Spaces:
Runtime error
Runtime error
File size: 21,849 Bytes
149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d 810b825 c8d7214 810b825 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d b83ebfb 149cc2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
from typing import Any, Union, Optional, Tuple, List, Dict
import os
import gc
from functools import partial
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict
from flax import jax_utils
from flax.training.common_utils import shard
from PIL import Image
import einops
from diffusers import FlaxAutoencoderKL, FlaxUNet2DConditionModel
from diffusers import (
FlaxDDIMScheduler,
FlaxPNDMScheduler,
FlaxLMSDiscreteScheduler,
FlaxDPMSolverMultistepScheduler,
)
from diffusers.schedulers.scheduling_ddim_flax import DDIMSchedulerState
from diffusers.schedulers.scheduling_pndm_flax import PNDMSchedulerState
from diffusers.schedulers.scheduling_lms_discrete_flax import LMSDiscreteSchedulerState
from diffusers.schedulers.scheduling_dpmsolver_multistep_flax import DPMSolverMultistepSchedulerState
from transformers import FlaxCLIPTextModel, CLIPTokenizer
from .flax_impl.flax_unet_pseudo3d_condition import UNetPseudo3DConditionModel
SchedulerType = Union[
FlaxDDIMScheduler,
FlaxPNDMScheduler,
FlaxLMSDiscreteScheduler,
FlaxDPMSolverMultistepScheduler,
]
SchedulerStateType = Union[
DDIMSchedulerState,
PNDMSchedulerState,
LMSDiscreteSchedulerState,
DPMSolverMultistepSchedulerState,
]
SCHEDULERS: Dict[str, SchedulerType] = {
'DPM': FlaxDPMSolverMultistepScheduler, # husbando
'DDIM': FlaxDDIMScheduler,
#'PLMS': FlaxPNDMScheduler, # its not correctly implemented in diffusers, output is bad, but at least it "works"
#'LMS': FlaxLMSDiscreteScheduler, # borked
# image_latents, image_scheduler_state = scheduler.step(
# File "/mnt/work1/make_a_vid/makeavid-space/.venv/lib/python3.10/site-packages/diffusers/schedulers/scheduling_lms_discrete_flax.py", line 255, in step
# order = min(timestep + 1, order)
# jax._src.errors.ConcretizationTypeError: Abstract tracer value encountered where concrete value is expected: Traced<ShapedArray(bool[])>with<DynamicJaxprTrace(level=1/1)>
# The problem arose with the `bool` function.
# The error occurred while tracing the function scanned_fun at /mnt/work1/make_a_vid/makeavid-space/.venv/lib/python3.10/site-packages/jax/_src/lax/control_flow/loops.py:1668 for scan. This concrete value was not available in Python because it depends on the values of the arguments loop_carry[0] and loop_carry[1][1].timesteps
}
def dtypestr(x: jnp.dtype):
if x == jnp.float32: return 'float32'
elif x == jnp.float16: return 'float16'
elif x == jnp.bfloat16: return 'bfloat16'
else: raise
def castto(dtype, m, x):
if dtype == jnp.float32: return m.to_fp32(x)
elif dtype == jnp.float16: return m.to_fp16(x)
elif dtype == jnp.bfloat16: return m.to_bf16(x)
else: raise
class InferenceUNetPseudo3D:
def __init__(self,
model_path: str,
dtype: jnp.dtype = jnp.float16,
hf_auth_token: Union[str, None] = None
) -> None:
self.dtype = dtype
self.model_path = model_path
self.hf_auth_token = hf_auth_token
self.params: Dict[str, FrozenDict[str, Any]] = {}
try:
import traceback
print('initializing unet')
unet, unet_params = UNetPseudo3DConditionModel.from_pretrained(
self.model_path,
subfolder = 'unet',
from_pt = False,
sample_size = (64, 64),
dtype = self.dtype,
param_dtype = dtypestr(self.dtype),
use_memory_efficient_attention = True,
use_auth_token = self.hf_auth_token
)
self.unet: UNetPseudo3DConditionModel = unet
print('casting unet params')
unet_params = castto(self.dtype, self.unet, unet_params)
print('storing unet params')
self.params['unet'] = FrozenDict(unet_params)
print('deleting unet params')
del unet_params
except Exception as e:
print(e)
self.failed = ''.join(traceback.format_exception(None, e, e.__traceback__))
traceback.print_exc()
return
self.failed = False
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
self.model_path,
subfolder = 'vae',
from_pt = True,
dtype = self.dtype,
use_auth_token = self.hf_auth_token
)
self.vae: FlaxAutoencoderKL = vae
vae_params = castto(self.dtype, self.vae, vae_params)
self.params['vae'] = FrozenDict(vae_params)
del vae_params
text_encoder = FlaxCLIPTextModel.from_pretrained(
self.model_path,
subfolder = 'text_encoder',
from_pt = True,
dtype = self.dtype,
use_auth_token = self.hf_auth_token
)
text_encoder_params = text_encoder.params
del text_encoder._params
text_encoder_params = castto(self.dtype, text_encoder, text_encoder_params)
self.text_encoder: FlaxCLIPTextModel = text_encoder
self.params['text_encoder'] = FrozenDict(text_encoder_params)
del text_encoder_params
imunet, imunet_params = FlaxUNet2DConditionModel.from_pretrained(
'runwayml/stable-diffusion-v1-5',
subfolder = 'unet',
from_pt = True,
dtype = self.dtype,
use_memory_efficient_attention = True,
use_auth_token = self.hf_auth_token
)
imunet_params = castto(self.dtype, imunet, imunet_params)
self.imunet: FlaxUNet2DConditionModel = imunet
self.params['imunet'] = FrozenDict(imunet_params)
del imunet_params
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
self.model_path,
subfolder = 'tokenizer',
use_auth_token = self.hf_auth_token
)
self.schedulers: Dict[str, Dict[str, SchedulerType]] = {}
for scheduler_name in SCHEDULERS:
if scheduler_name not in ['KarrasVe', 'SDEVe']:
scheduler, scheduler_state = SCHEDULERS[scheduler_name].from_pretrained(
self.model_path,
subfolder = 'scheduler',
dtype = jnp.float32,
use_auth_token = self.hf_auth_token
)
else:
scheduler, scheduler_state = SCHEDULERS[scheduler_name].from_pretrained(
self.model_path,
subfolder = 'scheduler',
use_auth_token = self.hf_auth_token
)
self.schedulers[scheduler_name] = scheduler
self.params[scheduler_name] = scheduler_state
self.vae_scale_factor: int = int(2 ** (len(self.vae.config.block_out_channels) - 1))
self.device_count = jax.device_count()
gc.collect()
def prepare_inputs(self,
prompt: List[str],
neg_prompt: List[str],
hint_image: List[Image.Image],
mask_image: List[Image.Image],
width: int,
height: int
) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray]: # prompt, neg_prompt, hint_image, mask_image
tokens = self.tokenizer(
prompt,
truncation = True,
return_overflowing_tokens = False,
max_length = 77, #self.text_encoder.config.max_length defaults to 20 if its not in the config smh
padding = 'max_length',
return_tensors = 'np'
).input_ids
tokens = jnp.array(tokens, dtype = jnp.int32)
neg_tokens = self.tokenizer(
neg_prompt,
truncation = True,
return_overflowing_tokens = False,
max_length = 77,
padding = 'max_length',
return_tensors = 'np'
).input_ids
neg_tokens = jnp.array(neg_tokens, dtype = jnp.int32)
for i,im in enumerate(hint_image):
if im.size != (width, height):
hint_image[i] = hint_image[i].resize((width, height), resample = Image.Resampling.LANCZOS)
for i,im in enumerate(mask_image):
if im.size != (width, height):
mask_image[i] = mask_image[i].resize((width, height), resample = Image.Resampling.LANCZOS)
# b,h,w,c | c == 3
hint = jnp.concatenate(
[ jnp.expand_dims(np.asarray(x.convert('RGB')), axis = 0) for x in hint_image ],
axis = 0
).astype(jnp.float32)
# scale -1,1
hint = (hint / 255) * 2 - 1
# b,h,w,c | c == 1
mask = jnp.concatenate(
[ jnp.expand_dims(np.asarray(x.convert('L')), axis = (0, -1)) for x in mask_image ],
axis = 0
).astype(jnp.float32)
# scale -1,1
mask = (mask / 255) * 2 - 1
# binarize mask
mask = mask.at[mask < 0.5].set(0)
mask = mask.at[mask >= 0.5].set(1)
# mask
hint = hint * (mask < 0.5)
# b,h,w,c -> b,c,h,w
hint = hint.transpose((0,3,1,2))
mask = mask.transpose((0,3,1,2))
return tokens, neg_tokens, hint, mask
def generate(self,
prompt: Union[str, List[str]],
inference_steps: int,
hint_image: Union[Image.Image, List[Image.Image], None] = None,
mask_image: Union[Image.Image, List[Image.Image], None] = None,
neg_prompt: Union[str, List[str]] = '',
cfg: float = 15.0,
cfg_image: Optional[float] = None,
num_frames: int = 24,
width: int = 512,
height: int = 512,
seed: int = 0,
scheduler_type: str = 'DDIM'
) -> List[List[Image.Image]]:
assert inference_steps > 0, f'number of inference steps must be > 0 but is {inference_steps}'
assert num_frames > 0, f'number of frames must be > 0 but is {num_frames}'
assert width % 32 == 0, f'width must be divisible by 32 but is {width}'
assert height % 32 == 0, f'height must be divisible by 32 but is {height}'
if isinstance(prompt, str):
prompt = [ prompt ]
batch_size = len(prompt)
assert batch_size % self.device_count == 0, f'batch size must be multiple of {self.device_count}'
if hint_image is None:
hint_image = Image.new('RGB', (width, height), color = (0,0,0))
use_imagegen = True
else:
use_imagegen = False
if isinstance(hint_image, Image.Image):
hint_image = [ hint_image ] * batch_size
assert len(hint_image) == batch_size, f'number of hint images must be equal to batch size {batch_size} but is {len(hint_image)}'
if mask_image is None:
mask_image = Image.new('L', hint_image[0].size, color = 0)
if isinstance(mask_image, Image.Image):
mask_image = [ mask_image ] * batch_size
assert len(mask_image) == batch_size, f'number of mask images must be equal to batch size {batch_size} but is {len(mask_image)}'
if isinstance(neg_prompt, str):
neg_prompt = [ neg_prompt ] * batch_size
assert len(neg_prompt) == batch_size, f'number of negative prompts must be equal to batch size {batch_size} but is {len(neg_prompt)}'
assert scheduler_type in SCHEDULERS, f'unknown type of noise scheduler: {scheduler_type}, must be one of {list(SCHEDULERS.keys())}'
tokens, neg_tokens, hint, mask = self.prepare_inputs(
prompt = prompt,
neg_prompt = neg_prompt,
hint_image = hint_image,
mask_image = mask_image,
width = width,
height = height
)
if cfg_image is None:
cfg_image = cfg
#params['scheduler'] = scheduler_state
# NOTE splitting rngs is not deterministic,
# running on different device counts gives different seeds
#rng = jax.random.PRNGKey(seed)
#rngs = jax.random.split(rng, self.device_count)
# manually assign seeded RNGs to devices for reproducability
rngs = jnp.array([ jax.random.PRNGKey(seed + i) for i in range(self.device_count) ])
params = jax_utils.replicate(self.params)
tokens = shard(tokens)
neg_tokens = shard(neg_tokens)
hint = shard(hint)
mask = shard(mask)
images = _p_generate(self,
tokens,
neg_tokens,
hint,
mask,
inference_steps,
num_frames,
height,
width,
cfg,
cfg_image,
rngs,
params,
use_imagegen,
scheduler_type,
)
if images.ndim == 5:
images = einops.rearrange(images, 'd f c h w -> (d f) h w c')
else:
images = einops.rearrange(images, 'f c h w -> f h w c')
# to cpu
images = np.array(images)
images = [ Image.fromarray(x) for x in images ]
return images
def _generate(self,
tokens: jnp.ndarray,
neg_tokens: jnp.ndarray,
hint: jnp.ndarray,
mask: jnp.ndarray,
inference_steps: int,
num_frames,
height,
width,
cfg: float,
cfg_image: float,
rng: jax.random.KeyArray,
params: Union[Dict[str, Any], FrozenDict[str, Any]],
use_imagegen: bool,
scheduler_type: str
) -> List[Image.Image]:
batch_size = tokens.shape[0]
latent_h = height // self.vae_scale_factor
latent_w = width // self.vae_scale_factor
latent_shape = (
batch_size,
self.vae.config.latent_channels,
num_frames,
latent_h,
latent_w
)
encoded_prompt = self.text_encoder(tokens, params = params['text_encoder'])[0]
encoded_neg_prompt = self.text_encoder(neg_tokens, params = params['text_encoder'])[0]
scheduler = self.schedulers[scheduler_type]
scheduler_state = params[scheduler_type]
if use_imagegen:
image_latent_shape = (batch_size, self.vae.config.latent_channels, latent_h, latent_w)
image_latents = jax.random.normal(
rng,
shape = image_latent_shape,
dtype = jnp.float32
) * scheduler_state.init_noise_sigma
image_scheduler_state = scheduler.set_timesteps(
scheduler_state,
num_inference_steps = inference_steps,
shape = image_latents.shape
)
def image_sample_loop(step, args):
image_latents, image_scheduler_state = args
t = image_scheduler_state.timesteps[step]
tt = jnp.broadcast_to(t, image_latents.shape[0])
latents_input = scheduler.scale_model_input(image_scheduler_state, image_latents, t)
noise_pred = self.imunet.apply(
{ 'params': params['imunet']} ,
latents_input,
tt,
encoder_hidden_states = encoded_prompt
).sample
noise_pred_uncond = self.imunet.apply(
{ 'params': params['imunet'] },
latents_input,
tt,
encoder_hidden_states = encoded_neg_prompt
).sample
noise_pred = noise_pred_uncond + cfg * (noise_pred - noise_pred_uncond)
image_latents, image_scheduler_state = scheduler.step(
image_scheduler_state,
noise_pred.astype(jnp.float32),
t,
image_latents
).to_tuple()
return image_latents, image_scheduler_state
image_latents, _ = jax.lax.fori_loop(
0, inference_steps,
image_sample_loop,
(image_latents, image_scheduler_state)
)
hint = image_latents
else:
hint = self.vae.apply(
{ 'params': params['vae'] },
hint,
method = self.vae.encode
).latent_dist.mean * self.vae.config.scaling_factor
# NOTE vae keeps channels last for encode, but rearranges to channels first for decode
# b0 h1 w2 c3 -> b0 c3 h1 w2
hint = hint.transpose((0, 3, 1, 2))
hint = jnp.expand_dims(hint, axis = 2).repeat(num_frames, axis = 2)
mask = jax.image.resize(mask, (*mask.shape[:-2], *hint.shape[-2:]), method = 'nearest')
mask = jnp.expand_dims(mask, axis = 2).repeat(num_frames, axis = 2)
# NOTE jax normal distribution is shit with float16 + bfloat16
# SEE https://github.com/google/jax/discussions/13798
# generate random at float32
latents = jax.random.normal(
rng,
shape = latent_shape,
dtype = jnp.float32
) * scheduler_state.init_noise_sigma
scheduler_state = scheduler.set_timesteps(
scheduler_state,
num_inference_steps = inference_steps,
shape = latents.shape
)
def sample_loop(step, args):
latents, scheduler_state = args
t = scheduler_state.timesteps[step]#jnp.array(scheduler_state.timesteps, dtype = jnp.int32)[step]
tt = jnp.broadcast_to(t, latents.shape[0])
latents_input = scheduler.scale_model_input(scheduler_state, latents, t)
latents_input = jnp.concatenate([latents_input, mask, hint], axis = 1)
noise_pred = self.unet.apply(
{ 'params': params['unet'] },
latents_input,
tt,
encoded_prompt
).sample
noise_pred_uncond = self.unet.apply(
{ 'params': params['unet'] },
latents_input,
tt,
encoded_neg_prompt
).sample
noise_pred = noise_pred_uncond + cfg * (noise_pred - noise_pred_uncond)
latents, scheduler_state = scheduler.step(
scheduler_state,
noise_pred.astype(jnp.float32),
t,
latents
).to_tuple()
return latents, scheduler_state
latents, _ = jax.lax.fori_loop(
0, inference_steps,
sample_loop,
(latents, scheduler_state)
)
latents = 1 / self.vae.config.scaling_factor * latents
latents = einops.rearrange(latents, 'b c f h w -> (b f) c h w')
num_images = len(latents)
images_out = jnp.zeros(
(
num_images,
self.vae.config.out_channels,
height,
width
),
dtype = self.dtype
)
def decode_loop(step, images_out):
# NOTE vae keeps channels last for encode, but rearranges to channels first for decode
im = self.vae.apply(
{ 'params': params['vae'] },
jnp.expand_dims(latents[step], axis = 0),
method = self.vae.decode
).sample
images_out = images_out.at[step].set(im[0])
return images_out
images_out = jax.lax.fori_loop(0, num_images, decode_loop, images_out)
images_out = ((images_out / 2 + 0.5) * 255).round().clip(0, 255).astype(jnp.uint8)
return images_out
@partial(
jax.pmap,
in_axes = ( # 0 -> split across batch dim, None -> duplicate
None, # 0 inference_class
0, # 1 tokens
0, # 2 neg_tokens
0, # 3 hint
0, # 4 mask
None, # 5 inference_steps
None, # 6 num_frames
None, # 7 height
None, # 8 width
None, # 9 cfg
None, # 10 cfg_image
0, # 11 rng
0, # 12 params
None, # 13 use_imagegen
None, # 14 scheduler_type
),
static_broadcasted_argnums = ( # trigger recompilation on change
0, # inference_class
5, # inference_steps
6, # num_frames
7, # height
8, # width
13, # use_imagegen
14, # scheduler_type
)
)
def _p_generate(
inference_class: InferenceUNetPseudo3D,
tokens,
neg_tokens,
hint,
mask,
inference_steps: int,
num_frames: int,
height: int,
width: int,
cfg: float,
cfg_image: float,
rng,
params,
use_imagegen: bool,
scheduler_type: str
):
return inference_class._generate(
tokens,
neg_tokens,
hint,
mask,
inference_steps,
num_frames,
height,
width,
cfg,
cfg_image,
rng,
params,
use_imagegen,
scheduler_type
)
|