Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model_and_tokenizer():
|
7 |
+
model_name_or_path = "m42-health/med42-70b"
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
10 |
+
return model, tokenizer
|
11 |
+
|
12 |
+
# Function to generate the response
|
13 |
+
@st.cache_data
|
14 |
+
def generate_response(prompt):
|
15 |
+
prompt_template = f'''
|
16 |
+
<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
|
17 |
+
<|prompter|>:{prompt}
|
18 |
+
<|assistant|>:
|
19 |
+
'''
|
20 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
21 |
+
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512)
|
22 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
+
return response
|
24 |
+
|
25 |
+
# Streamlit app
|
26 |
+
def main():
|
27 |
+
st.title("Med42 - Clinical Large Language Model")
|
28 |
+
model, tokenizer = load_model_and_tokenizer()
|
29 |
+
|
30 |
+
prompt = st.text_area("Enter your medical query:")
|
31 |
+
if st.button("Submit"):
|
32 |
+
with st.spinner("Generating response..."):
|
33 |
+
response = generate_response(prompt)
|
34 |
+
st.write(response)
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
main()
|