Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,757 Bytes
2c4c064 d711508 2c4c064 d584432 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 be61342 2c4c064 be61342 2c4c064 68f3a90 2c4c064 68f3a90 2c4c064 443c891 759f1a7 1822775 759f1a7 1822775 d711508 541a733 2c4c064 541a733 1507e63 a9ceb51 2c4c064 a9ceb51 39598c2 a9ceb51 2c4c064 a9ceb51 39598c2 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 112b465 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 a9ceb51 2d84a5c d711508 206b0cc 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 a9ceb51 2c4c064 d711508 2c4c064 d711508 a9ceb51 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 a9ceb51 7bffd64 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 7bffd64 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 2c4c064 d711508 7bffd64 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 112b465 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 2c4c064 a9ceb51 f9cca8d a9ceb51 f9cca8d 2c4c064 a9ceb51 2c4c064 d711508 a9ceb51 d711508 2c4c064 d711508 759f1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
import json
import os
import uuid
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPTextModel, CLIPTokenizer
from modules.unet import UNet3DConditionFlowModel
from pipelines.pipeline_imagecoductor import ImageConductorPipeline
from utils.gradio_utils import ensure_dirname, image2pil, split_filename, visualize_drag
from utils.lora_utils import add_LoRA_to_controlnet
from utils.utils import (
bivariate_Gaussian,
create_flow_controlnet,
create_image_controlnet,
interpolate_trajectory,
load_model,
load_weights,
)
from utils.visualizer import vis_flow_to_video
#### Description ####
title = r"""<h1 align="center">CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</h1>"""
head = r"""
<div style="text-align: center;">
<h1>Image Conductor: Precision Control for Interactive Video Synthesis</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href=""></a>
<a href='https://liyaowei-stu.github.io/project/ImageConductor/'><img src='https://img.shields.io/badge/Project_Page-ImgaeConductor-green' alt='Project Page'></a>
<a href='https://arxiv.org/pdf/2406.15339'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
<a href='https://github.com/liyaowei-stu/ImageConductor'><img src='https://img.shields.io/badge/Code-Github-orange'></a>
</div>
</br>
</div>
"""
descriptions = r"""
Official Gradio Demo for <a href='https://github.com/liyaowei-stu/ImageConductor'><b>Image Conductor: Precision Control for Interactive Video Synthesis</b></a>.<br>
🧙Image Conductor enables precise, fine-grained control for generating motion-controllable videos from images, advancing the practical application of interactive video synthesis.<br>
"""
instructions = r"""
- ⭐️ <b>step1: </b>Upload or select one image from Example.
- ⭐️ <b>step2: </b>Click 'Add Drag' to draw some drags.
- ⭐️ <b>step3: </b>Input text prompt that complements the image (Necessary).
- ⭐️ <b>step4: </b>Select 'Drag Mode' to specify the control of camera transition or object movement.
- ⭐️ <b>step5: </b>Click 'Run' button to generate video assets.
- ⭐️ <b>others: </b>Click 'Delete last drag' to delete the whole lastest path. Click 'Delete last step' to delete the lastest clicked control point.
"""
citation = r"""
If Image Conductor is helpful, please help to ⭐ the <a href='https://github.com/liyaowei-stu/ImageConductor' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/liyaowei-stu%2FImageConductor)](https://github.com/liyaowei-stu/ImageConductor)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@misc{li2024imageconductor,
title={Image Conductor: Precision Control for Interactive Video Synthesis},
author={Li, Yaowei and Wang, Xintao and Zhang, Zhaoyang and Wang, Zhouxia and Yuan, Ziyang and Xie, Liangbin and Zou, Yuexian and Shan, Ying},
year={2024},
eprint={2406.15339},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>ywl@stu.pku.edu.cn</b>.
# """
flow_controlnet_path = hf_hub_download("TencentARC/ImageConductor", "flow_controlnet.ckpt")
image_controlnet_path = hf_hub_download("TencentARC/ImageConductor", "image_controlnet.ckpt")
unet_path = hf_hub_download("TencentARC/ImageConductor", "unet.ckpt")
helloobjects_path = hf_hub_download("TencentARC/ImageConductor", "helloobjects_V12c.safetensors")
tusun_path = hf_hub_download("TencentARC/ImageConductor", "TUSUN.safetensors")
os.makedirs("models/sd1-5", exist_ok=True)
sd15_config_path = hf_hub_download("runwayml/stable-diffusion-v1-5", "config.json", subfolder="unet")
if not os.path.exists("models/sd1-5/config.json"):
os.symlink(sd15_config_path, "models/sd1-5/config.json")
if not os.path.exists("models/sd1-5/unet.ckpt"):
os.symlink(unet_path, "models/sd1-5/unet.ckpt")
# mv1 = os.system(f'mv /usr/local/lib/python3.10/site-packages/gradio/helpers.py /usr/local/lib/python3.10/site-packages/gradio/helpers_bkp.py')
# mv2 = os.system(f'mv helpers.py /usr/local/lib/python3.10/site-packages/gradio/helpers.py')
# # 检查命令是否成功
# if mv1 == 0 and mv2 == 0:
# print("file move success!")
# else:
# print("file move failed!")
# - - - - - examples - - - - - #
image_examples = [
[
"__asset__/images/object/turtle-1.jpg",
"a sea turtle gracefully swimming over a coral reef in the clear blue ocean.",
"object",
11318446767408804497,
"",
"turtle",
"__asset__/turtle.mp4",
],
[
"__asset__/images/object/rose-1.jpg",
"a red rose engulfed in flames.",
"object",
6854275249656120509,
"",
"rose",
"__asset__/rose.mp4",
],
[
"__asset__/images/object/jellyfish-1.jpg",
"intricate detailing,photorealism,hyperrealistic, glowing jellyfish mushroom, flying, starry sky, bokeh, golden ratio composition.",
"object",
17966188172968903484,
"HelloObject",
"jellyfish",
"__asset__/jellyfish.mp4",
],
[
"__asset__/images/camera/lush-1.jpg",
"detailed craftsmanship, photorealism, hyperrealistic, roaring waterfall, misty spray, lush greenery, vibrant rainbow, golden ratio composition.",
"camera",
7970487946960948963,
"HelloObject",
"lush",
"__asset__/lush.mp4",
],
[
"__asset__/images/camera/tusun-1.jpg",
"tusuncub with its mouth open, blurry, open mouth, fangs, photo background, looking at viewer, tongue, full body, solo, cute and lovely, Beautiful and realistic eye details, perfect anatomy, Nonsense, pure background, Centered-Shot, realistic photo, photograph, 4k, hyper detailed, DSLR, 24 Megapixels, 8mm Lens, Full Frame, film grain, Global Illumination, studio Lighting, Award Winning Photography, diffuse reflection, ray tracing.",
"camera",
996953226890228361,
"TUSUN",
"tusun",
"__asset__/tusun.mp4",
],
[
"__asset__/images/camera/painting-1.jpg",
"A oil painting.",
"camera",
16867854766769816385,
"",
"painting",
"__asset__/painting.mp4",
],
]
POINTS = {
"turtle": "__asset__/trajs/object/turtle-1.json",
"rose": "__asset__/trajs/object/rose-1.json",
"jellyfish": "__asset__/trajs/object/jellyfish-1.json",
"lush": "__asset__/trajs/camera/lush-1.json",
"tusun": "__asset__/trajs/camera/tusun-1.json",
"painting": "__asset__/trajs/camera/painting-1.json",
}
IMAGE_PATH = {
"turtle": "__asset__/images/object/turtle-1.jpg",
"rose": "__asset__/images/object/rose-1.jpg",
"jellyfish": "__asset__/images/object/jellyfish-1.jpg",
"lush": "__asset__/images/camera/lush-1.jpg",
"tusun": "__asset__/images/camera/tusun-1.jpg",
"painting": "__asset__/images/camera/painting-1.jpg",
}
DREAM_BOOTH = {
"HelloObject": helloobjects_path,
}
LORA = {
"TUSUN": tusun_path,
}
LORA_ALPHA = {
"TUSUN": 0.6,
}
NPROMPT = {
"HelloObject": "FastNegativeV2,(bad-artist:1),(worst quality, low quality:1.4),(bad_prompt_version2:0.8),bad-hands-5,lowres,bad anatomy,bad hands,((text)),(watermark),error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,((username)),blurry,(extra limbs),bad-artist-anime,badhandv4,EasyNegative,ng_deepnegative_v1_75t,verybadimagenegative_v1.3,BadDream,(three hands:1.6),(three legs:1.2),(more than two hands:1.4),(more than two legs,:1.2)"
}
output_dir = "outputs"
ensure_dirname(output_dir)
def points_to_flows(track_points, model_length, height, width):
input_drag = np.zeros((model_length - 1, height, width, 2))
for splited_track in track_points:
if len(splited_track) == 1: # stationary point
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
splited_track = tuple([splited_track[0], displacement_point])
# interpolate the track
splited_track = interpolate_trajectory(splited_track, model_length)
splited_track = splited_track[:model_length]
if len(splited_track) < model_length:
splited_track = splited_track + [splited_track[-1]] * (model_length - len(splited_track))
for i in range(model_length - 1):
start_point = splited_track[i]
end_point = splited_track[i + 1]
input_drag[i][int(start_point[1])][int(start_point[0])][0] = end_point[0] - start_point[0]
input_drag[i][int(start_point[1])][int(start_point[0])][1] = end_point[1] - start_point[1]
return input_drag
class ImageConductor:
def __init__(
self, device, unet_path, image_controlnet_path, flow_controlnet_path, height, width, model_length, lora_rank=64
):
self.device = device
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder").to(
device
)
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae").to(device)
inference_config = OmegaConf.load("configs/inference/inference.yaml")
unet = UNet3DConditionFlowModel.from_pretrained_2d(
"models/sd1-5/", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)
)
self.vae = vae
### >>> Initialize UNet module >>> ###
load_model(unet, unet_path)
### >>> Initialize image controlnet module >>> ###
image_controlnet = create_image_controlnet("configs/inference/image_condition.yaml", unet)
load_model(image_controlnet, image_controlnet_path)
### >>> Initialize flow controlnet module >>> ###
flow_controlnet = create_flow_controlnet("configs/inference/flow_condition.yaml", unet)
add_LoRA_to_controlnet(lora_rank, flow_controlnet)
load_model(flow_controlnet, flow_controlnet_path)
unet.eval().to(device)
image_controlnet.eval().to(device)
flow_controlnet.eval().to(device)
self.pipeline = ImageConductorPipeline(
unet=unet,
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
image_controlnet=image_controlnet,
flow_controlnet=flow_controlnet,
).to(device)
self.height = height
self.width = width
# _, model_step, _ = split_filename(model_path)
# self.ouput_prefix = f'{model_step}_{width}X{height}'
self.model_length = model_length
blur_kernel = bivariate_Gaussian(kernel_size=99, sig_x=10, sig_y=10, theta=0, grid=None, isotropic=True)
self.blur_kernel = blur_kernel
@spaces.GPU(duration=180)
def run(
self,
first_frame_path,
tracking_points,
prompt,
drag_mode,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
personalized,
):
print("Run!")
original_width, original_height = 384, 256
input_all_points = tracking_points
print("input_all_points", input_all_points)
resized_all_points = [
tuple(
[
tuple([float(e1[0] * self.width / original_width), float(e1[1] * self.height / original_height)])
for e1 in e
]
)
for e in input_all_points
]
dir, base, ext = split_filename(first_frame_path)
id = base.split("_")[-1]
visualized_drag, _ = visualize_drag(
first_frame_path, resized_all_points, drag_mode, self.width, self.height, self.model_length
)
## image condition
image_transforms = transforms.Compose(
[
transforms.RandomResizedCrop(
(self.height, self.width), (1.0, 1.0), ratio=(self.width / self.height, self.width / self.height)
),
transforms.ToTensor(),
]
)
image_paths = [first_frame_path]
controlnet_images = [(image_transforms(Image.open(path).convert("RGB"))) for path in image_paths]
controlnet_images = torch.stack(controlnet_images).unsqueeze(0).to(device)
controlnet_images = rearrange(controlnet_images, "b f c h w -> b c f h w")
num_controlnet_images = controlnet_images.shape[2]
controlnet_images = rearrange(controlnet_images, "b c f h w -> (b f) c h w")
self.vae.to(device)
controlnet_images = self.vae.encode(controlnet_images * 2.0 - 1.0).latent_dist.sample() * 0.18215
controlnet_images = rearrange(controlnet_images, "(b f) c h w -> b c f h w", f=num_controlnet_images)
# flow condition
controlnet_flows = points_to_flows(resized_all_points, self.model_length, self.height, self.width)
for i in range(0, self.model_length - 1):
controlnet_flows[i] = cv2.filter2D(controlnet_flows[i], -1, self.blur_kernel)
controlnet_flows = np.concatenate(
[np.zeros_like(controlnet_flows[0])[np.newaxis, ...], controlnet_flows], axis=0
) # pad the first frame with zero flow
os.makedirs(os.path.join(output_dir, "control_flows"), exist_ok=True)
trajs_video = vis_flow_to_video(controlnet_flows, num_frames=self.model_length) # T-1 x H x W x 3
torchvision.io.write_video(
f"{output_dir}/control_flows/sample-{id}-train_flow.mp4",
trajs_video,
fps=8,
video_codec="h264",
options={"crf": "10"},
)
controlnet_flows = torch.from_numpy(controlnet_flows)[None][:, : self.model_length, ...]
controlnet_flows = rearrange(controlnet_flows, "b f h w c-> b c f h w").float().to(device)
dreambooth_model_path = DREAM_BOOTH.get(personalized, "")
lora_model_path = LORA.get(personalized, "")
lora_alpha = LORA_ALPHA.get(personalized, 0.6)
self.pipeline = load_weights(
self.pipeline,
dreambooth_model_path=dreambooth_model_path,
lora_model_path=lora_model_path,
lora_alpha=lora_alpha,
).to(device)
if NPROMPT.get(personalized, "") != "":
negative_prompt = NPROMPT.get(personalized)
if randomize_seed:
random_seed = torch.seed()
else:
seed = int(seed)
random_seed = seed
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
print(f"current seed: {torch.initial_seed()}")
sample = self.pipeline(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=self.width,
height=self.height,
video_length=self.model_length,
controlnet_images=controlnet_images, # 1 4 1 32 48
controlnet_image_index=[0],
controlnet_flows=controlnet_flows, # [1, 2, 16, 256, 384]
control_mode=drag_mode,
eval_mode=True,
).videos
outputs_path = os.path.join(output_dir, f"output_{i}_{id}.mp4")
vis_video = (rearrange(sample[0], "c t h w -> t h w c") * 255.0).clip(0, 255)
torchvision.io.write_video(outputs_path, vis_video, fps=8, video_codec="h264", options={"crf": "10"})
# outputs_path = os.path.join(output_dir, f'output_{i}_{id}.gif')
# save_videos_grid(sample[0][None], outputs_path)
print("Done!")
return visualized_drag, outputs_path
def reset_states(first_frame_path, tracking_points):
first_frame_path = None
tracking_points = []
return {input_image: None, first_frame_path_var: first_frame_path, tracking_points_var: tracking_points}
def preprocess_image(image, tracking_points):
image_pil = image2pil(image.name)
raw_w, raw_h = image_pil.size
resize_ratio = max(384 / raw_w, 256 / raw_h)
image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
image_pil = transforms.CenterCrop((256, 384))(image_pil.convert("RGB"))
id = str(uuid.uuid4())[:4]
first_frame_path = os.path.join(output_dir, f"first_frame_{id}.jpg")
image_pil.save(first_frame_path, quality=95)
tracking_points = []
return {
input_image: first_frame_path,
first_frame_path_var: first_frame_path,
tracking_points_var: tracking_points,
personalized: "",
}
def add_tracking_points(
tracking_points, first_frame_path, drag_mode, evt: gr.SelectData
): # SelectData is a subclass of EventData
if drag_mode == "object":
color = (255, 0, 0, 255)
elif drag_mode == "camera":
color = (0, 0, 255, 255)
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
if not tracking_points:
tracking_points = [[]]
tracking_points[-1].append(evt.index)
transparent_background = Image.open(first_frame_path).convert("RGBA")
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points:
if len(track) > 1:
for i in range(len(track) - 1):
start_point = track[i]
end_point = track[i + 1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track) - 2:
cv2.arrowedLine(
transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
)
else:
cv2.line(
transparent_layer,
tuple(start_point),
tuple(end_point),
color,
2,
)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return {tracking_points_var: tracking_points, input_image: trajectory_map}
def preprocess_example_image(image_path, tracking_points, drag_mode):
image_pil = image2pil(image_path)
raw_w, raw_h = image_pil.size
resize_ratio = max(384 / raw_w, 256 / raw_h)
image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
image_pil = transforms.CenterCrop((256, 384))(image_pil.convert("RGB"))
id = str(uuid.uuid4())[:4]
first_frame_path = os.path.join(output_dir, f"first_frame_{id}.jpg")
image_pil.save(first_frame_path, quality=95)
if drag_mode == "object":
color = (255, 0, 0, 255)
elif drag_mode == "camera":
color = (0, 0, 255, 255)
transparent_background = Image.open(first_frame_path).convert("RGBA")
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points:
if len(track) > 1:
for i in range(len(track) - 1):
start_point = track[i]
end_point = track[i + 1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track) - 2:
cv2.arrowedLine(
transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
)
else:
cv2.line(
transparent_layer,
tuple(start_point),
tuple(end_point),
color,
2,
)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return trajectory_map, first_frame_path
def add_drag(tracking_points):
if not tracking_points or tracking_points[-1]:
tracking_points.append([])
return {tracking_points_var: tracking_points}
def delete_last_drag(tracking_points, first_frame_path, drag_mode):
if drag_mode == "object":
color = (255, 0, 0, 255)
elif drag_mode == "camera":
color = (0, 0, 255, 255)
if tracking_points:
tracking_points.pop()
transparent_background = Image.open(first_frame_path).convert("RGBA")
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points:
if len(track) > 1:
for i in range(len(track) - 1):
start_point = track[i]
end_point = track[i + 1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track) - 2:
cv2.arrowedLine(
transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
)
else:
cv2.line(
transparent_layer,
tuple(start_point),
tuple(end_point),
color,
2,
)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return {tracking_points_var: tracking_points, input_image: trajectory_map}
def delete_last_step(tracking_points, first_frame_path, drag_mode):
if drag_mode == "object":
color = (255, 0, 0, 255)
elif drag_mode == "camera":
color = (0, 0, 255, 255)
if tracking_points and tracking_points[-1]:
tracking_points[-1].pop()
transparent_background = Image.open(first_frame_path).convert("RGBA")
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points:
if not track:
continue
if len(track) > 1:
for i in range(len(track) - 1):
start_point = track[i]
end_point = track[i + 1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track) - 2:
cv2.arrowedLine(
transparent_layer, tuple(start_point), tuple(end_point), color, 2, tipLength=8 / arrow_length
)
else:
cv2.line(
transparent_layer,
tuple(start_point),
tuple(end_point),
color,
2,
)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, color, -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return {tracking_points_var: tracking_points, input_image: trajectory_map}
def load_example(drag_mode, examples_type):
example_image_path = IMAGE_PATH[examples_type]
with open(POINTS[examples_type]) as f:
tracking_points = json.load(f)
tracking_points = np.round(tracking_points).astype(int).tolist()
trajectory_map, first_frame_path = preprocess_example_image(example_image_path, tracking_points, drag_mode)
return {input_image: trajectory_map, first_frame_path_var: first_frame_path, tracking_points_var: tracking_points}
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
ImageConductor_net = ImageConductor(
device=device,
unet_path=unet_path,
image_controlnet_path=image_controlnet_path,
flow_controlnet_path=flow_controlnet_path,
height=256,
width=384,
model_length=16,
)
block = gr.Blocks(theme=gr.themes.Soft(radius_size=gr.themes.sizes.radius_none, text_size=gr.themes.sizes.text_md))
with block:
with gr.Row():
with gr.Column():
gr.HTML(head)
gr.Markdown(descriptions)
with gr.Accordion(label="🛠️ Instructions:", open=True, elem_id="accordion"):
with gr.Row(equal_height=True):
gr.Markdown(instructions)
first_frame_path_var = gr.State()
tracking_points_var = gr.State([])
with gr.Row():
with gr.Column(scale=1):
image_upload_button = gr.UploadButton(label="Upload Image", file_types=["image"])
add_drag_button = gr.Button(value="Add Drag")
reset_button = gr.Button(value="Reset")
delete_last_drag_button = gr.Button(value="Delete last drag")
delete_last_step_button = gr.Button(value="Delete last step")
with gr.Column(scale=7):
with gr.Row():
with gr.Column(scale=6):
input_image = gr.Image(
label="Input Image",
interactive=True,
height=300,
width=384,
)
with gr.Column(scale=6):
output_image = gr.Image(
label="Motion Path",
interactive=False,
height=256,
width=384,
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(
value="a wonderful elf.",
label="Prompt (highly-recommended)",
interactive=True,
visible=True,
)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Please input your negative prompt",
value="worst quality, low quality, letterboxed",
lines=1,
)
drag_mode = gr.Radio(["camera", "object"], label="Drag mode: ", value="object", scale=2)
run_button = gr.Button(value="Run")
with gr.Accordion("More input params", open=False, elem_id="accordion1"):
with gr.Group():
seed = gr.Textbox(label="Seed: ", value=561793204)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=8.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
with gr.Group():
personalized = gr.Dropdown(label="Personalized", choices=["", "HelloObject", "TUSUN"], value="")
examples_type = gr.Textbox(label="Examples Type (Ignore) ", value="", visible=False)
with gr.Column(scale=7):
output_video = gr.Video(label="Output Video", width=384, height=256)
with gr.Row():
example = gr.Examples(
label="Input Example",
examples=image_examples,
inputs=[input_image, prompt, drag_mode, seed, personalized, examples_type, output_video],
examples_per_page=10,
cache_examples=False,
)
with gr.Row():
gr.Markdown(citation)
image_upload_button.upload(
preprocess_image,
[image_upload_button, tracking_points_var],
[input_image, first_frame_path_var, tracking_points_var, personalized],
)
add_drag_button.click(add_drag, tracking_points_var, tracking_points_var)
delete_last_drag_button.click(
delete_last_drag,
[tracking_points_var, first_frame_path_var, drag_mode],
[tracking_points_var, input_image],
)
delete_last_step_button.click(
delete_last_step,
[tracking_points_var, first_frame_path_var, drag_mode],
[tracking_points_var, input_image],
)
reset_button.click(
reset_states,
[first_frame_path_var, tracking_points_var],
[input_image, first_frame_path_var, tracking_points_var],
)
input_image.select(
add_tracking_points,
[tracking_points_var, first_frame_path_var, drag_mode],
[tracking_points_var, input_image],
)
run_button.click(
ImageConductor_net.run,
[
first_frame_path_var,
tracking_points_var,
prompt,
drag_mode,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
personalized,
],
[output_image, output_video],
)
examples_type.change(
fn=load_example,
inputs=[drag_mode, examples_type],
outputs=[input_image, first_frame_path_var, tracking_points_var],
api_name=False,
queue=False,
)
block.queue().launch()
|