Yw22's picture
init demo
d711508
raw
history blame
5.61 kB
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from .layer import AdaLoraLayer
if is_bnb_available():
class SVDLinear8bitLt(torch.nn.Module, AdaLoraLayer):
# Low-rank matrix for SVD-based adaptation
def __init__(
self,
base_layer: torch.nn.Module,
adapter_name: str,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
init_lora_weights: bool = True,
**kwargs,
) -> None:
super().__init__()
AdaLoraLayer.__init__(self, base_layer)
# Freezing the pre-trained weight matrix
self.get_base_layer().weight.requires_grad = False
self._active_adapter = adapter_name
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# note: no check for self.merged because merging is not supported (yet)
result = self.base_layer(x)
if self.disable_adapters:
return result
for active_adapter in self.active_adapters:
if active_adapter not in self.lora_A.keys():
continue
requires_conversion = not torch.is_autocast_enabled()
if requires_conversion:
expected_dtype = result.dtype
if x.dtype != torch.float32:
x = x.float()
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
lora_E = self.lora_E[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
ranknum = self.ranknum[active_adapter] + 1e-5
output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T
if requires_conversion:
output = output.to(expected_dtype)
output = output * scaling / ranknum
# inplace operation on view is forbidden for MatMul8bitLtBackward, so avoid it
result = result + output
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "adalora." + rep
if is_bnb_4bit_available():
class SVDLinear4bit(torch.nn.Module, AdaLoraLayer):
# Low-rank matrix for SVD-based adaptation
def __init__(
self,
base_layer: torch.nn.Module,
adapter_name: str,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
init_lora_weights: bool = True,
**kwargs,
) -> None:
super().__init__()
AdaLoraLayer.__init__(self, base_layer)
# Freezing the pre-trained weight matrix
self.get_base_layer().weight.requires_grad = False
self._active_adapter = adapter_name
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
# note: no check for self.merged because merging is not supported (yet)
result = self.base_layer(x, *args, **kwargs)
if self.disable_adapters:
return result
# As per Tim Dettmers, for 4bit, we need to defensively clone here.
# The reason is that in some cases, an error can occur that backprop
# does not work on a manipulated view. This issue may be solved with
# newer PyTorch versions but this would need extensive testing to be
# sure.
result = result.clone()
for active_adapter in self.active_adapters:
if active_adapter not in self.lora_A.keys():
continue
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
lora_E = self.lora_E[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
ranknum = self.ranknum[active_adapter] + 1e-5
requires_conversion = not torch.is_autocast_enabled()
if requires_conversion:
expected_dtype = result.dtype
compute_dtype = lora_A.dtype
if x.dtype != compute_dtype:
x = x.to(compute_dtype)
output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T
if requires_conversion:
output = output.to(expected_dtype)
output = output * scaling / ranknum
result += output
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "adalora." + rep