
# 7. LCM MultiStep Sampling Loop:
|
192 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
193 |
+
for i, t in enumerate(timesteps):
|
194 |
+
|
195 |
+
ts = torch.full((bs,), t, device=device, dtype=torch.long)
|
196 |
+
|
197 |
+
# model prediction (v-prediction, eps, x)
|
198 |
+
model_pred = self.unet(
|
199 |
+
latents,
|
200 |
+
ts,
|
201 |
+
timestep_cond=w_embedding,
|
202 |
+
encoder_hidden_states=prompt_embeds.float(),
|
203 |
+
).sample
|
204 |
+
# compute the previous noisy sample x_t -> x_t-1
|
205 |
+
latents, denoised = self.scheduler.step(
|
206 |
+
model_pred, i, t, latents, return_dict=False
|
207 |
+
)
|
208 |
+
|
209 |
+
progress_bar.update()
|
210 |
+
|
211 |
+
if not output_type == "latent":
|
212 |
+
t = denoised.shape[2]
|
213 |
+
z = denoised.to(self.vae.dtype) / self.vae.config.scaling_factor
|
214 |
+
videos = torch.cat(
|
215 |
+
[self.vae.decode(z[:, :, i])[0].unsqueeze(2) for i in range(t)],
|
216 |
+
dim=2,
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
videos = denoised
|
220 |
+
|
221 |
+
return videos
|
pipeline/t2v_turbo_vc2_pipeline.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
|
4 |
+
from typing import List, Optional, Union, Dict, Any
|
5 |
+
|
6 |
+
from diffusers import logging
|
7 |
+
from diffusers.utils.torch_utils import randn_tensor
|
8 |
+
from lvdm.models.ddpm3d import LatentDiffusion
|
9 |
+
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
12 |
+
|
13 |
+
|
14 |
+
class T2VTurboVC2Pipeline(DiffusionPipeline):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
pretrained_t2v: LatentDiffusion,
|
18 |
+
scheduler: T2VTurboScheduler,
|
19 |
+
model_config: Dict[str, Any] = None,
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
self.register_modules(
|
24 |
+
pretrained_t2v=pretrained_t2v,
|
25 |
+
scheduler=scheduler,
|
26 |
+
)
|
27 |
+
self.vae = pretrained_t2v.first_stage_model
|
28 |
+
self.unet = pretrained_t2v.model.diffusion_model
|
29 |
+
self.text_encoder = pretrained_t2v.cond_stage_model
|
30 |
+
|
31 |
+
self.model_config = model_config
|
32 |
+
self.vae_scale_factor = 8
|
33 |
+
|
34 |
+
def _encode_prompt(
|
35 |
+
self,
|
36 |
+
prompt,
|
37 |
+
device,
|
38 |
+
num_videos_per_prompt,
|
39 |
+
prompt_embeds: None,
|
40 |
+
):
|
41 |
+
r"""
|
42 |
+
Encodes the prompt into text encoder hidden states.
|
43 |
+
Args:
|
44 |
+
prompt (`str` or `List[str]`, *optional*):
|
45 |
+
prompt to be encoded
|
46 |
+
device: (`torch.device`):
|
47 |
+
torch device
|
48 |
+
num_videos_per_prompt (`int`):
|
49 |
+
number of images that should be generated per prompt
|
50 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
51 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
52 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
53 |
+
"""
|
54 |
+
if prompt_embeds is None:
|
55 |
+
|
56 |
+
prompt_embeds = self.text_encoder(prompt)
|
57 |
+
|
58 |
+
prompt_embeds = prompt_embeds.to(device=device)
|
59 |
+
|
60 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
61 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
62 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
63 |
+
prompt_embeds = prompt_embeds.view(
|
64 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
65 |
+
)
|
66 |
+
|
67 |
+
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
68 |
+
return prompt_embeds
|
69 |
+
|
70 |
+
def prepare_latents(
|
71 |
+
self,
|
72 |
+
batch_size,
|
73 |
+
num_channels_latents,
|
74 |
+
frames,
|
75 |
+
height,
|
76 |
+
width,
|
77 |
+
dtype,
|
78 |
+
device,
|
79 |
+
generator,
|
80 |
+
latents=None,
|
81 |
+
):
|
82 |
+
shape = (
|
83 |
+
batch_size,
|
84 |
+
num_channels_latents,
|
85 |
+
frames,
|
86 |
+
height // self.vae_scale_factor,
|
87 |
+
width // self.vae_scale_factor,
|
88 |
+
)
|
89 |
+
if latents is None:
|
90 |
+
latents = randn_tensor(
|
91 |
+
shape, generator=generator, device=device, dtype=dtype
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
latents = latents.to(device)
|
95 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
96 |
+
latents = latents * self.scheduler.init_noise_sigma
|
97 |
+
return latents
|
98 |
+
|
99 |
+
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
100 |
+
"""
|
101 |
+
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
102 |
+
Args:
|
103 |
+
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
104 |
+
embedding_dim: int: dimension of the embeddings to generate
|
105 |
+
dtype: data type of the generated embeddings
|
106 |
+
Returns:
|
107 |
+
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
108 |
+
"""
|
109 |
+
assert len(w.shape) == 1
|
110 |
+
w = w * 1000.0
|
111 |
+
|
112 |
+
half_dim = embedding_dim // 2
|
113 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
114 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
115 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
116 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
117 |
+
if embedding_dim % 2 == 1: # zero pad
|
118 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
119 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
120 |
+
return emb
|
121 |
+
|
122 |
+
@torch.no_grad()
|
123 |
+
def __call__(
|
124 |
+
self,
|
125 |
+
prompt: Union[str, List[str]] = None,
|
126 |
+
height: Optional[int] = 320,
|
127 |
+
width: Optional[int] = 512,
|
128 |
+
frames: int = 16,
|
129 |
+
fps: int = 16,
|
130 |
+
guidance_scale: float = 7.5,
|
131 |
+
num_videos_per_prompt: Optional[int] = 1,
|
132 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
133 |
+
latents: Optional[torch.FloatTensor] = None,
|
134 |
+
num_inference_steps: int = 4,
|
135 |
+
lcm_origin_steps: int = 50,
|
136 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
137 |
+
output_type: Optional[str] = "pil",
|
138 |
+
):
|
139 |
+
unet_config = self.model_config["params"]["unet_config"]
|
140 |
+
# 0. Default height and width to unet
|
141 |
+
frames = self.pretrained_t2v.temporal_length if frames < 0 else frames
|
142 |
+
|
143 |
+
# 2. Define call parameters
|
144 |
+
if prompt is not None and isinstance(prompt, str):
|
145 |
+
batch_size = 1
|
146 |
+
elif prompt is not None and isinstance(prompt, list):
|
147 |
+
batch_size = len(prompt)
|
148 |
+
else:
|
149 |
+
batch_size = prompt_embeds.shape[0]
|
150 |
+
|
151 |
+
device = self._execution_device
|
152 |
+
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
153 |
+
|
154 |
+
# 3. Encode input prompt
|
155 |
+
prompt_embeds = self._encode_prompt(
|
156 |
+
prompt,
|
157 |
+
device,
|
158 |
+
num_videos_per_prompt,
|
159 |
+
prompt_embeds=prompt_embeds,
|
160 |
+
)
|
161 |
+
|
162 |
+
# 4. Prepare timesteps
|
163 |
+
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
|
164 |
+
timesteps = self.scheduler.timesteps
|
165 |
+
|
166 |
+
# 5. Prepare latent variable
|
167 |
+
num_channels_latents = unet_config["params"]["in_channels"]
|
168 |
+
latents = self.prepare_latents(
|
169 |
+
batch_size * num_videos_per_prompt,
|
170 |
+
num_channels_latents,
|
171 |
+
frames,
|
172 |
+
height,
|
173 |
+
width,
|
174 |
+
prompt_embeds.dtype,
|
175 |
+
device,
|
176 |
+
generator,
|
177 |
+
latents,
|
178 |
+
)
|
179 |
+
|
180 |
+
bs = batch_size * num_videos_per_prompt
|
181 |
+
|
182 |
+
# 6. Get Guidance Scale Embedding
|
183 |
+
w = torch.tensor(guidance_scale).repeat(bs)
|
184 |
+
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device)
|
185 |
+
|
186 |
+
# 7. LCM MultiStep Sampling Loop:
|
187 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
188 |
+
for i, t in enumerate(timesteps):
|
189 |
+
|
190 |
+
ts = torch.full((bs,), t, device=device, dtype=torch.long)
|
191 |
+
|
192 |
+
# model prediction (v-prediction, eps, x)
|
193 |
+
context = {"context": torch.cat([prompt_embeds.float()], 1), "fps": fps}
|
194 |
+
model_pred = self.unet(
|
195 |
+
latents,
|
196 |
+
ts,
|
197 |
+
**context,
|
198 |
+
timestep_cond=w_embedding.to(self.dtype),
|
199 |
+
)
|
200 |
+
# compute the previous noisy sample x_t -> x_t-1
|
201 |
+
latents, denoised = self.scheduler.step(
|
202 |
+
model_pred, i, t, latents, return_dict=False
|
203 |
+
)
|
204 |
+
|
205 |
+
# # call the callback, if provided
|
206 |
+
# if i == len(timesteps) - 1:
|
207 |
+
progress_bar.update()
|
208 |
+
|
209 |
+
if not output_type == "latent":
|
210 |
+
videos = self.pretrained_t2v.decode_first_stage_2DAE(denoised)
|
211 |
+
else:
|
212 |
+
videos = denoised
|
213 |
+
|
214 |
+
return videos
|
requirements.txt
CHANGED
@@ -1,6 +1,18 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.2.2
|
2 |
+
torchvision==0.17.2
|
3 |
+
diffusers==0.27.2
|
4 |
+
transformers==4.40.0
|
5 |
+
accelerate==0.29.3
|
6 |
+
imageio==2.34.0
|
7 |
+
decord==0.6.0
|
8 |
+
spaces
|
9 |
+
einops
|
10 |
+
omegaconf
|
11 |
+
safetensors
|
12 |
+
moviepy
|
13 |
+
scikit-learn
|
14 |
+
av
|
15 |
+
rotary_embedding_torch
|
16 |
+
torchmetrics
|
17 |
+
torch-fidelity
|
18 |
+
wandb
|
scheduler/__pycache__/t2v_turbo_scheduler.cpython-311.pyc
ADDED
Binary file (24.5 kB). View file
|
|
scheduler/__pycache__/vlcm_scheduler.cpython-311.pyc
ADDED
Binary file (24.5 kB). View file
|
|
scheduler/t2v_turbo_scheduler.py
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
+
# and https://github.com/hojonathanho/diffusion
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from diffusers import ConfigMixin, SchedulerMixin
|
26 |
+
from diffusers.configuration_utils import register_to_config
|
27 |
+
from diffusers.utils import BaseOutput
|
28 |
+
|
29 |
+
|
30 |
+
def extract_into_tensor(a, t, x_shape):
|
31 |
+
b, *_ = t.shape
|
32 |
+
out = a.gather(-1, t)
|
33 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
34 |
+
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
38 |
+
class T2VTurboSchedulerOutput(BaseOutput):
|
39 |
+
"""
|
40 |
+
Output class for the scheduler's `step` function output.
|
41 |
+
Args:
|
42 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
43 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
44 |
+
denoising loop.
|
45 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
46 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
47 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
48 |
+
"""
|
49 |
+
|
50 |
+
prev_sample: torch.FloatTensor
|
51 |
+
denoised: Optional[torch.FloatTensor] = None
|
52 |
+
|
53 |
+
|
54 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
55 |
+
def betas_for_alpha_bar(
|
56 |
+
num_diffusion_timesteps,
|
57 |
+
max_beta=0.999,
|
58 |
+
alpha_transform_type="cosine",
|
59 |
+
):
|
60 |
+
"""
|
61 |
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
62 |
+
(1-beta) over time from t = [0,1].
|
63 |
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
64 |
+
to that part of the diffusion process.
|
65 |
+
Args:
|
66 |
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
67 |
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
68 |
+
prevent singularities.
|
69 |
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
70 |
+
Choose from `cosine` or `exp`
|
71 |
+
Returns:
|
72 |
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
73 |
+
"""
|
74 |
+
if alpha_transform_type == "cosine":
|
75 |
+
|
76 |
+
def alpha_bar_fn(t):
|
77 |
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
78 |
+
|
79 |
+
elif alpha_transform_type == "exp":
|
80 |
+
|
81 |
+
def alpha_bar_fn(t):
|
82 |
+
return math.exp(t * -12.0)
|
83 |
+
|
84 |
+
else:
|
85 |
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
86 |
+
|
87 |
+
betas = []
|
88 |
+
for i in range(num_diffusion_timesteps):
|
89 |
+
t1 = i / num_diffusion_timesteps
|
90 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
91 |
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
92 |
+
return torch.tensor(betas, dtype=torch.float32)
|
93 |
+
|
94 |
+
|
95 |
+
def rescale_zero_terminal_snr(betas):
|
96 |
+
"""
|
97 |
+
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
98 |
+
Args:
|
99 |
+
betas (`torch.FloatTensor`):
|
100 |
+
the betas that the scheduler is being initialized with.
|
101 |
+
Returns:
|
102 |
+
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
103 |
+
"""
|
104 |
+
# Convert betas to alphas_bar_sqrt
|
105 |
+
alphas = 1.0 - betas
|
106 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
107 |
+
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
108 |
+
|
109 |
+
# Store old values.
|
110 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
111 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
112 |
+
|
113 |
+
# Shift so the last timestep is zero.
|
114 |
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
115 |
+
|
116 |
+
# Scale so the first timestep is back to the old value.
|
117 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
118 |
+
|
119 |
+
# Convert alphas_bar_sqrt to betas
|
120 |
+
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
121 |
+
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
122 |
+
alphas = torch.cat([alphas_bar[0:1], alphas])
|
123 |
+
betas = 1 - alphas
|
124 |
+
|
125 |
+
return betas
|
126 |
+
|
127 |
+
|
128 |
+
class T2VTurboScheduler(SchedulerMixin, ConfigMixin):
|
129 |
+
"""
|
130 |
+
`T2VTurboScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
131 |
+
non-Markovian guidance.
|
132 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
133 |
+
methods the library implements for all schedulers such as loading and saving.
|
134 |
+
Args:
|
135 |
+
num_train_timesteps (`int`, defaults to 1000):
|
136 |
+
The number of diffusion steps to train the model.
|
137 |
+
beta_start (`float`, defaults to 0.0001):
|
138 |
+
The starting `beta` value of inference.
|
139 |
+
beta_end (`float`, defaults to 0.02):
|
140 |
+
The final `beta` value.
|
141 |
+
beta_schedule (`str`, defaults to `"linear"`):
|
142 |
+
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
143 |
+
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
144 |
+
trained_betas (`np.ndarray`, *optional*):
|
145 |
+
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
146 |
+
clip_sample (`bool`, defaults to `True`):
|
147 |
+
Clip the predicted sample for numerical stability.
|
148 |
+
clip_sample_range (`float`, defaults to 1.0):
|
149 |
+
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
150 |
+
set_alpha_to_one (`bool`, defaults to `True`):
|
151 |
+
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
152 |
+
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
153 |
+
otherwise it uses the alpha value at step 0.
|
154 |
+
steps_offset (`int`, defaults to 0):
|
155 |
+
An offset added to the inference steps. You can use a combination of `offset=1` and
|
156 |
+
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
157 |
+
Diffusion.
|
158 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
159 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
160 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
161 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
162 |
+
thresholding (`bool`, defaults to `False`):
|
163 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
164 |
+
as Stable Diffusion.
|
165 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
166 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
167 |
+
sample_max_value (`float`, defaults to 1.0):
|
168 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
169 |
+
timestep_spacing (`str`, defaults to `"leading"`):
|
170 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
171 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
172 |
+
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
173 |
+
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
174 |
+
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
175 |
+
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
176 |
+
"""
|
177 |
+
|
178 |
+
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
179 |
+
order = 1
|
180 |
+
|
181 |
+
@register_to_config
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
num_train_timesteps: int = 1000,
|
185 |
+
linear_start: float = 0.00085,
|
186 |
+
linear_end: float = 0.012,
|
187 |
+
beta_schedule: str = "scaled_linear",
|
188 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
189 |
+
clip_sample: bool = True,
|
190 |
+
set_alpha_to_one: bool = True,
|
191 |
+
steps_offset: int = 0,
|
192 |
+
prediction_type: str = "epsilon",
|
193 |
+
thresholding: bool = False,
|
194 |
+
dynamic_thresholding_ratio: float = 0.995,
|
195 |
+
clip_sample_range: float = 1.0,
|
196 |
+
sample_max_value: float = 1.0,
|
197 |
+
timestep_spacing: str = "leading",
|
198 |
+
rescale_betas_zero_snr: bool = False,
|
199 |
+
):
|
200 |
+
assert beta_schedule == "scaled_linear"
|
201 |
+
assert trained_betas is None
|
202 |
+
if trained_betas is not None:
|
203 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
204 |
+
elif beta_schedule == "linear":
|
205 |
+
self.betas = torch.linspace(
|
206 |
+
linear_start, linear_end, num_train_timesteps, dtype=torch.float32
|
207 |
+
)
|
208 |
+
elif beta_schedule == "scaled_linear":
|
209 |
+
# this schedule is very specific to the latent diffusion model.
|
210 |
+
self.betas = (
|
211 |
+
torch.linspace(
|
212 |
+
linear_start**0.5,
|
213 |
+
linear_end**0.5,
|
214 |
+
num_train_timesteps,
|
215 |
+
dtype=torch.float32,
|
216 |
+
)
|
217 |
+
** 2
|
218 |
+
)
|
219 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
220 |
+
# Glide cosine schedule
|
221 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
222 |
+
else:
|
223 |
+
raise NotImplementedError(
|
224 |
+
f"{beta_schedule} does is not implemented for {self.__class__}"
|
225 |
+
)
|
226 |
+
|
227 |
+
# Rescale for zero SNR
|
228 |
+
if rescale_betas_zero_snr:
|
229 |
+
self.betas = rescale_zero_terminal_snr(self.betas)
|
230 |
+
|
231 |
+
self.alphas = 1.0 - self.betas
|
232 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
233 |
+
|
234 |
+
# At every step in ddim, we are looking into the previous alphas_cumprod
|
235 |
+
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
236 |
+
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
237 |
+
# whether we use the final alpha of the "non-previous" one.
|
238 |
+
self.final_alpha_cumprod = (
|
239 |
+
torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
240 |
+
)
|
241 |
+
|
242 |
+
# standard deviation of the initial noise distribution
|
243 |
+
self.init_noise_sigma = 1.0
|
244 |
+
|
245 |
+
# setable values
|
246 |
+
self.num_inference_steps = None
|
247 |
+
self.timesteps = torch.from_numpy(
|
248 |
+
np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)
|
249 |
+
)
|
250 |
+
|
251 |
+
def scale_model_input(
|
252 |
+
self, sample: torch.FloatTensor, timestep: Optional[int] = None
|
253 |
+
) -> torch.FloatTensor:
|
254 |
+
"""
|
255 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
256 |
+
current timestep.
|
257 |
+
Args:
|
258 |
+
sample (`torch.FloatTensor`):
|
259 |
+
The input sample.
|
260 |
+
timestep (`int`, *optional*):
|
261 |
+
The current timestep in the diffusion chain.
|
262 |
+
Returns:
|
263 |
+
`torch.FloatTensor`:
|
264 |
+
A scaled input sample.
|
265 |
+
"""
|
266 |
+
return sample
|
267 |
+
|
268 |
+
def _get_variance(self, timestep, prev_timestep):
|
269 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
270 |
+
alpha_prod_t_prev = (
|
271 |
+
self.alphas_cumprod[prev_timestep]
|
272 |
+
if prev_timestep >= 0
|
273 |
+
else self.final_alpha_cumprod
|
274 |
+
)
|
275 |
+
beta_prod_t = 1 - alpha_prod_t
|
276 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
277 |
+
|
278 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (
|
279 |
+
1 - alpha_prod_t / alpha_prod_t_prev
|
280 |
+
)
|
281 |
+
|
282 |
+
return variance
|
283 |
+
|
284 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
285 |
+
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
286 |
+
"""
|
287 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
288 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
289 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
290 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
291 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
292 |
+
https://arxiv.org/abs/2205.11487
|
293 |
+
"""
|
294 |
+
dtype = sample.dtype
|
295 |
+
batch_size, channels, height, width = sample.shape
|
296 |
+
|
297 |
+
if dtype not in (torch.float32, torch.float64):
|
298 |
+
sample = (
|
299 |
+
sample.float()
|
300 |
+
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
301 |
+
|
302 |
+
# Flatten sample for doing quantile calculation along each image
|
303 |
+
sample = sample.reshape(batch_size, channels * height * width)
|
304 |
+
|
305 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
306 |
+
|
307 |
+
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
308 |
+
s = torch.clamp(
|
309 |
+
s, min=1, max=self.config.sample_max_value
|
310 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
311 |
+
|
312 |
+
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
313 |
+
sample = (
|
314 |
+
torch.clamp(sample, -s, s) / s
|
315 |
+
) # "we threshold xt0 to the range [-s, s] and then divide by s"
|
316 |
+
|
317 |
+
sample = sample.reshape(batch_size, channels, height, width)
|
318 |
+
sample = sample.to(dtype)
|
319 |
+
|
320 |
+
return sample
|
321 |
+
|
322 |
+
def set_timesteps(
|
323 |
+
self,
|
324 |
+
num_inference_steps: int,
|
325 |
+
lcm_origin_steps: int,
|
326 |
+
device: Union[str, torch.device] = None,
|
327 |
+
):
|
328 |
+
"""
|
329 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
330 |
+
Args:
|
331 |
+
num_inference_steps (`int`):
|
332 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
333 |
+
"""
|
334 |
+
|
335 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
336 |
+
raise ValueError(
|
337 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
338 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
339 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
340 |
+
)
|
341 |
+
|
342 |
+
self.num_inference_steps = num_inference_steps
|
343 |
+
|
344 |
+
# LCM Timesteps Setting: # Linear Spacing
|
345 |
+
c = self.config.num_train_timesteps // lcm_origin_steps
|
346 |
+
lcm_origin_timesteps = (
|
347 |
+
np.asarray(list(range(1, lcm_origin_steps + 1))) * c - 1
|
348 |
+
) # LCM Training Steps Schedule
|
349 |
+
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
350 |
+
timesteps = lcm_origin_timesteps[::-skipping_step][
|
351 |
+
:num_inference_steps
|
352 |
+
] # LCM Inference Steps Schedule
|
353 |
+
|
354 |
+
self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
|
355 |
+
|
356 |
+
## From VideoCrafter 2
|
357 |
+
|
358 |
+
def get_scalings_for_boundary_condition_discrete(self, t):
|
359 |
+
self.sigma_data = 0.5 # Default: 0.5
|
360 |
+
|
361 |
+
# By dividing 0.1: This is almost a delta function at t=0.
|
362 |
+
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
363 |
+
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
364 |
+
return c_skip, c_out
|
365 |
+
|
366 |
+
def step(
|
367 |
+
self,
|
368 |
+
model_output: torch.FloatTensor,
|
369 |
+
timeindex: int,
|
370 |
+
timestep: int,
|
371 |
+
sample: torch.FloatTensor,
|
372 |
+
eta: float = 0.0,
|
373 |
+
use_clipped_model_output: bool = False,
|
374 |
+
generator=None,
|
375 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
376 |
+
return_dict: bool = True,
|
377 |
+
) -> Union[T2VTurboSchedulerOutput, Tuple]:
|
378 |
+
"""
|
379 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
380 |
+
process from the learned model outputs (most often the predicted noise).
|
381 |
+
Args:
|
382 |
+
model_output (`torch.FloatTensor`):
|
383 |
+
The direct output from learned diffusion model.
|
384 |
+
timestep (`float`):
|
385 |
+
The current discrete timestep in the diffusion chain.
|
386 |
+
sample (`torch.FloatTensor`):
|
387 |
+
A current instance of a sample created by the diffusion process.
|
388 |
+
eta (`float`):
|
389 |
+
The weight of noise for added noise in diffusion step.
|
390 |
+
use_clipped_model_output (`bool`, defaults to `False`):
|
391 |
+
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
392 |
+
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
393 |
+
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
394 |
+
`use_clipped_model_output` has no effect.
|
395 |
+
generator (`torch.Generator`, *optional*):
|
396 |
+
A random number generator.
|
397 |
+
variance_noise (`torch.FloatTensor`):
|
398 |
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
399 |
+
itself. Useful for methods such as [`CycleDiffusion`].
|
400 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
401 |
+
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
402 |
+
Returns:
|
403 |
+
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
404 |
+
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
405 |
+
tuple is returned where the first element is the sample tensor.
|
406 |
+
"""
|
407 |
+
if self.num_inference_steps is None:
|
408 |
+
raise ValueError(
|
409 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
410 |
+
)
|
411 |
+
|
412 |
+
# 1. get previous step value
|
413 |
+
prev_timeindex = timeindex + 1
|
414 |
+
if prev_timeindex < len(self.timesteps):
|
415 |
+
prev_timestep = self.timesteps[prev_timeindex]
|
416 |
+
else:
|
417 |
+
prev_timestep = timestep
|
418 |
+
|
419 |
+
# 2. compute alphas, betas
|
420 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
421 |
+
alpha_prod_t_prev = (
|
422 |
+
self.alphas_cumprod[prev_timestep]
|
423 |
+
if prev_timestep >= 0
|
424 |
+
else self.final_alpha_cumprod
|
425 |
+
)
|
426 |
+
|
427 |
+
beta_prod_t = 1 - alpha_prod_t
|
428 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
429 |
+
|
430 |
+
# 3. Get scalings for boundary conditions
|
431 |
+
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
432 |
+
|
433 |
+
# 4. Different Parameterization:
|
434 |
+
parameterization = self.config.prediction_type
|
435 |
+
|
436 |
+
if parameterization == "epsilon": # noise-prediction
|
437 |
+
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
438 |
+
|
439 |
+
elif parameterization == "sample": # x-prediction
|
440 |
+
pred_x0 = model_output
|
441 |
+
|
442 |
+
elif parameterization == "v_prediction": # v-prediction
|
443 |
+
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
444 |
+
|
445 |
+
# 4. Denoise model output using boundary conditions
|
446 |
+
denoised = c_out * pred_x0 + c_skip * sample
|
447 |
+
|
448 |
+
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
449 |
+
# Noise is not used for one-step sampling.
|
450 |
+
if len(self.timesteps) > 1:
|
451 |
+
noise = torch.randn(model_output.shape).to(model_output.device)
|
452 |
+
prev_sample = (
|
453 |
+
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
454 |
+
)
|
455 |
+
else:
|
456 |
+
prev_sample = denoised
|
457 |
+
|
458 |
+
if not return_dict:
|
459 |
+
return (prev_sample, denoised)
|
460 |
+
|
461 |
+
return T2VTurboSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
462 |
+
|
463 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
464 |
+
def add_noise(
|
465 |
+
self,
|
466 |
+
original_samples: torch.FloatTensor,
|
467 |
+
noise: torch.FloatTensor,
|
468 |
+
timesteps: torch.IntTensor,
|
469 |
+
) -> torch.FloatTensor:
|
470 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
471 |
+
alphas_cumprod = self.alphas_cumprod.to(
|
472 |
+
device=original_samples.device, dtype=original_samples.dtype
|
473 |
+
)
|
474 |
+
timesteps = timesteps.to(original_samples.device)
|
475 |
+
|
476 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
477 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
478 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
479 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
480 |
+
|
481 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
482 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
483 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
484 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
485 |
+
|
486 |
+
noisy_samples = (
|
487 |
+
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
488 |
+
)
|
489 |
+
return noisy_samples
|
490 |
+
|
491 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
492 |
+
def get_velocity(
|
493 |
+
self,
|
494 |
+
sample: torch.FloatTensor,
|
495 |
+
noise: torch.FloatTensor,
|
496 |
+
timesteps: torch.IntTensor,
|
497 |
+
) -> torch.FloatTensor:
|
498 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
499 |
+
alphas_cumprod = self.alphas_cumprod.to(
|
500 |
+
device=sample.device, dtype=sample.dtype
|
501 |
+
)
|
502 |
+
timesteps = timesteps.to(sample.device)
|
503 |
+
|
504 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
505 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
506 |
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
507 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
508 |
+
|
509 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
510 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
511 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
512 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
513 |
+
|
514 |
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
515 |
+
return velocity
|
516 |
+
|
517 |
+
def __len__(self):
|
518 |
+
return self.config.num_train_timesteps
|
style.css
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
4 |
+
|
5 |
+
#duplicate-button {
|
6 |
+
margin: auto;
|
7 |
+
color: #fff;
|
8 |
+
background: #1565c0;
|
9 |
+
border-radius: 100vh;
|
10 |
+
}
|
11 |
+
|
12 |
+
#component-0 {
|
13 |
+
max-width: 830px;
|
14 |
+
margin: auto;
|
15 |
+
padding-top: 1.5rem;
|
16 |
+
}
|
utils/__init__.py
ADDED
File without changes
|
utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (171 Bytes). View file
|
|
utils/__pycache__/common_utils.cpython-311.pyc
ADDED
Binary file (16.3 kB). View file
|
|
utils/__pycache__/lora.cpython-311.pyc
ADDED
Binary file (55.1 kB). View file
|
|
utils/__pycache__/lora_handler.cpython-311.pyc
ADDED
Binary file (6.12 kB). View file
|
|
utils/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (6.82 kB). View file
|
|
utils/common_utils.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import gc
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from collections import OrderedDict
|
6 |
+
|
7 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
8 |
+
from diffusers.models.attention import BasicTransformerBlock
|
9 |
+
import wandb
|
10 |
+
|
11 |
+
|
12 |
+
def extract_into_tensor(a, t, x_shape):
|
13 |
+
b, *_ = t.shape
|
14 |
+
out = a.gather(-1, t)
|
15 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
16 |
+
|
17 |
+
|
18 |
+
def is_attn(name):
|
19 |
+
return "attn1" or "attn2" == name.split(".")[-1]
|
20 |
+
|
21 |
+
|
22 |
+
def set_processors(attentions):
|
23 |
+
for attn in attentions:
|
24 |
+
attn.set_processor(AttnProcessor2_0())
|
25 |
+
|
26 |
+
|
27 |
+
def set_torch_2_attn(unet):
|
28 |
+
optim_count = 0
|
29 |
+
|
30 |
+
for name, module in unet.named_modules():
|
31 |
+
if is_attn(name):
|
32 |
+
if isinstance(module, torch.nn.ModuleList):
|
33 |
+
for m in module:
|
34 |
+
if isinstance(m, BasicTransformerBlock):
|
35 |
+
set_processors([m.attn1, m.attn2])
|
36 |
+
optim_count += 1
|
37 |
+
if optim_count > 0:
|
38 |
+
print(f"{optim_count} Attention layers using Scaled Dot Product Attention.")
|
39 |
+
|
40 |
+
|
41 |
+
# From LatentConsistencyModel.get_guidance_scale_embedding
|
42 |
+
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
|
43 |
+
"""
|
44 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
45 |
+
|
46 |
+
Args:
|
47 |
+
timesteps (`torch.Tensor`):
|
48 |
+
generate embedding vectors at these timesteps
|
49 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
50 |
+
dimension of the embeddings to generate
|
51 |
+
dtype:
|
52 |
+
data type of the generated embeddings
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
56 |
+
"""
|
57 |
+
assert len(w.shape) == 1
|
58 |
+
w = w * 1000.0
|
59 |
+
|
60 |
+
half_dim = embedding_dim // 2
|
61 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
62 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
63 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
64 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
65 |
+
if embedding_dim % 2 == 1: # zero pad
|
66 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
67 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
68 |
+
return emb
|
69 |
+
|
70 |
+
|
71 |
+
def append_dims(x, target_dims):
|
72 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
73 |
+
dims_to_append = target_dims - x.ndim
|
74 |
+
if dims_to_append < 0:
|
75 |
+
raise ValueError(
|
76 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
77 |
+
)
|
78 |
+
return x[(...,) + (None,) * dims_to_append]
|
79 |
+
|
80 |
+
|
81 |
+
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
|
82 |
+
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
|
83 |
+
scaled_timestep = timestep_scaling * timestep
|
84 |
+
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
85 |
+
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
86 |
+
return c_skip, c_out
|
87 |
+
|
88 |
+
|
89 |
+
# Compare LCMScheduler.step, Step 4
|
90 |
+
def get_predicted_original_sample(
|
91 |
+
model_output, timesteps, sample, prediction_type, alphas, sigmas
|
92 |
+
):
|
93 |
+
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
|
94 |
+
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
|
95 |
+
if prediction_type == "epsilon":
|
96 |
+
pred_x_0 = (sample - sigmas * model_output) / alphas
|
97 |
+
elif prediction_type == "sample":
|
98 |
+
pred_x_0 = model_output
|
99 |
+
elif prediction_type == "v_prediction":
|
100 |
+
pred_x_0 = alphas * sample - sigmas * model_output
|
101 |
+
else:
|
102 |
+
raise ValueError(
|
103 |
+
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
|
104 |
+
f" are supported."
|
105 |
+
)
|
106 |
+
|
107 |
+
return pred_x_0
|
108 |
+
|
109 |
+
|
110 |
+
# Based on step 4 in DDIMScheduler.step
|
111 |
+
def get_predicted_noise(
|
112 |
+
model_output, timesteps, sample, prediction_type, alphas, sigmas
|
113 |
+
):
|
114 |
+
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
|
115 |
+
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
|
116 |
+
if prediction_type == "epsilon":
|
117 |
+
pred_epsilon = model_output
|
118 |
+
elif prediction_type == "sample":
|
119 |
+
pred_epsilon = (sample - alphas * model_output) / sigmas
|
120 |
+
elif prediction_type == "v_prediction":
|
121 |
+
pred_epsilon = alphas * model_output + sigmas * sample
|
122 |
+
else:
|
123 |
+
raise ValueError(
|
124 |
+
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
|
125 |
+
f" are supported."
|
126 |
+
)
|
127 |
+
|
128 |
+
return pred_epsilon
|
129 |
+
|
130 |
+
|
131 |
+
# From LatentConsistencyModel.get_guidance_scale_embedding
|
132 |
+
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
|
133 |
+
"""
|
134 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
135 |
+
|
136 |
+
Args:
|
137 |
+
timesteps (`torch.Tensor`):
|
138 |
+
generate embedding vectors at these timesteps
|
139 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
140 |
+
dimension of the embeddings to generate
|
141 |
+
dtype:
|
142 |
+
data type of the generated embeddings
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
146 |
+
"""
|
147 |
+
assert len(w.shape) == 1
|
148 |
+
w = w * 1000.0
|
149 |
+
|
150 |
+
half_dim = embedding_dim // 2
|
151 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
152 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
153 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
154 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
155 |
+
if embedding_dim % 2 == 1: # zero pad
|
156 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
157 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
158 |
+
return emb
|
159 |
+
|
160 |
+
|
161 |
+
def append_dims(x, target_dims):
|
162 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
163 |
+
dims_to_append = target_dims - x.ndim
|
164 |
+
if dims_to_append < 0:
|
165 |
+
raise ValueError(
|
166 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
167 |
+
)
|
168 |
+
return x[(...,) + (None,) * dims_to_append]
|
169 |
+
|
170 |
+
|
171 |
+
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
|
172 |
+
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
|
173 |
+
scaled_timestep = timestep_scaling * timestep
|
174 |
+
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
175 |
+
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
176 |
+
return c_skip, c_out
|
177 |
+
|
178 |
+
|
179 |
+
# Compare LCMScheduler.step, Step 4
|
180 |
+
def get_predicted_original_sample(
|
181 |
+
model_output, timesteps, sample, prediction_type, alphas, sigmas
|
182 |
+
):
|
183 |
+
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
|
184 |
+
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
|
185 |
+
if prediction_type == "epsilon":
|
186 |
+
pred_x_0 = (sample - sigmas * model_output) / alphas
|
187 |
+
elif prediction_type == "sample":
|
188 |
+
pred_x_0 = model_output
|
189 |
+
elif prediction_type == "v_prediction":
|
190 |
+
pred_x_0 = alphas * sample - sigmas * model_output
|
191 |
+
else:
|
192 |
+
raise ValueError(
|
193 |
+
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
|
194 |
+
f" are supported."
|
195 |
+
)
|
196 |
+
|
197 |
+
return pred_x_0
|
198 |
+
|
199 |
+
|
200 |
+
# Based on step 4 in DDIMScheduler.step
|
201 |
+
def get_predicted_noise(
|
202 |
+
model_output, timesteps, sample, prediction_type, alphas, sigmas
|
203 |
+
):
|
204 |
+
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
|
205 |
+
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
|
206 |
+
if prediction_type == "epsilon":
|
207 |
+
pred_epsilon = model_output
|
208 |
+
elif prediction_type == "sample":
|
209 |
+
pred_epsilon = (sample - alphas * model_output) / sigmas
|
210 |
+
elif prediction_type == "v_prediction":
|
211 |
+
pred_epsilon = alphas * model_output + sigmas * sample
|
212 |
+
else:
|
213 |
+
raise ValueError(
|
214 |
+
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
|
215 |
+
f" are supported."
|
216 |
+
)
|
217 |
+
|
218 |
+
return pred_epsilon
|
219 |
+
|
220 |
+
|
221 |
+
def param_optim(model, condition, extra_params=None, is_lora=False, negation=None):
|
222 |
+
extra_params = extra_params if len(extra_params.keys()) > 0 else None
|
223 |
+
return {
|
224 |
+
"model": model,
|
225 |
+
"condition": condition,
|
226 |
+
"extra_params": extra_params,
|
227 |
+
"is_lora": is_lora,
|
228 |
+
"negation": negation,
|
229 |
+
}
|
230 |
+
|
231 |
+
|
232 |
+
def create_optim_params(name="param", params=None, lr=5e-6, extra_params=None):
|
233 |
+
params = {"name": name, "params": params, "lr": lr}
|
234 |
+
if extra_params is not None:
|
235 |
+
for k, v in extra_params.items():
|
236 |
+
params[k] = v
|
237 |
+
|
238 |
+
return params
|
239 |
+
|
240 |
+
|
241 |
+
def create_optimizer_params(model_list, lr):
|
242 |
+
import itertools
|
243 |
+
|
244 |
+
optimizer_params = []
|
245 |
+
|
246 |
+
for optim in model_list:
|
247 |
+
model, condition, extra_params, is_lora, negation = optim.values()
|
248 |
+
# Check if we are doing LoRA training.
|
249 |
+
if is_lora and condition and isinstance(model, list):
|
250 |
+
params = create_optim_params(
|
251 |
+
params=itertools.chain(*model), extra_params=extra_params
|
252 |
+
)
|
253 |
+
optimizer_params.append(params)
|
254 |
+
continue
|
255 |
+
|
256 |
+
if is_lora and condition and not isinstance(model, list):
|
257 |
+
for n, p in model.named_parameters():
|
258 |
+
if "lora" in n:
|
259 |
+
params = create_optim_params(n, p, lr, extra_params)
|
260 |
+
optimizer_params.append(params)
|
261 |
+
continue
|
262 |
+
|
263 |
+
# If this is true, we can train it.
|
264 |
+
if condition:
|
265 |
+
for n, p in model.named_parameters():
|
266 |
+
should_negate = "lora" in n and not is_lora
|
267 |
+
if should_negate:
|
268 |
+
continue
|
269 |
+
|
270 |
+
params = create_optim_params(n, p, lr, extra_params)
|
271 |
+
optimizer_params.append(params)
|
272 |
+
|
273 |
+
return optimizer_params
|
274 |
+
|
275 |
+
|
276 |
+
def handle_trainable_modules(
|
277 |
+
model, trainable_modules=None, is_enabled=True, negation=None
|
278 |
+
):
|
279 |
+
acc = []
|
280 |
+
unfrozen_params = 0
|
281 |
+
|
282 |
+
if trainable_modules is not None:
|
283 |
+
unlock_all = any([name == "all" for name in trainable_modules])
|
284 |
+
if unlock_all:
|
285 |
+
model.requires_grad_(True)
|
286 |
+
unfrozen_params = len(list(model.parameters()))
|
287 |
+
else:
|
288 |
+
model.requires_grad_(False)
|
289 |
+
for name, param in model.named_parameters():
|
290 |
+
for tm in trainable_modules:
|
291 |
+
if all([tm in name, name not in acc, "lora" not in name]):
|
292 |
+
param.requires_grad_(is_enabled)
|
293 |
+
acc.append(name)
|
294 |
+
unfrozen_params += 1
|
295 |
+
|
296 |
+
|
297 |
+
def huber_loss(pred, target, huber_c=0.001):
|
298 |
+
loss = torch.sqrt((pred.float() - target.float()) ** 2 + huber_c**2) - huber_c
|
299 |
+
return loss.mean()
|
300 |
+
|
301 |
+
|
302 |
+
@torch.no_grad()
|
303 |
+
def update_ema(target_params, source_params, rate=0.99):
|
304 |
+
"""
|
305 |
+
Update target parameters to be closer to those of source parameters using
|
306 |
+
an exponential moving average.
|
307 |
+
|
308 |
+
:param target_params: the target parameter sequence.
|
309 |
+
:param source_params: the source parameter sequence.
|
310 |
+
:param rate: the EMA rate (closer to 1 means slower).
|
311 |
+
"""
|
312 |
+
for targ, src in zip(target_params, source_params):
|
313 |
+
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
314 |
+
|
315 |
+
|
316 |
+
def log_validation_video(pipeline, args, accelerator, save_fps):
|
317 |
+
if args.seed is None:
|
318 |
+
generator = None
|
319 |
+
else:
|
320 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
321 |
+
|
322 |
+
validation_prompts = [
|
323 |
+
"An astronaut riding a horse.",
|
324 |
+
"Darth vader surfing in waves.",
|
325 |
+
"Robot dancing in times square.",
|
326 |
+
"Clown fish swimming through the coral reef.",
|
327 |
+
"A child excitedly swings on a rusty swing set, laughter filling the air.",
|
328 |
+
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
|
329 |
+
"A young woman with glasses is jogging in the park wearing a pink headband.",
|
330 |
+
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
|
331 |
+
]
|
332 |
+
|
333 |
+
video_logs = []
|
334 |
+
|
335 |
+
for _, prompt in enumerate(validation_prompts):
|
336 |
+
with torch.autocast("cuda"):
|
337 |
+
videos = pipeline(
|
338 |
+
prompt=prompt,
|
339 |
+
frames=args.n_frames,
|
340 |
+
num_inference_steps=4,
|
341 |
+
num_videos_per_prompt=2,
|
342 |
+
generator=generator,
|
343 |
+
)
|
344 |
+
videos = (videos.clamp(-1.0, 1.0) + 1.0) / 2.0
|
345 |
+
videos = (videos * 255).to(torch.uint8).permute(0, 2, 1, 3, 4).cpu().numpy()
|
346 |
+
video_logs.append({"validation_prompt": prompt, "videos": videos})
|
347 |
+
|
348 |
+
for tracker in accelerator.trackers:
|
349 |
+
if tracker.name == "wandb":
|
350 |
+
formatted_videos = []
|
351 |
+
for log in video_logs:
|
352 |
+
videos = log["videos"]
|
353 |
+
validation_prompt = log["validation_prompt"]
|
354 |
+
for video in videos:
|
355 |
+
video = wandb.Video(video, caption=validation_prompt, fps=save_fps)
|
356 |
+
formatted_videos.append(video)
|
357 |
+
|
358 |
+
tracker.log({f"validation": formatted_videos})
|
359 |
+
|
360 |
+
del pipeline
|
361 |
+
gc.collect()
|
362 |
+
|
363 |
+
|
364 |
+
def tuple_type(s):
|
365 |
+
if isinstance(s, tuple):
|
366 |
+
return s
|
367 |
+
value = ast.literal_eval(s)
|
368 |
+
if isinstance(value, tuple):
|
369 |
+
return value
|
370 |
+
raise TypeError("Argument must be a tuple")
|
371 |
+
|
372 |
+
|
373 |
+
def load_model_checkpoint(model, ckpt):
|
374 |
+
def load_checkpoint(model, ckpt, full_strict):
|
375 |
+
state_dict = torch.load(ckpt, map_location="cpu")
|
376 |
+
if "state_dict" in list(state_dict.keys()):
|
377 |
+
state_dict = state_dict["state_dict"]
|
378 |
+
model.load_state_dict(state_dict, strict=full_strict)
|
379 |
+
del state_dict
|
380 |
+
gc.collect()
|
381 |
+
return model
|
382 |
+
|
383 |
+
load_checkpoint(model, ckpt, full_strict=True)
|
384 |
+
print(">>> model checkpoint loaded.")
|
385 |
+
return model
|