Spaces:
Sleeping
Sleeping
TarekBouras
commited on
Commit
•
68db7f6
1
Parent(s):
5a193ad
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
from sklearn.preprocessing import MinMaxScaler
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
from keras.models import load_model
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
|
10 |
+
# Load the trained model
|
11 |
+
model = joblib.load('./lstm_model.pkl')
|
12 |
+
|
13 |
+
# Function to prepare the data
|
14 |
+
def prepare_data(df, time_steps=60):
|
15 |
+
data = df['quantity'].values.reshape(-1, 1)
|
16 |
+
|
17 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
18 |
+
scaled_data = scaler.fit_transform(data)
|
19 |
+
|
20 |
+
x_test = []
|
21 |
+
for i in range(time_steps, len(scaled_data)):
|
22 |
+
x_test.append(scaled_data[i - time_steps:i, 0])
|
23 |
+
x_test = np.array(x_test)
|
24 |
+
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
|
25 |
+
|
26 |
+
return x_test, scaler
|
27 |
+
|
28 |
+
# Function to forecast the next 60 days
|
29 |
+
def forecast(model, x_test, scaler, time_steps=60, future=60):
|
30 |
+
forecast_data = x_test[-1] # Use the last sequence of the test set for forecasting
|
31 |
+
forecast_predictions = []
|
32 |
+
for _ in range(future):
|
33 |
+
prediction = model.predict(forecast_data.reshape(1, time_steps, 1))
|
34 |
+
forecast_predictions.append(prediction[0, 0])
|
35 |
+
forecast_data = np.append(forecast_data[1:], prediction[0, 0]).reshape(-1, 1)
|
36 |
+
forecast_predictions = np.array(forecast_predictions).reshape(-1, 1)
|
37 |
+
forecast_predictions = scaler.inverse_transform(forecast_predictions)
|
38 |
+
|
39 |
+
return forecast_predictions
|
40 |
+
|
41 |
+
# Streamlit UI
|
42 |
+
st.title('Product Sales Forecasting')
|
43 |
+
|
44 |
+
uploaded_file = st.file_uploader("Choose a file")
|
45 |
+
if uploaded_file is not None:
|
46 |
+
df = pd.read_csv(uploaded_file, parse_dates=['date'])
|
47 |
+
st.write(df.tail()) # Display the tail of the dataframe
|
48 |
+
|
49 |
+
family = st.selectbox("Select a family", df['family'].unique())
|
50 |
+
|
51 |
+
if st.button('Predict'):
|
52 |
+
df_family = df[df['family'] == family]
|
53 |
+
|
54 |
+
# Ensure df_family is not empty
|
55 |
+
if df_family.empty:
|
56 |
+
st.write("No data available for the selected family.")
|
57 |
+
else:
|
58 |
+
# Prepare data
|
59 |
+
x_test, scaler = prepare_data(df_family)
|
60 |
+
|
61 |
+
# Forecast
|
62 |
+
forecast_predictions = forecast(model, x_test, scaler)
|
63 |
+
|
64 |
+
# Prepare forecast dataframe
|
65 |
+
last_date = df_family['date'].max()
|
66 |
+
forecast_dates = [last_date + timedelta(days=i) for i in range(1, 61)]
|
67 |
+
forecast_df = pd.DataFrame({'date': forecast_dates, 'forecasted_quantity': forecast_predictions.flatten()})
|
68 |
+
|
69 |
+
# Plot using Plotly with green line
|
70 |
+
fig = go.Figure()
|
71 |
+
fig.add_trace(go.Scatter(x=forecast_df['date'], y=forecast_df['forecasted_quantity'], mode='lines', name='Forecasted Quantity', line=dict(color='green')))
|
72 |
+
fig.update_layout(title=f'Sales Forecast for {family}', xaxis_title='Date', yaxis_title='Quantity Sold')
|
73 |
+
st.plotly_chart(fig)
|
74 |
+
|
75 |
+
st.write(forecast_df)
|