File size: 25,677 Bytes
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498625f
 
184193d
 
 
 
 
 
3472618
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import nvdiffrast.torch as dr


def get_ray_directions(h, w, intrinsics, norm=False, device=None):
    """
    Args:
        h (int)
        w (int)
        intrinsics: (*, 4), in [fx, fy, cx, cy]

    Returns:
        directions: (*, h, w, 3), the direction of the rays in camera coordinate
    """
    batch_size = intrinsics.shape[:-1]
    x = torch.linspace(0.5, w - 0.5, w, device=device)
    y = torch.linspace(0.5, h - 0.5, h, device=device)
    # (*, h, w, 2)
    directions_xy = torch.stack(
        [((x - intrinsics[..., 2:3]) / intrinsics[..., 0:1])[..., None, :].expand(*batch_size, h, w),
         ((y - intrinsics[..., 3:4]) / intrinsics[..., 1:2])[..., :, None].expand(*batch_size, h, w)], dim=-1)
    # (*, h, w, 3)
    directions = F.pad(directions_xy, [0, 1], mode='constant', value=1.0)
    if norm:
        directions = F.normalize(directions, dim=-1)
    return directions


def edge_dilation(img, mask, radius=3, iter=7):
    """
    Args:
        img (torch.Tensor): (n, c, h, w)
        mask (torch.Tensor): (n, 1, h, w)
        radius (float): Radius of dilation.

    Returns:
        torch.Tensor: Dilated image.
    """
    n, c, h, w = img.size()
    int_radius = round(radius)
    kernel_size = int(int_radius * 2 + 1)
    distance1d_sq = torch.linspace(-int_radius, int_radius, kernel_size, dtype=img.dtype, device=img.device).square()
    kernel_distance = (distance1d_sq.reshape(1, -1) + distance1d_sq.reshape(-1, 1)).sqrt()
    kernel_neg_distance = kernel_distance.max() - kernel_distance + 1

    for _ in range(iter):

        mask_out = F.max_pool2d(mask, kernel_size, stride=1, padding=int_radius)
        do_fill_mask = ((mask_out - mask) > 0.5).squeeze(1)
        # (num_fill, 3) in [ind_n, ind_h, ind_w]
        do_fill = do_fill_mask.nonzero()

        # unfold the image and mask
        mask_unfold = F.unfold(mask, kernel_size, padding=int_radius).reshape(
            n, kernel_size * kernel_size, h, w).permute(0, 2, 3, 1)

        fill_ind = (mask_unfold[do_fill_mask] * kernel_neg_distance.flatten()).argmax(dim=-1)
        do_fill_h = do_fill[:, 1] + fill_ind // kernel_size - int_radius
        do_fill_w = do_fill[:, 2] + fill_ind % kernel_size - int_radius

        img_out = img.clone()
        img_out[do_fill[:, 0], :, do_fill[:, 1], do_fill[:, 2]] = img[
            do_fill[:, 0], :, do_fill_h, do_fill_w]

        img = img_out
        mask = mask_out

    return img


def depth_to_normal(depth, directions, format='opengl'):
    """
    Args:
        depth: shape (*, h, w), inverse depth defined as 1 / z
        directions: shape (*, h, w, 3), unnormalized ray directions, under OpenCV coordinate system

    Returns:
        out_normal: shape (*, h, w, 3), in range [0, 1]
    """
    out_xyz = directions / depth.unsqueeze(-1).clamp(min=1e-6)
    dx = out_xyz[..., :, 1:, :] - out_xyz[..., :, :-1, :]
    dy = out_xyz[..., 1:, :, :] - out_xyz[..., :-1, :, :]
    right = F.pad(dx, (0, 0, 0, 1, 0, 0), mode='replicate')
    up = F.pad(-dy, (0, 0, 0, 0, 1, 0), mode='replicate')
    left = F.pad(-dx, (0, 0, 1, 0, 0, 0), mode='replicate')
    down = F.pad(dy, (0, 0, 0, 0, 0, 1), mode='replicate')
    out_normal = F.normalize(
        F.normalize(torch.cross(right, up, dim=-1), dim=-1)
        + F.normalize(torch.cross(up, left, dim=-1), dim=-1)
        + F.normalize(torch.cross(left, down, dim=-1), dim=-1)
        + F.normalize(torch.cross(down, right, dim=-1), dim=-1),
        dim=-1)
    if format == 'opengl':
        out_normal[..., 1:3] = -out_normal[..., 1:3]  # to opengl coord
    elif format == 'opencv':
        out_normal = out_normal
    else:
        raise ValueError('format should be opengl or opencv')
    out_normal = out_normal / 2 + 0.5
    return out_normal


def make_divisible(x, m=8):
    return int(math.ceil(x / m) * m)


def interpolate_hwc(x, scale_factor, mode='area'):
    batch_dim = x.shape[:-3]
    y = x.reshape(batch_dim.numel(), *x.shape[-3:]).permute(0, 3, 1, 2)
    y = F.interpolate(y, scale_factor=scale_factor, mode=mode).permute(0, 2, 3, 1)
    return y.reshape(*batch_dim, *y.shape[1:])


def compute_edge_to_face_mapping(attr_idx):
    with torch.no_grad():
        # Get unique edges
        # Create all edges, packed by triangle
        all_edges = torch.cat((
            torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1),
            torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1),
            torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1),
        ), dim=-1).view(-1, 2)

        # Swap edge order so min index is always first
        order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1)
        sorted_edges = torch.cat((
            torch.gather(all_edges, 1, order),
            torch.gather(all_edges, 1, 1 - order)
        ), dim=-1)

        # Elliminate duplicates and return inverse mapping
        unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True)

        tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda()

        tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda()

        # Compute edge to face table
        mask0 = order[:,0] == 0
        mask1 = order[:,0] == 1
        tris_per_edge[idx_map[mask0], 0] = tris[mask0]
        tris_per_edge[idx_map[mask1], 1] = tris[mask1]

        return tris_per_edge


@torch.cuda.amp.autocast(enabled=False)
def normal_consistency(face_normals, t_pos_idx):

    tris_per_edge = compute_edge_to_face_mapping(t_pos_idx)

    # Fetch normals for both faces sharind an edge
    n0 = face_normals[tris_per_edge[:, 0], :]
    n1 = face_normals[tris_per_edge[:, 1], :]

    # Compute error metric based on normal difference
    term = torch.clamp(torch.sum(n0 * n1, -1, keepdim=True), min=-1.0, max=1.0)
    term = (1.0 - term)

    return torch.mean(torch.abs(term))


def laplacian_uniform(verts, faces):

    V = verts.shape[0]
    F = faces.shape[0]

    # Neighbor indices
    ii = faces[:, [1, 2, 0]].flatten()
    jj = faces[:, [2, 0, 1]].flatten()
    adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique(dim=1)
    adj_values = torch.ones(adj.shape[1], device=verts.device, dtype=torch.float)

    # Diagonal indices
    diag_idx = adj[0]

    # Build the sparse matrix
    idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1)
    values = torch.cat((-adj_values, adj_values))

    # The coalesce operation sums the duplicate indices, resulting in the
    # correct diagonal
    return torch.sparse_coo_tensor(idx, values, (V,V)).coalesce()


@torch.cuda.amp.autocast(enabled=False)
def laplacian_smooth_loss(verts, faces):
    with torch.no_grad():
        L = laplacian_uniform(verts, faces.long())
    loss = L.mm(verts)
    loss = loss.norm(dim=1)
    loss = loss.mean()
    return loss


class DMTet:

    def __init__(self, device):
        self.device = device
        self.triangle_table = torch.tensor([
            [-1, -1, -1, -1, -1, -1],
            [1, 0, 2, -1, -1, -1],
            [4, 0, 3, -1, -1, -1],
            [1, 4, 2, 1, 3, 4],
            [3, 1, 5, -1, -1, -1],
            [2, 3, 0, 2, 5, 3],
            [1, 4, 0, 1, 5, 4],
            [4, 2, 5, -1, -1, -1],
            [4, 5, 2, -1, -1, -1],
            [4, 1, 0, 4, 5, 1],
            [3, 2, 0, 3, 5, 2],
            [1, 3, 5, -1, -1, -1],
            [4, 1, 2, 4, 3, 1],
            [3, 0, 4, -1, -1, -1],
            [2, 0, 1, -1, -1, -1],
            [-1, -1, -1, -1, -1, -1]
        ], dtype=torch.long, device=device)
        self.num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long,
                                                device=device)
        self.base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device)

    def sort_edges(self, edges_ex2):
        with torch.no_grad():
            order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
            order = order.unsqueeze(dim=1)

            a = torch.gather(input=edges_ex2, index=order, dim=1)
            b = torch.gather(input=edges_ex2, index=1 - order, dim=1)

        return torch.stack([a, b], -1)

    def __call__(self, pos_nx3, sdf_n, tet_fx4):
        # pos_nx3: [N, 3]
        # sdf_n:   [N]
        # tet_fx4: [F, 4]

        with torch.no_grad():
            occ_n = sdf_n > 0
            occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
            occ_sum = torch.sum(occ_fx4, -1)  # [F,]
            valid_tets = (occ_sum > 0) & (occ_sum < 4)
            # occ_sum = occ_sum[valid_tets]

            # find all vertices
            all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2)
            all_edges = self.sort_edges(all_edges)
            unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)

            unique_edges = unique_edges.long()
            mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
            mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
            mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=self.device)
            idx_map = mapping[idx_map]  # map edges to verts

            interp_v = unique_edges[mask_edges]

        edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
        edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
        edges_to_interp_sdf[:, -1] *= -1

        denominator = edges_to_interp_sdf.sum(1, keepdim=True)

        edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
        verts = (edges_to_interp * edges_to_interp_sdf).sum(1)

        idx_map = idx_map.reshape(-1, 6)

        v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=self.device))
        tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
        num_triangles = self.num_triangles_table[tetindex]

        # Generate triangle indices
        faces = torch.cat((
            torch.gather(input=idx_map[num_triangles == 1], dim=1,
                         index=self.triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
            torch.gather(input=idx_map[num_triangles == 2], dim=1,
                         index=self.triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
        ), dim=0)

        return verts, faces


class MeshRenderer(nn.Module):
    def __init__(self,
                 near=0.1,
                 far=10,
                 ssaa=1,
                 texture_filter='linear-mipmap-linear',
                 opengl=False,
                 device='cuda'):
        super().__init__()
        self.near = near
        self.far = far
        assert isinstance(ssaa, int) and ssaa >= 1
        self.ssaa = ssaa
        self.texture_filter = texture_filter
        self.glctx = dr.RasterizeGLContext(output_db=False)

    def forward(self, meshes, poses, intrinsics, h, w, shading_fun=None,
                dilate_edges=0, normal_bg=[0.5, 0.5, 1.0], aa=True, render_vc=False):
        """
        Args:
            meshes (list[Mesh]): list of Mesh objects
            poses: Shape (num_scenes, num_images, 3, 4)
            intrinsics: Shape (num_scenes, num_images, 4) in [fx, fy, cx, cy]
        """
        num_scenes, num_images, _, _ = poses.size()

        if self.ssaa > 1:
            h = h * self.ssaa
            w = w * self.ssaa
            intrinsics = intrinsics * self.ssaa

        r_mat_c2w = torch.cat(
            [poses[..., :3, :1], -poses[..., :3, 1:3]], dim=-1)  # opencv to opengl conversion

        proj = poses.new_zeros([num_scenes, num_images, 4, 4])
        proj[..., 0, 0] = 2 * intrinsics[..., 0] / w
        proj[..., 0, 2] = -2 * intrinsics[..., 2] / w + 1
        proj[..., 1, 1] = -2 * intrinsics[..., 1] / h
        proj[..., 1, 2] = -2 * intrinsics[..., 3] / h + 1
        proj[..., 2, 2] = -(self.far + self.near) / (self.far - self.near)
        proj[..., 2, 3] = -(2 * self.far * self.near) / (self.far - self.near)
        proj[..., 3, 2] = -1

        # (num_scenes, (num_images, num_vertices, 3))
        v_cam = [(mesh.v - poses[i, :, :3, 3].unsqueeze(-2)) @ r_mat_c2w[i] for i, mesh in enumerate(meshes)]
        # (num_scenes, (num_images, num_vertices, 4))
        v_clip = [F.pad(v, pad=(0, 1), mode='constant', value=1.0) @ proj[i].transpose(-1, -2) for i, v in enumerate(v_cam)]

        if num_scenes == 1:
            # (num_images, h, w, 4) in [u, v, z/w, triangle_id] & (num_images, h, w, 4 or 0)
            rast, rast_db = dr.rasterize(
                self.glctx, v_clip[0], meshes[0].f, (h, w), grad_db=torch.is_grad_enabled())

            fg = (rast[..., 3] > 0).unsqueeze(0)  # (num_scenes, num_images, h, w)
            alpha = fg.float().unsqueeze(-1)

            depth = 1 / dr.interpolate(
                -v_cam[0][..., 2:3].contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w)
            depth.masked_fill_(~fg, 0)

            normal = dr.interpolate(
                meshes[0].vn.unsqueeze(0).contiguous(), rast, meshes[0].fn)[0].reshape(num_scenes, num_images, h, w, 3)
            normal = F.normalize(normal, dim=-1)
            # (num_scenes, num_images, h, w, 3) = (num_scenes, num_images, h, w, 3) @ (num_scenes, num_images, 1, 3, 3)
            rot_normal = (normal @ r_mat_c2w.unsqueeze(2)) / 2 + 0.5
            rot_normal[~fg] = rot_normal.new_tensor(normal_bg)

            if meshes[0].vt is not None and meshes[0].albedo is not None:
                # (num_images, h, w, 2) & (num_images, h, w, 4)
                texc, texc_db = dr.interpolate(
                    meshes[0].vt.unsqueeze(0).contiguous(), rast, meshes[0].ft, rast_db=rast_db, diff_attrs='all')
                # (num_scenes, num_images, h, w, 3)
                albedo = dr.texture(
                    meshes[0].albedo.unsqueeze(0)[..., :3].contiguous(), texc, uv_da=texc_db, filter_mode=self.texture_filter).unsqueeze(0)
                albedo[~fg] = 0
            elif meshes[0].vc is not None:
                rgba = dr.interpolate(
                    meshes[0].vc.contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w, 4)
                alpha = alpha * rgba[..., 3:4]
                albedo = rgba[..., :3] * alpha
            else:
                albedo = torch.zeros_like(rot_normal)

            prev_grad_enabled = torch.is_grad_enabled()
            torch.set_grad_enabled(True)
            if shading_fun is not None:
                xyz = dr.interpolate(
                    meshes[0].v.unsqueeze(0).contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w, 3)
                rgb_reshade = shading_fun(
                    world_pos=xyz[fg],
                    albedo=albedo[fg],
                    world_normal=normal[fg],
                    fg_mask=fg)
                albedo = torch.zeros_like(albedo)
                albedo[fg] = rgb_reshade

            # (num_scenes, num_images, h, w, 4)
            rgba = torch.cat([albedo, alpha], dim=-1)

            if dilate_edges > 0:
                rgba = rgba.reshape(num_scenes * num_images, h, w, 4).permute(0, 3, 1, 2)
                rgba = edge_dilation(rgba, rgba[:, 3:], dilate_edges)
                rgba = rgba.permute(0, 2, 3, 1).reshape(num_scenes, num_images, h, w, 4)

            if aa:
                rgba, depth, rot_normal = dr.antialias(
                    torch.cat([rgba, depth.unsqueeze(-1), rot_normal], dim=-1).squeeze(0),
                    rast, v_clip[0], meshes[0].f).unsqueeze(0).split([4, 1, 3], dim=-1)
                depth = depth.squeeze(-1)

        else:  # concat and range mode
            # v_cat = []
            v_clip_cat = []
            v_cam_cat = []
            vn_cat = []
            vt_cat = []
            f_cat = []
            fn_cat = []
            ft_cat = []
            v_count = 0
            vn_count = 0
            vt_count = 0
            f_count = 0
            f_ranges = []
            for i, mesh in enumerate(meshes):
                num_v = v_clip[i].size(1)
                num_vn = mesh.vn.size(0)
                num_vt = mesh.vt.size(0)
                # v_cat.append(mesh.v.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_v, 3))
                v_clip_cat.append(v_clip[i].reshape(num_images * num_v, 4))
                v_cam_cat.append(v_cam[i].reshape(num_images * num_v, 3))
                vn_cat.append(mesh.vn.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_vn, 3))
                vt_cat.append(mesh.vt.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_vt, 2))
                for _ in range(num_images):
                    f_cat.append(mesh.f + v_count)
                    fn_cat.append(mesh.fn + vn_count)
                    ft_cat.append(mesh.ft + vt_count)
                    v_count += num_v
                    vn_count += num_vn
                    vt_count += num_vt
                    f_ranges.append([f_count, mesh.f.size(0)])
                    f_count += mesh.f.size(0)
            # v_cat = torch.cat(v_cat, dim=0)
            v_clip_cat = torch.cat(v_clip_cat, dim=0)
            v_cam_cat = torch.cat(v_cam_cat, dim=0)
            vn_cat = torch.cat(vn_cat, dim=0)
            f_cat = torch.cat(f_cat, dim=0)
            f_ranges = torch.tensor(f_ranges, device=poses.device, dtype=torch.int32)
            # (num_scenes * num_images, h, w, 4) in [u, v, z/w, triangle_id] & (num_scenes * num_images, h, w, 4 or 0)
            rast, rast_db = dr.rasterize(
                self.glctx, v_clip_cat, f_cat, (h, w), ranges=f_ranges, grad_db=torch.is_grad_enabled())

            fg = (rast[..., 3] > 0).reshape(num_scenes, num_images, h, w)

            depth = 1 / dr.interpolate(
                -v_cam_cat[..., 2:3].contiguous(), rast, f_cat)[0].reshape(num_scenes, num_images, h, w)
            depth.masked_fill_(~fg, 0)

            normal = dr.interpolate(
                vn_cat, rast, fn_cat)[0].reshape(num_scenes, num_images, h, w, 3)
            normal = F.normalize(normal, dim=-1)
            # (num_scenes, num_images, h, w, 3) = (num_scenes, num_images, h, w, 3) @ (num_scenes, num_images, 1, 3, 3)
            rot_normal = (normal @ r_mat_c2w.unsqueeze(2)) / 2 + 0.5
            rot_normal[~fg] = rot_normal.new_tensor(normal_bg)

            # (num_scenes * num_images, h, w, 2) & (num_scenes * num_images, h, w, 4)
            texc, texc_db = dr.interpolate(
                vt_cat, rast, ft_cat, rast_db=rast_db, diff_attrs='all')
            albedo = dr.texture(
                torch.cat([mesh.albedo.unsqueeze(0)[..., :3].expand(num_images, -1, -1, -1) for mesh in meshes], dim=0),
                texc, uv_da=texc_db, filter_mode=self.texture_filter
            ).reshape(num_scenes, num_images, h, w, 3)

            prev_grad_enabled = torch.is_grad_enabled()
            torch.set_grad_enabled(True)
            if shading_fun is not None:
                raise NotImplementedError

            # (num_scenes, num_images, h, w, 4)
            rgba = torch.cat([albedo, fg.float().unsqueeze(-1)], dim=-1)

            if dilate_edges > 0:
                rgba = rgba.reshape(num_scenes * num_images, h, w, 4).permute(0, 3, 1, 2)
                rgba = edge_dilation(rgba, rgba[:, 3:], dilate_edges)
                rgba = rgba.permute(0, 2, 3, 1).reshape(num_scenes, num_images, h, w, 4)

            if aa:
                # Todo: depth/normal antialiasing
                rgba = dr.antialias(
                    rgba.reshape(num_scenes * num_images, h, w, 4), rast, v_clip_cat, f_cat
                ).reshape(num_scenes, num_images, h, w, 4)

        if self.ssaa > 1:
            rgba = interpolate_hwc(rgba, 1 / self.ssaa)
            depth = interpolate_hwc(depth.unsqueeze(-1), 1 / self.ssaa).squeeze(-1)
            rot_normal = interpolate_hwc(rot_normal, 1 / self.ssaa)

        results = dict(
            rgba=rgba,
            depth=depth,
            normal=rot_normal)

        torch.set_grad_enabled(prev_grad_enabled)

        return results

    def bake_xyz_shading_fun(self, meshes, shading_fun, map_size=1024, force_auto_uv=False):
        assert len(meshes) == 1, 'only support one mesh'
        mesh = meshes[0]

        if mesh.vt is None or force_auto_uv:
            mesh.auto_uv()
        assert len(mesh.ft) == len(mesh.f)

        vt_clip = torch.cat([mesh.vt * 2 - 1, mesh.vt.new_tensor([[0., 1.]]).expand(mesh.vt.size(0), -1)], dim=-1)

        rast = dr.rasterize(self.glctx, vt_clip[None], mesh.ft, (map_size, map_size), grad_db=False)[0]
        valid = (rast[..., 3] > 0).reshape(map_size, map_size)

        xyz = dr.interpolate(mesh.v[None], rast, mesh.f)[0].reshape(map_size, map_size, 3)
        rgb_reshade = shading_fun(world_pos=xyz[valid])
        new_albedo_map = xyz.new_zeros((map_size, map_size, 3))
        new_albedo_map[valid] = rgb_reshade
        torch.cuda.empty_cache()
        new_albedo_map = edge_dilation(
            new_albedo_map.permute(2, 0, 1)[None], valid[None, None].float(),
        ).squeeze(0).permute(1, 2, 0)
        mesh.albedo = torch.cat(
            [new_albedo_map.clamp(min=0, max=1),
             torch.ones_like(new_albedo_map[..., :1])], dim=-1)

        mesh.textureless = False
        return [mesh]

    def bake_multiview(self, meshes, images, alphas, poses, intrinsics, map_size=1024, cos_weight_pow=4.0):
        assert len(meshes) == 1, 'only support one mesh'
        mesh = meshes[0]
        images = images[0]  # (n, h, w, 3)
        alphas = alphas[0]  # (n, h, w, 1)
        n, h, w, _ = images.size()

        r_mat_c2w = torch.cat(
            [poses[..., :3, :1], -poses[..., :3, 1:3]], dim=-1)[0]  # opencv to opengl conversion

        proj = poses.new_zeros([n, 4, 4])
        proj[..., 0, 0] = 2 * intrinsics[..., 0] / w
        proj[..., 0, 2] = -2 * intrinsics[..., 2] / w + 1
        proj[..., 1, 1] = -2 * intrinsics[..., 1] / h
        proj[..., 1, 2] = -2 * intrinsics[..., 3] / h + 1
        proj[..., 2, 2] = -(self.far + self.near) / (self.far - self.near)
        proj[..., 2, 3] = -(2 * self.far * self.near) / (self.far - self.near)
        proj[..., 3, 2] = -1

        # (num_images, num_vertices, 3)
        v_cam = (mesh.v.detach() - poses[0, :, :3, 3].unsqueeze(-2)) @ r_mat_c2w
        # (num_images, num_vertices, 4)
        v_clip = F.pad(v_cam, pad=(0, 1), mode='constant', value=1.0) @ proj.transpose(-1, -2)

        rast, rast_db = dr.rasterize(self.glctx, v_clip, mesh.f, (h, w), grad_db=False)
        texc, texc_db = dr.interpolate(
            mesh.vt.unsqueeze(0).contiguous(), rast, mesh.ft, rast_db=rast_db, diff_attrs='all')

        with torch.enable_grad():
            dummy_maps = torch.ones((n, map_size, map_size, 1), device=images.device, dtype=images.dtype).requires_grad_(True)
            # (num_images, h, w, 1)
            albedo = dr.texture(
                dummy_maps, texc, uv_da=texc_db, filter_mode=self.texture_filter)
            visibility_grad = torch.autograd.grad(albedo.sum(), dummy_maps, create_graph=False)[0]

        fg = rast[..., 3] > 0  # (num_images, h, w)
        depth = 1 / dr.interpolate(
            -v_cam[..., 2:3].contiguous(), rast, mesh.f)[0].reshape(n, h, w)
        depth.masked_fill_(~fg, 0)

        # # save all the depth maps for visualization debug
        # import matplotlib.pyplot as plt
        # for i in range(n):
        #     plt.imshow(depth[i].cpu().numpy())
        #     plt.savefig(f'depth_{i}.png')
        # # also save the alphas
        # for i in range(n):
        #     plt.imshow(alphas[i].cpu().numpy())
        #     plt.savefig(f'alpha_{i}.png')

        directions = get_ray_directions(
            h, w, intrinsics.squeeze(0), norm=True, device=intrinsics.device)

        normals_opencv = depth_to_normal(
            depth, directions, format='opencv') * 2 - 1
        normals_cos_weight = (normals_opencv[..., None, :] @ directions[..., :, None]).squeeze(-1).neg().clamp(min=0)

        img_space_weight = (normals_cos_weight ** cos_weight_pow) * alphas
        img_space_weight = -F.max_pool2d(  # alleviate edge effect
            -img_space_weight.permute(0, 3, 1, 2), 5, stride=1, padding=2).permute(0, 2, 3, 1)

        # bake texture
        vt_clip = torch.cat([mesh.vt * 2 - 1, mesh.vt.new_tensor([[0., 1.]]).expand(mesh.vt.size(0), -1)], dim=-1)

        rast, rast_db = dr.rasterize(self.glctx, vt_clip[None], mesh.ft, (map_size, map_size), grad_db=False)
        valid = (rast[..., 3] > 0).reshape(map_size, map_size)
        rast = rast.expand(n, -1, -1, -1)
        rast_db = rast_db.expand(n, -1, -1, -1)
        v_img = v_clip[..., :2] / v_clip[..., 3:] * 0.5 + 0.5
        # print(v_img.min(), v_img.max())
        texc, texc_db = dr.interpolate(
            v_img.contiguous(), rast.contiguous(), mesh.f, rast_db=rast_db.contiguous(), diff_attrs='all')
        # (n, map_size, map_size, 4)
        tex = dr.texture(
            torch.cat([images, img_space_weight], dim=-1), texc, uv_da=texc_db, filter_mode=self.texture_filter)

        weight = tex[..., 3:4] * visibility_grad

        new_albedo_map = (tex[..., :3] * weight).sum(dim=0) / weight.sum(dim=0).clamp(min=1e-6)

        new_albedo_map = edge_dilation(
            new_albedo_map.permute(2, 0, 1)[None], valid[None, None].float(),
        ).squeeze(0).permute(1, 2, 0)
        mesh.albedo = torch.cat(
            [new_albedo_map.clamp(min=0, max=1),
             torch.ones_like(new_albedo_map[..., :1])], dim=-1)

        mesh.textureless = False
        return [mesh]