Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,20 @@
|
|
1 |
-
|
2 |
-
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
|
3 |
-
from argparse import ArgumentParser
|
4 |
-
from pathlib import Path
|
5 |
-
import shutil
|
6 |
-
import copy
|
7 |
import gradio as gr
|
8 |
-
import
|
|
|
9 |
import re
|
|
|
10 |
import secrets
|
11 |
-
import
|
12 |
-
|
13 |
-
#GlobalVariables
|
14 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
|
15 |
-
DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
|
16 |
-
REVISION = 'v1.0.4'
|
17 |
-
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
|
18 |
-
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
|
19 |
-
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
|
20 |
-
tokenizer = None
|
21 |
-
model = None
|
22 |
-
|
23 |
-
def _get_args() -> ArgumentParser:
|
24 |
-
parser = ArgumentParser()
|
25 |
-
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
|
26 |
-
help="Checkpoint name or path, default to %(default)r")
|
27 |
-
parser.add_argument("--revision", type=str, default=REVISION)
|
28 |
-
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
|
29 |
-
|
30 |
-
parser.add_argument("--share", action="store_true", default=False,
|
31 |
-
help="Create a publicly shareable link for the interface.")
|
32 |
-
parser.add_argument("--inbrowser", action="store_true", default=False,
|
33 |
-
help="Automatically launch the interface in a new tab on the default browser.")
|
34 |
-
parser.add_argument("--server-port", type=int, default=8000,
|
35 |
-
help="Demo server port.")
|
36 |
-
parser.add_argument("--server-name", type=str, default="127.0.0.1",
|
37 |
-
help="Demo server name.")
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
file_path = save_image(file, uploaded_file_dir)
|
46 |
-
history_item = ((file_path,), None)
|
47 |
-
_chatbot.append(history_item)
|
48 |
-
task_history.append(history_item)
|
49 |
-
return predict(_chatbot, task_history)
|
50 |
-
|
51 |
-
|
52 |
-
def _load_model_tokenizer(args) -> tuple:
|
53 |
-
global tokenizer, model
|
54 |
-
model_id = args.checkpoint_path
|
55 |
-
model_dir = snapshot_download(model_id, revision=args.revision)
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
-
model_dir, trust_remote_code=True, resume_download=True,
|
58 |
-
)
|
59 |
-
|
60 |
-
if args.cpu_only:
|
61 |
-
device_map = "cpu"
|
62 |
-
else:
|
63 |
-
device_map = "auto"
|
64 |
-
|
65 |
-
model = AutoModelForCausalLM.from_pretrained(
|
66 |
-
model_dir,
|
67 |
-
device_map=device_map,
|
68 |
-
trust_remote_code=True,
|
69 |
-
bf16=True,
|
70 |
-
resume_download=True,
|
71 |
-
).eval()
|
72 |
-
model.generation_config = GenerationConfig.from_pretrained(
|
73 |
-
model_dir, trust_remote_code=True, resume_download=True,
|
74 |
-
)
|
75 |
-
|
76 |
-
return model, tokenizer
|
77 |
-
|
78 |
-
|
79 |
-
def _parse_text(text: str) -> str:
|
80 |
-
lines = text.split("\n")
|
81 |
-
lines = [line for line in lines if line != ""]
|
82 |
-
count = 0
|
83 |
-
for i, line in enumerate(lines):
|
84 |
-
if "```" in line:
|
85 |
-
count += 1
|
86 |
-
items = line.split("`")
|
87 |
-
if count % 2 == 1:
|
88 |
-
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
89 |
-
else:
|
90 |
-
lines[i] = f"<br></code></pre>"
|
91 |
-
else:
|
92 |
-
if i > 0:
|
93 |
-
if count % 2 == 1:
|
94 |
-
line = line.replace("`", r"\`")
|
95 |
-
line = line.replace("<", "<")
|
96 |
-
line = line.replace(">", ">")
|
97 |
-
line = line.replace(" ", " ")
|
98 |
-
line = line.replace("*", "*")
|
99 |
-
line = line.replace("_", "_")
|
100 |
-
line = line.replace("-", "-")
|
101 |
-
line = line.replace(".", ".")
|
102 |
-
line = line.replace("!", "!")
|
103 |
-
line = line.replace("(", "(")
|
104 |
-
line = line.replace(")", ")")
|
105 |
-
line = line.replace("$", "$")
|
106 |
-
lines[i] = "<br>" + line
|
107 |
-
text = "".join(lines)
|
108 |
-
return text
|
109 |
|
110 |
def save_image(image_file, upload_dir: str) -> str:
|
111 |
Path(upload_dir).mkdir(parents=True, exist_ok=True)
|
@@ -115,131 +24,33 @@ def save_image(image_file, upload_dir: str) -> str:
|
|
115 |
f_output.write(f_input.read())
|
116 |
return str(file_path)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
if file is None:
|
121 |
-
return history, task_history
|
122 |
-
file_path = save_image(file)
|
123 |
-
history = history + [((file_path,), None)]
|
124 |
-
task_history = task_history + [((file_path,), None)]
|
125 |
-
return history, task_history
|
126 |
-
|
127 |
-
def predict(_chatbot, task_history) -> tuple:
|
128 |
-
if not _chatbot:
|
129 |
-
return _chatbot, task_history
|
130 |
-
chat_query, chat_response = _chatbot[-1]
|
131 |
-
print("predict called")
|
132 |
-
if isinstance(chat_query, tuple):
|
133 |
-
chat_query = chat_query[0]
|
134 |
-
query = [{'image': chat_query}]
|
135 |
-
else:
|
136 |
-
query = [{'text': _parse_text(chat_query)}]
|
137 |
-
inputs = tokenizer.from_list_format(query)
|
138 |
-
tokenized_inputs = tokenizer(inputs, return_tensors='pt')
|
139 |
-
tokenized_inputs = tokenized_inputs.to(model.device)
|
140 |
-
pred = model.generate(**tokenized_inputs)
|
141 |
-
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
|
142 |
-
if 'image' in query[0]:
|
143 |
-
print("Model response:", response)
|
144 |
-
image = tokenizer.draw_bbox_on_latest_picture(response)
|
145 |
-
if image is not None:
|
146 |
-
image_path = save_image(image, uploaded_file_dir)
|
147 |
-
formatted_response = (chat_query, image_path)
|
148 |
-
else:
|
149 |
-
formatted_response = (chat_query, response)
|
150 |
-
else:
|
151 |
-
text_response = response.strip()
|
152 |
-
formatted_response = (chat_query, text_response)
|
153 |
-
|
154 |
-
_chatbot[-1] = formatted_response
|
155 |
-
if task_history:
|
156 |
-
task_history[-1] = formatted_response
|
157 |
-
else:
|
158 |
-
task_history.append(formatted_response)
|
159 |
-
|
160 |
-
return _chatbot, task_history
|
161 |
-
|
162 |
-
def save_uploaded_image(image_file, upload_dir):
|
163 |
-
if image is None:
|
164 |
-
return None
|
165 |
-
temp_dir = secrets.token_hex(20)
|
166 |
-
temp_dir = Path(uploaded_file_dir) / temp_dir
|
167 |
-
temp_dir.mkdir(exist_ok=True, parents=True)
|
168 |
-
name = f"tmp{secrets.token_hex(5)}.jpg"
|
169 |
-
filename = temp_dir / name
|
170 |
-
image.save(str(filename))
|
171 |
-
return str(filename)
|
172 |
-
|
173 |
-
def regenerate(_chatbot, task_history) -> list:
|
174 |
-
if not task_history:
|
175 |
-
return _chatbot
|
176 |
-
item = task_history[-1]
|
177 |
-
if item[1] is None:
|
178 |
-
return _chatbot
|
179 |
-
task_history[-1] = (item[0], None)
|
180 |
-
chatbot_item = _chatbot.pop(-1)
|
181 |
-
if chatbot_item[0] is None:
|
182 |
-
_chatbot[-1] = (_chatbot[-1][0], None)
|
183 |
-
else:
|
184 |
-
_chatbot.append((chatbot_item[0], None))
|
185 |
-
return predict(_chatbot, task_history)
|
186 |
-
|
187 |
-
def add_text(history, task_history, text) -> tuple:
|
188 |
-
if not text.strip():
|
189 |
-
return history, task_history, chatbot
|
190 |
-
if not any(isinstance(item[0], tuple) for item in history):
|
191 |
-
prompt = "Please upload and submit an image to get started."
|
192 |
-
history.append((prompt, None))
|
193 |
-
task_history.append((prompt, None))
|
194 |
-
chatbot.append(prompt)
|
195 |
-
return history, task_history, chatbot
|
196 |
-
task_text = text
|
197 |
-
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
|
198 |
-
task_text = text[:-1]
|
199 |
-
history_item = (_parse_text(task_text), None)
|
200 |
-
history.append(history_item)
|
201 |
-
task_history.append(history_item)
|
202 |
-
return history, task_history, chatbot
|
203 |
-
|
204 |
-
def add_file(history, task_history, file):
|
205 |
-
if file is None:
|
206 |
-
return history, task_history # Return if no file is uploaded
|
207 |
-
file_path = file.name
|
208 |
-
history = history + [((file.name,), None)]
|
209 |
-
task_history = task_history + [((file.name,), None)]
|
210 |
-
return history, task_history
|
211 |
-
|
212 |
-
def reset_user_input():
|
213 |
-
return gr.update(value="")
|
214 |
-
|
215 |
-
def process_response(response: str) -> str:
|
216 |
-
response = response.replace("<ref>", "").replace(r"</ref>", "")
|
217 |
-
response = re.sub(BOX_TAG_PATTERN, "", response)
|
218 |
return response
|
219 |
-
|
220 |
-
def process_history_for_model(task_history) -> list:
|
221 |
-
processed_history = []
|
222 |
-
for query, response in task_history:
|
223 |
-
if isinstance(query, tuple):
|
224 |
-
query = {'image': query[0]}
|
225 |
-
else:
|
226 |
-
query = {'text': query}
|
227 |
-
response = response or ""
|
228 |
-
processed_history.append((query, response))
|
229 |
-
return processed_history
|
230 |
|
231 |
-
def
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
# 🙋🏻♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀
|
244 |
# 🙋🏻♂️Welcome toTonic's Qwen-VL-Chat Bot!
|
245 |
该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。
|
@@ -248,51 +59,22 @@ Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试
|
|
248 |
This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use qwen/Qwen-VL-Chat🚀 by cloning this space. Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
|
249 |
Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
|
250 |
""")
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
inputs=[chatbot, task_history],
|
268 |
-
outputs=[chatbot]
|
269 |
-
)
|
270 |
-
|
271 |
-
submit_file_btn.click(
|
272 |
-
fn=handle_image_submission,
|
273 |
-
inputs=[chatbot, task_history, file_upload],
|
274 |
-
outputs=[chatbot, task_history]
|
275 |
-
)
|
276 |
-
|
277 |
-
regen_btn.click(
|
278 |
-
fn=regenerate,
|
279 |
-
inputs=[chatbot, task_history],
|
280 |
-
outputs=[chatbot]
|
281 |
-
)
|
282 |
-
|
283 |
-
empty_bin.click(
|
284 |
-
fn=reset_state,
|
285 |
-
inputs=[task_history],
|
286 |
-
outputs=[task_history],
|
287 |
-
)
|
288 |
-
|
289 |
-
query.submit(
|
290 |
-
fn=add_text,
|
291 |
-
inputs=[chatbot, task_history, query],
|
292 |
-
outputs=[chatbot, task_history, query]
|
293 |
-
)
|
294 |
-
|
295 |
-
gr.Markdown("""
|
296 |
注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
|
297 |
包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
|
298 |
Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
|
@@ -300,12 +82,3 @@ including hate speech, violence, pornography, deception, etc. (Note: This demo i
|
|
300 |
""")
|
301 |
|
302 |
demo.queue().launch()
|
303 |
-
|
304 |
-
|
305 |
-
def main():
|
306 |
-
args = _get_args()
|
307 |
-
model, tokenizer = _load_model_tokenizer(args)
|
308 |
-
_launch_demo(args, model, tokenizer)
|
309 |
-
|
310 |
-
if __name__ == '__main__':
|
311 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from transformers.generation import GenerationConfig
|
4 |
import re
|
5 |
+
from pathlib import Path
|
6 |
import secrets
|
7 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Initialize the model and tokenizer
|
10 |
+
model_name = "qwen/Qwen-VL-Chat"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).eval()
|
13 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name, trust_remote_code=True)
|
14 |
|
15 |
+
# Set device for model
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def save_image(image_file, upload_dir: str) -> str:
|
20 |
Path(upload_dir).mkdir(parents=True, exist_ok=True)
|
|
|
24 |
f_output.write(f_input.read())
|
25 |
return str(file_path)
|
26 |
|
27 |
+
def clean_response(response: str) -> str:
|
28 |
+
response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def chat_with_model(image_path=None, text_query=None, history=None):
|
32 |
+
query_elements = []
|
33 |
+
if image_path:
|
34 |
+
query_elements.append({'image': image_path})
|
35 |
+
if text_query:
|
36 |
+
query_elements.append({'text': text_query})
|
37 |
+
|
38 |
+
query = tokenizer.from_list_format(query_elements)
|
39 |
+
tokenized_inputs = tokenizer(query, return_tensors='pt').to(device)
|
40 |
+
output = model.generate(**tokenized_inputs)
|
41 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
42 |
+
cleaned_response = clean_response(response)
|
43 |
+
return cleaned_response
|
44 |
+
|
45 |
+
def process_input(text, file):
|
46 |
+
image_path = None
|
47 |
+
if file is not None:
|
48 |
+
image_path = save_image(file, "uploaded_images")
|
49 |
+
response = chat_with_model(image_path=image_path, text_query=text)
|
50 |
+
return response
|
51 |
|
52 |
+
with gr.Blocks(theme=ParityError/Anime) as demo:
|
53 |
+
gr.Markdown("""
|
54 |
# 🙋🏻♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀
|
55 |
# 🙋🏻♂️Welcome toTonic's Qwen-VL-Chat Bot!
|
56 |
该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。
|
|
|
59 |
This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use qwen/Qwen-VL-Chat🚀 by cloning this space. Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
|
60 |
Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
|
61 |
""")
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column(scale=1):
|
64 |
+
chatbot = gr.Chatbot(label='Qwen-VL-Chat')
|
65 |
+
with gr.Column(scale=1):
|
66 |
+
with gr.Row():
|
67 |
+
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
|
68 |
+
file_upload = gr.File(label="Upload Image")
|
69 |
+
submit_btn = gr.Button("Submit")
|
70 |
+
|
71 |
+
submit_btn.click(
|
72 |
+
fn=process_input,
|
73 |
+
inputs=[query, file_upload],
|
74 |
+
outputs=chatbot
|
75 |
+
)
|
76 |
+
|
77 |
+
gr.Markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
|
79 |
包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
|
80 |
Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
|
|
|
82 |
""")
|
83 |
|
84 |
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|