TarekBouras commited on
Commit
68db7f6
1 Parent(s): 5a193ad

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ from sklearn.preprocessing import MinMaxScaler
6
+ import plotly.graph_objects as go
7
+ from keras.models import load_model
8
+ from datetime import datetime, timedelta
9
+
10
+ # Load the trained model
11
+ model = joblib.load('./lstm_model.pkl')
12
+
13
+ # Function to prepare the data
14
+ def prepare_data(df, time_steps=60):
15
+ data = df['quantity'].values.reshape(-1, 1)
16
+
17
+ scaler = MinMaxScaler(feature_range=(0, 1))
18
+ scaled_data = scaler.fit_transform(data)
19
+
20
+ x_test = []
21
+ for i in range(time_steps, len(scaled_data)):
22
+ x_test.append(scaled_data[i - time_steps:i, 0])
23
+ x_test = np.array(x_test)
24
+ x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
25
+
26
+ return x_test, scaler
27
+
28
+ # Function to forecast the next 60 days
29
+ def forecast(model, x_test, scaler, time_steps=60, future=60):
30
+ forecast_data = x_test[-1] # Use the last sequence of the test set for forecasting
31
+ forecast_predictions = []
32
+ for _ in range(future):
33
+ prediction = model.predict(forecast_data.reshape(1, time_steps, 1))
34
+ forecast_predictions.append(prediction[0, 0])
35
+ forecast_data = np.append(forecast_data[1:], prediction[0, 0]).reshape(-1, 1)
36
+ forecast_predictions = np.array(forecast_predictions).reshape(-1, 1)
37
+ forecast_predictions = scaler.inverse_transform(forecast_predictions)
38
+
39
+ return forecast_predictions
40
+
41
+ # Streamlit UI
42
+ st.title('Product Sales Forecasting')
43
+
44
+ uploaded_file = st.file_uploader("Choose a file")
45
+ if uploaded_file is not None:
46
+ df = pd.read_csv(uploaded_file, parse_dates=['date'])
47
+ st.write(df.tail()) # Display the tail of the dataframe
48
+
49
+ family = st.selectbox("Select a family", df['family'].unique())
50
+
51
+ if st.button('Predict'):
52
+ df_family = df[df['family'] == family]
53
+
54
+ # Ensure df_family is not empty
55
+ if df_family.empty:
56
+ st.write("No data available for the selected family.")
57
+ else:
58
+ # Prepare data
59
+ x_test, scaler = prepare_data(df_family)
60
+
61
+ # Forecast
62
+ forecast_predictions = forecast(model, x_test, scaler)
63
+
64
+ # Prepare forecast dataframe
65
+ last_date = df_family['date'].max()
66
+ forecast_dates = [last_date + timedelta(days=i) for i in range(1, 61)]
67
+ forecast_df = pd.DataFrame({'date': forecast_dates, 'forecasted_quantity': forecast_predictions.flatten()})
68
+
69
+ # Plot using Plotly with green line
70
+ fig = go.Figure()
71
+ fig.add_trace(go.Scatter(x=forecast_df['date'], y=forecast_df['forecasted_quantity'], mode='lines', name='Forecasted Quantity', line=dict(color='green')))
72
+ fig.update_layout(title=f'Sales Forecast for {family}', xaxis_title='Date', yaxis_title='Quantity Sold')
73
+ st.plotly_chart(fig)
74
+
75
+ st.write(forecast_df)