Spaces:
Runtime error
Runtime error
File size: 2,618 Bytes
889a5cc 6395f19 889a5cc 6395f19 889a5cc 14b80ce 889a5cc b1d5ba9 f95617d 889a5cc 47af204 f9b643b 3830518 4872dd1 47af204 4872dd1 47af204 889a5cc f95617d 66c8ad2 6395f19 3830518 889a5cc 6395f19 15ad32c 889a5cc e8db4c4 14b80ce e8db4c4 05e5cdb 889a5cc 47af204 14b80ce 47af204 59fa2b8 48b5bc5 2cb87d0 48b5bc5 6395f19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from modelscope import snapshot_download
import datetime
import math
import io
import os
import tempfile
import json
from typing import Optional
import torch
import gradio as gr
from config import model_config
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_dir = snapshot_download(model_config['model_dir'])
model = AutoModel(
model=model_dir,
vad_kwargs={"max_single_segment_time": 15000},
ncpu=torch.get_num_threads(),
batch_size=1,
hub="hf",
device=device,
)
@gpu_decorator
def transcribe_audio(file_path, vad_model="fsmn-vad", vad_kwargs='{"max_single_segment_time": 15000}',
batch_size=1, language="auto", use_itn=True, batch_size_s=60,
merge_vad=True, merge_length_s=15, batch_size_threshold_s=50,
hotword=" ", ban_emo_unk=True):
try:
vad_kwargs = json.loads(vad_kwargs)
temp_file_path = file_path
res = model.generate(
input=temp_file_path,
cache={},
language=language,
use_itn=use_itn,
batch_size_s=batch_size_s,
merge_vad=merge_vad,
merge_length_s=merge_length_s,
batch_size_threshold_s=batch_size_threshold_s,
hotword=hotword,
ban_emo_unk=ban_emo_unk
)
return res[0]
except Exception as e:
return str(e)
inputs = [
gr.Audio(type="filepath"),
gr.Textbox(value="fsmn-vad", label="VAD Model"),
gr.Textbox(value='{"max_single_segment_time": 15000}', label="VAD Kwargs"),
gr.Slider(1, 10, value=1, step=1, label="Batch Size"),
gr.Textbox(value="auto", label="Language"),
gr.Checkbox(value=True, label="Use ITN"),
gr.Slider(30, 120, value=60, step=1, label="Batch Size (seconds)"),
gr.Checkbox(value=True, label="Merge VAD"),
gr.Slider(5, 60, value=15, step=1, label="Merge Length (seconds)"),
gr.Slider(10, 100, value=50, step=1, label="Batch Size Threshold (seconds)"),
gr.Textbox(value=" ", label="Hotword"),
gr.Checkbox(value=True, label="Ban Emotional Unknown"),
]
outputs = gr.Textbox(label="Transcription")
gr.Interface(
fn=transcribe_audio,
inputs=inputs,
outputs=outputs,
title="ASR Transcription with FunASR"
).launch() |