File size: 7,019 Bytes
25345fc
 
 
ce8156e
 
25345fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747b988
25345fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716ced7
25345fc
 
 
 
 
716ced7
25345fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
from huggingface_hub import snapshot_download
import spaces
import torch
torch.jit.script = lambda f: f
os.makedirs("/home/user/app/ckpts", exist_ok=True)
snapshot_download(repo_id="Tencent-Hunyuan/HunyuanDiT", local_dir="/home/user/app/ckpts")

import gradio as gr
import pandas as pd
from pathlib import Path
from PIL import Image
import sys
#sys.path.insert(0, str(Path(__file__).parent.parent))

from hydit.constants import SAMPLER_FACTORY
from sample_t2i import inferencer

ROOT = Path(__file__).parent.parent
SAMPLERS = list(SAMPLER_FACTORY.keys())
SIZES = {
    "square": (1024, 1024),
    "landscape": (768, 1280),
    "portrait": (1280, 768),
}

def get_strings(lang):
    lang_file = Path(f"app/lang/{lang}.csv")
    strings = pd.read_csv(lang_file, header=0)
    strings = strings.set_index("key")['value'].to_dict()
    return strings


args, gen, enhancer = inferencer()
strings = get_strings("en")

@spaces.GPU(duration=80)
def infer(
    prompt,
    negative_prompt,
    seed,
    cfg_scale,
    infer_steps,
    oriW, oriH,
    sampler,
    size,
    enhance,
    progress=gr.Progress(track_tqdm=True)
):
    if enhance and enhancer is not None:
        success, enhanced_prompt = enhancer(prompt)
        if not success:
            fail_image = Image.open(ROOT / 'app/fail.png')
            return fail_image
    else:
        enhanced_prompt = None

    height, width = SIZES[size]
    results = gen.predict(prompt,
                          height=height,
                          width=width,
                          seed=seed,
                          enhanced_prompt=enhanced_prompt,
                          negative_prompt=negative_prompt,
                          infer_steps=infer_steps,
                          guidance_scale=cfg_scale,
                          batch_size=1,
                          src_size_cond=(oriW, oriH),
                          sampler=sampler,
                          )
    image = results['images'][0]
    return image


def ui():
    block = gr.Blocks()

    description = f"""
    # {strings['title']}
    
    ## {strings['desc']}
    
    """

    with block:
        with gr.Row():
            gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    size = gr.Radio(
                        label=strings['size'], choices=[
                            (strings['square'], 'square'),
                            (strings['landscape'], 'landscape'),
                            (strings['portrait'], 'portrait'),
                        ],
                        value="square"
                    )
                prompt = gr.Textbox(label=strings['prompt'], value=strings['default prompt'], lines=3)
                with gr.Row():
                    infer_steps = gr.Slider(
                        label=strings['infer steps'], minimum=1, maximum=200, value=40, step=1,
                    )
                    seed = gr.Number(
                        label=strings['seed'], minimum=-1, maximum=1_000_000_000, value=1, step=1, precision=0,
                    )
                    enhance = gr.Checkbox(
                        label=strings['enhance'], value=False, interactive=True,
                    )

                with gr.Accordion(
                    strings['accordion'], open=False
                ):
                    with gr.Row():
                        negative_prompt = gr.Textbox(label=strings['negative_prompt'],
                                                     value=gen.default_negative_prompt,
                                                     lines=2,
                                                     )
                    with gr.Row():
                        sampler = gr.Dropdown(SAMPLERS, label=strings['sampler'], value="ddpm")
                        cfg_scale = gr.Slider(
                            label=strings['cfg'], minimum=1.0, maximum=16.0, value=6.0, step=1
                        )
                        oriW = gr.Number(
                            label=strings['width cond'], minimum=1024, maximum=4096, value=1024, step=64, precision=0,
                            min_width=80,
                        )
                        oriH = gr.Number(
                            label=strings['height cond'], minimum=1024, maximum=4096, value=1024, step=64, precision=0,
                            min_width=80,
                        )
                with gr.Row():
                    advanced_button = gr.Button(strings['run'])
            with gr.Column():
                #default_img = Image.open(ROOT / 'app/default.png')
                output_img = gr.Image(
                    label=strings['generated image'],
                    interactive=False,
                    format='png',
                    #value=default_img,
                )
            advanced_button.click(
                fn=infer,
                inputs=[
                    prompt, negative_prompt, seed, cfg_scale, infer_steps,
                    oriW, oriH, sampler, size, enhance,
                ],
                outputs=output_img,
            )

        with gr.Row():
            gr.Examples([
                ['一只小猫'],
                ['现实主义风格,画面主要描述一个巴洛克风格的花瓶,带有金色的装饰边框,花瓶上盛开着各种色彩鲜艳的花,白色背景'],
                ['一只聪明的狐狸走在阔叶树林里, 旁边是一条小溪, 细节真实, 摄影'],
                ['飞流直下三千尺,疑是银河落九天'],
                ['一只长靴猫手持亮银色的宝剑,身着铠甲,眼神坚毅,站在一堆金币上,背景是暗色调的洞穴,图像上有金币的光影点缀。'],
                ['麻婆豆腐'],
                ['苏州园林'],
                ['一颗新鲜的草莓特写,红色的外表,表面布满许多种子,背景是淡绿色的叶子'],
                ['请画出“忽如一夜春风来 千树万树梨花开”'],
                ['请将“杞人忧天”的样子画出来'],
                ['枯藤老树昏鸦,小桥流水人家'],
                ['湖水清澈,天空湛蓝,阳光灿烂。一只优雅的白天鹅在湖边游泳。它周围有几只小鸭子,看起来非常可爱,整个画面给人一种宁静祥和的感觉。'],
                ['一朵鲜艳的红色玫瑰花,花瓣撒有一些水珠,晶莹剔透,特写镜头'],
                ['臭豆腐'],
                ['九寨沟'],
                ['俗语“鲤鱼跃龙门”'],
                ['风格是写实,画面主要描述一个亚洲戏曲艺术家正在表演,她穿着华丽的戏服,脸上戴着精致的面具,身姿优雅,背景是古色古香的舞台,镜头是近景'],
            ],
            [prompt],
            label=strings['examples']
            )
    return block


if __name__ == "__main__":
    interface = ui()
    interface.launch()