Tonic commited on
Commit
e5d08ee
1 Parent(s): c6c641c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +301 -0
app.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ description = '''
2
+ # 🙋🏻‍♂️Welcome to🌟Tonic's🦄Qwen-VL-Chat🤩Bot!🚀
3
+ This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use 🧑🏻‍🚀qwen/Qwen-VL-Chat🚀 by cloning this space. 🧬🔬🔍 Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
4
+ Join us: 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
5
+ '''
6
+ disclaimer = """
7
+ Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
8
+ including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
9
+ """
10
+
11
+ from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
12
+ from argparse import ArgumentParser
13
+ from pathlib import Path
14
+ import shutil
15
+ import copy
16
+ import gradio as gr
17
+ import os
18
+ import re
19
+ import secrets
20
+ import tempfile
21
+
22
+ #GlobalVariables
23
+ os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
24
+ DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
25
+ REVISION = 'v1.0.4'
26
+ BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
27
+ PUNCTUATION = "ï¼ï¼Ÿã€‚ï¼‚ï¼ƒï¼„ï¼…ï¼†ï¼‡ï¼ˆï¼‰ï¼Šï¼‹ï¼Œï¼ï¼ï¼šï¼›ï¼œï¼ï¼žï¼ ï¼»ï¼¼ï¼½ï¼¾ï¼¿ï½€ï½›ï½œï½ï½žï½Ÿï½ ï½¢ï½£ï½¤ã€ã€ƒã€‹ã€Œã€ã€Žã€ã€ã€‘ã€”ã€•ã€–ã€—ã€˜ã€™ã€šã€›ã€œã€ã€žã€Ÿã€°ã€¾ã€¿â€“â€”â€˜â€™â€›â€œâ€â€žâ€Ÿâ€¦â€§ï¹."
28
+ uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
29
+ tokenizer = None
30
+ model = None
31
+
32
+ def _get_args() -> ArgumentParser:
33
+ parser = ArgumentParser()
34
+ parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
35
+ help="Checkpoint name or path, default to %(default)r")
36
+ parser.add_argument("--revision", type=str, default=REVISION)
37
+ parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
38
+
39
+ parser.add_argument("--share", action="store_true", default=False,
40
+ help="Create a publicly shareable link for the interface.")
41
+ parser.add_argument("--inbrowser", action="store_true", default=False,
42
+ help="Automatically launch the interface in a new tab on the default browser.")
43
+ parser.add_argument("--server-port", type=int, default=8000,
44
+ help="Demo server port.")
45
+ parser.add_argument("--server-name", type=str, default="127.0.0.1",
46
+ help="Demo server name.")
47
+
48
+ args = parser.parse_args()
49
+ return args
50
+
51
+ def handle_image_submission(_chatbot, task_history, file) -> tuple:
52
+ print("handle_image_submission called")
53
+ if file is None:
54
+ print("No file uploaded")
55
+ return _chatbot, task_history
56
+ print("File received:", file)
57
+ file_path = save_image(file, uploaded_file_dir)
58
+ print("File saved at:", file_path)
59
+ history_item = ((file_path,), None)
60
+ _chatbot.append(history_item)
61
+ task_history.append(history_item)
62
+ return predict(_chatbot, task_history, tokenizer, model)
63
+
64
+
65
+ def _load_model_tokenizer(args) -> tuple:
66
+ global tokenizer, model
67
+ model_id = args.checkpoint_path
68
+ model_dir = snapshot_download(model_id, revision=args.revision)
69
+ tokenizer = AutoTokenizer.from_pretrained(
70
+ model_dir, trust_remote_code=True, resume_download=True,
71
+ )
72
+
73
+ if args.cpu_only:
74
+ device_map = "cpu"
75
+ else:
76
+ device_map = "auto"
77
+
78
+ model = AutoModelForCausalLM.from_pretrained(
79
+ model_dir,
80
+ device_map=device_map,
81
+ trust_remote_code=True,
82
+ bf16=True,
83
+ resume_download=True,
84
+ ).eval()
85
+ model.generation_config = GenerationConfig.from_pretrained(
86
+ model_dir, trust_remote_code=True, resume_download=True,
87
+ )
88
+
89
+ return model, tokenizer
90
+
91
+
92
+ def _parse_text(text: str) -> str:
93
+ lines = text.split("\n")
94
+ lines = [line for line in lines if line != ""]
95
+ count = 0
96
+ for i, line in enumerate(lines):
97
+ if "```" in line:
98
+ count += 1
99
+ items = line.split("`")
100
+ if count % 2 == 1:
101
+ lines[i] = f'<pre><code class="language-{items[-1]}">'
102
+ else:
103
+ lines[i] = f"<br></code></pre>"
104
+ else:
105
+ if i > 0:
106
+ if count % 2 == 1:
107
+ line = line.replace("`", r"\`")
108
+ line = line.replace("<", "&lt;")
109
+ line = line.replace(">", "&gt;")
110
+ line = line.replace(" ", "&nbsp;")
111
+ line = line.replace("*", "&ast;")
112
+ line = line.replace("_", "&lowbar;")
113
+ line = line.replace("-", "&#45;")
114
+ line = line.replace(".", "&#46;")
115
+ line = line.replace("!", "&#33;")
116
+ line = line.replace("(", "&#40;")
117
+ line = line.replace(")", "&#41;")
118
+ line = line.replace("$", "&#36;")
119
+ lines[i] = "<br>" + line
120
+ text = "".join(lines)
121
+ return text
122
+
123
+ def save_image(image_file, upload_dir: str) -> str:
124
+ print("save_image called with:", image_file)
125
+ Path(upload_dir).mkdir(parents=True, exist_ok=True)
126
+ filename = secrets.token_hex(10) + Path(image_file.name).suffix
127
+ file_path = Path(upload_dir) / filename
128
+ print("Saving to:", file_path)
129
+ with open(image_file.name, "rb") as f_input, open(file_path, "wb") as f_output:
130
+ f_output.write(f_input.read())
131
+ return str(file_path)
132
+
133
+
134
+ def add_file(history, task_history, file):
135
+ if file is None:
136
+ return history, task_history
137
+ file_path = save_image(file)
138
+ history = history + [((file_path,), None)]
139
+ task_history = task_history + [((file_path,), None)]
140
+ return history, task_history
141
+
142
+
143
+ def predict(_chatbot, task_history) -> list:
144
+ print("predict called")
145
+ if not _chatbot:
146
+ return _chatbot
147
+ chat_query = _chatbot[-1][0]
148
+ print("Chat query:", chat_query)
149
+
150
+ if isinstance(chat_query, tuple):
151
+ query = [{'image': chat_query[0]}]
152
+ else:
153
+ query = [{'text': _parse_text(chat_query)}]
154
+
155
+ print("Query for model:", query)
156
+ inputs = tokenizer.from_list_format(query)
157
+ tokenized_inputs = tokenizer(inputs, return_tensors='pt')
158
+ tokenized_inputs = tokenized_inputs.to(model.device)
159
+
160
+ pred = model.generate(**tokenized_inputs)
161
+ response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
162
+ print("Model response:", response)
163
+ if 'image' in query[0]:
164
+ image = tokenizer.draw_bbox_on_latest_picture(response)
165
+ if image is not None:
166
+ image_path = save_image(image, uploaded_file_dir)
167
+ _chatbot[-1] = (chat_query, (image_path,))
168
+ else:
169
+ _chatbot[-1] = (chat_query, "No image to display.")
170
+ else:
171
+ _chatbot[-1] = (chat_query, response)
172
+ return _chatbot
173
+
174
+ def save_uploaded_image(image_file, upload_dir):
175
+ if image is None:
176
+ return None
177
+ temp_dir = secrets.token_hex(20)
178
+ temp_dir = Path(uploaded_file_dir) / temp_dir
179
+ temp_dir.mkdir(exist_ok=True, parents=True)
180
+ name = f"tmp{secrets.token_hex(5)}.jpg"
181
+ filename = temp_dir / name
182
+ image.save(str(filename))
183
+ return str(filename)
184
+
185
+ def regenerate(_chatbot, task_history) -> list:
186
+ if not task_history:
187
+ return _chatbot
188
+ item = task_history[-1]
189
+ if item[1] is None:
190
+ return _chatbot
191
+ task_history[-1] = (item[0], None)
192
+ chatbot_item = _chatbot.pop(-1)
193
+ if chatbot_item[0] is None:
194
+ _chatbot[-1] = (_chatbot[-1][0], None)
195
+ else:
196
+ _chatbot.append((chatbot_item[0], None))
197
+ return predict(_chatbot, task_history, tokenizer, model)
198
+
199
+ def add_text(history, task_history, text) -> tuple:
200
+ task_text = text
201
+ if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
202
+ task_text = text[:-1]
203
+ history = history + [(_parse_text(text), None)]
204
+ task_history = task_history + [(task_text, None)]
205
+ return history, task_history, ""
206
+
207
+ def add_file(history, task_history, file):
208
+ if file is None:
209
+ return history, task_history # Return if no file is uploaded
210
+ file_path = file.name
211
+ history = history + [((file.name,), None)]
212
+ task_history = task_history + [((file.name,), None)]
213
+ return history, task_history
214
+
215
+ def reset_user_input():
216
+ return gr.update(value="")
217
+
218
+ def process_response(response: str) -> str:
219
+ response = response.replace("<ref>", "").replace(r"</ref>", "")
220
+ response = re.sub(BOX_TAG_PATTERN, "", response)
221
+ return response
222
+
223
+ def process_history_for_model(task_history) -> list:
224
+ processed_history = []
225
+ for query, response in task_history:
226
+ if isinstance(query, tuple):
227
+ query = {'image': query[0]}
228
+ else:
229
+ query = {'text': query}
230
+ response = response or ""
231
+ processed_history.append((query, response))
232
+ return processed_history
233
+
234
+ def reset_state(task_history) -> list:
235
+ task_history.clear()
236
+ return []
237
+
238
+
239
+ def _launch_demo(args, model, tokenizer):
240
+ uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
241
+ Path(tempfile.gettempdir()) / "gradio"
242
+ )
243
+
244
+ with gr.Blocks() as demo:
245
+ gr.Markdown(description)
246
+ with gr.Row():
247
+ with gr.Column(scale=1):
248
+ chatbot = gr.Chatbot(label='Qwen-VL-Chat')
249
+ with gr.Column(scale=1):
250
+ with gr.Row():
251
+ query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
252
+ submit_btn = gr.Button("🚀 Submit")
253
+ with gr.Row():
254
+ file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"])
255
+ submit_file_btn = gr.Button("Submit Image")
256
+ regen_btn = gr.Button("🤔️ Regenerate")
257
+ empty_bin = gr.Button("🧹 Clear History")
258
+ task_history = gr.State([])
259
+
260
+ submit_btn.click(
261
+ fn=predict,
262
+ inputs=[chatbot, task_history],
263
+ outputs=[chatbot]
264
+ )
265
+
266
+ submit_file_btn.click(
267
+ fn=handle_image_submission,
268
+ inputs=[chatbot, task_history, file_upload],
269
+ outputs=[chatbot, task_history]
270
+ )
271
+
272
+ regen_btn.click(
273
+ fn=regenerate,
274
+ inputs=[chatbot, task_history],
275
+ outputs=[chatbot]
276
+ )
277
+
278
+ empty_bin.click(
279
+ fn=reset_state,
280
+ inputs=[task_history],
281
+ outputs=[task_history],
282
+ )
283
+
284
+ query.submit(
285
+ fn=add_text,
286
+ inputs=[chatbot, task_history, query],
287
+ outputs=[chatbot, task_history, query]
288
+ )
289
+
290
+ gr.Markdown(disclaimer)
291
+
292
+ demo.queue().launch()
293
+
294
+
295
+ def main():
296
+ args = _get_args()
297
+ model, tokenizer = _load_model_tokenizer(args)
298
+ _launch_demo(args, model, tokenizer)
299
+
300
+ if __name__ == '__main__':
301
+ main()