TM9450's picture
Create new file
26a4f64
raw
history blame
644 Bytes
import streamlit as st
from transformers import pipeline
vision_classifier = pipeline(task="image-classification")
text = st.text_area('Enter a link to an image:')
if text:
result = vision_classifier(images=text)
st.text("\n".join([f"Class {d['label']} with score {round(d['score'], 4)}" for d in result]))
#result = vision_classifier(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
#print("\n".join([f"Class {d['label']} with score {round(d['score'], 4)}" for d in result]))
#st.text("\n".join([f"Class {d['label']} with score {round(d['score'], 4)}" for d in result]))