import argparse import torch import sys import os # 添加当前命令行运行的目录到 sys.path sys.path.append(os.getcwd()+"/dialoggen") from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, ) import requests from PIL import Image from io import BytesIO import re def image_parser(image_file, sep=','): out = image_file.split(sep) return out def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out def init_dialoggen_model(model_path, model_base=None): model_name = get_model_name_from_path(model_path) tokenizer, model, image_processor, context_len = load_pretrained_model( model_path, model_base, model_name, llava_type_model=True) return {"tokenizer": tokenizer, "model": model, "image_processor": image_processor} def eval_model(models, query='详细描述一下这张图片', image_file=None, sep=',', temperature=0.2, top_p=None, num_beams=1, max_new_tokens=512, ): # Model disable_torch_init() qs = query image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN if IMAGE_PLACEHOLDER in qs: if models["model"].config.mm_use_im_start_end: qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) else: qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) else: if models["model"].config.mm_use_im_start_end: qs = image_token_se + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates['llava_v1'].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() if image_file is not None: image_files = image_parser(image_file, sep=sep) images = load_images(image_files) image_sizes = [x.size for x in images] images_tensor = process_images( images, models["image_processor"], models["model"].config ).to(models["model"].device, dtype=torch.float16) else: # fomatted input as training data image_sizes = [(1024, 1024)] images_tensor = torch.zeros(1, 5, 3, models["image_processor"].crop_size["height"], models["image_processor"].crop_size["width"]) images_tensor = images_tensor.to(models["model"].device, dtype=torch.float16) input_ids = ( tokenizer_image_token(prompt, models["tokenizer"], IMAGE_TOKEN_INDEX, return_tensors="pt") .unsqueeze(0) .cuda() ) with torch.inference_mode(): output_ids = models["model"].generate( input_ids, images=images_tensor, image_sizes=image_sizes, do_sample=True if temperature > 0 else False, temperature=temperature, top_p=top_p, num_beams=num_beams, max_new_tokens=max_new_tokens, use_cache=True, ) outputs = models["tokenizer"].batch_decode(output_ids, skip_special_tokens=True)[0].strip() return outputs def remove_prefix(text): if text.startswith("<画图>"): return text[len("<画图>"):], True elif text.startswith("对不起"): # 拒绝画图 return "", False else: return text, True class DialogGen(object): def __init__(self, model_path): self.models = init_dialoggen_model(model_path) self.query_template = "请先判断用户的意图,若为画图则在输出前加入<画图>:{}" def __call__(self, prompt): enhanced_prompt = eval_model( models=self.models, query=self.query_template.format(prompt), image_file=None, ) enhanced_prompt, compliance = remove_prefix(enhanced_prompt) if not compliance: return False, "" return True, enhanced_prompt if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='./ckpts/dialoggen') parser.add_argument('--prompt', type=str, default='画一只小猫') parser.add_argument('--image_file', type=str, default=None) # 'images/demo1.jpeg' args = parser.parse_args() query = f"请先判断用户的意图,若为画图则在输出前加入<画图>:{args.prompt}" models = init_dialoggen_model(args.model_path) res = eval_model(models, query=query, image_file=args.image_file, ) print(res)