Spaces:
Runtime error
Runtime error
from typing import Optional | |
import torch | |
import torch.nn as nn | |
class CrossAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the context. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__(self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias: bool = False | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.n_heads = heads | |
self.d_head = dim_head | |
self.to_q = nn.Linear(query_dim, inner_dim, bias = bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias = bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias = bias) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
try: | |
# You can install flash attention by cloning their Github repo, | |
# [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention) | |
# and then running `python setup.py install` | |
from flash_attn.flash_attention import FlashAttention | |
self.flash = FlashAttention() | |
# Set the scale for scaled dot-product attention. | |
self.flash.softmax_scale = self.scale | |
# Set to `None` if it's not installed | |
except ImportError: | |
self.flash = None | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def forward(self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
mask: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
batch_size, sequence_length, _ = hidden_states.shape | |
is_self = encoder_hidden_states is None | |
# attention, what we cannot get enough of | |
query = self.to_q(hidden_states) | |
has_cond = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
dim = query.shape[-1] | |
if self.flash is not None and not has_cond and self.d_head <= 64: | |
hidden_states = self.flash_attention(query, key, value) | |
else: | |
hidden_states = self.normal_attention(query, key, value, is_self) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): | |
""" | |
#### Flash Attention | |
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
""" | |
# Get batch size and number of elements along sequence axis (`width * height`) | |
batch_size, seq_len, _ = q.shape | |
# Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of | |
# shape `[batch_size, seq_len, 3, n_heads * d_head]` | |
qkv = torch.stack((q, k, v), dim = 2) | |
# Split the heads | |
qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head) | |
# Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to | |
# fit this size. | |
if self.d_head <= 32: | |
pad = 32 - self.d_head | |
elif self.d_head <= 64: | |
pad = 64 - self.d_head | |
elif self.d_head <= 128: | |
pad = 128 - self.d_head | |
else: | |
raise ValueError(f'Head size ${self.d_head} too large for Flash Attention') | |
# Pad the heads | |
if pad: | |
qkv = torch.cat((qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim = -1) | |
# Compute attention | |
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ | |
# This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]` | |
out, _ = self.flash(qkv) | |
# Truncate the extra head size | |
out = out[:, :, :, :self.d_head] | |
# Reshape to `[batch_size, seq_len, n_heads * d_head]` | |
out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head) | |
# Map to `[batch_size, height * width, d_model]` with a linear layer | |
return out | |
def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, is_self: bool): | |
""" | |
#### Normal Attention | |
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
""" | |
# Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]` | |
q = q.view(*q.shape[:2], self.n_heads, -1) | |
k = k.view(*k.shape[:2], self.n_heads, -1) | |
v = v.view(*v.shape[:2], self.n_heads, -1) | |
# Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$ | |
attn = torch.einsum('bihd,bjhd->bhij', q, k) * self.scale | |
# Compute softmax | |
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$ | |
half = attn.shape[0] // 2 | |
attn[half:] = attn[half:].softmax(dim = -1) | |
attn[:half] = attn[:half].softmax(dim = -1) | |
# Compute attention output | |
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ | |
out = torch.einsum('bhij,bjhd->bihd', attn, v) | |
# Reshape to `[batch_size, height * width, n_heads * d_head]` | |
out = out.reshape(*out.shape[:2], -1) | |
# Map to `[batch_size, height * width, d_model]` with a linear layer | |
return out |