Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import torch | |
from peft.utils.integrations import gather_params_ctx | |
from .config import PromptTuningInit | |
class PromptEmbedding(torch.nn.Module): | |
""" | |
The model to encode virtual tokens into prompt embeddings. | |
Args: | |
config ([`PromptTuningConfig`]): The configuration of the prompt embedding. | |
word_embeddings (`torch.nn.Module`): The word embeddings of the base transformer model. | |
**Attributes**: | |
- **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prompt embedding. | |
Example: | |
```py | |
>>> from peft import PromptEmbedding, PromptTuningConfig | |
>>> config = PromptTuningConfig( | |
... peft_type="PROMPT_TUNING", | |
... task_type="SEQ_2_SEQ_LM", | |
... num_virtual_tokens=20, | |
... token_dim=768, | |
... num_transformer_submodules=1, | |
... num_attention_heads=12, | |
... num_layers=12, | |
... prompt_tuning_init="TEXT", | |
... prompt_tuning_init_text="Predict if sentiment of this review is positive, negative or neutral", | |
... tokenizer_name_or_path="t5-base", | |
... ) | |
>>> # t5_model.shared is the word embeddings of the base model | |
>>> prompt_embedding = PromptEmbedding(config, t5_model.shared) | |
``` | |
Input Shape: (`batch_size`, `total_virtual_tokens`) | |
Output Shape: (`batch_size`, `total_virtual_tokens`, `token_dim`) | |
""" | |
def __init__(self, config, word_embeddings): | |
super().__init__() | |
total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules | |
self.embedding = torch.nn.Embedding(total_virtual_tokens, config.token_dim) | |
if config.prompt_tuning_init == PromptTuningInit.TEXT and not config.inference_mode: | |
from transformers import AutoTokenizer | |
tokenizer_kwargs = config.tokenizer_kwargs or {} | |
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name_or_path, **tokenizer_kwargs) | |
init_text = config.prompt_tuning_init_text | |
init_token_ids = tokenizer(init_text)["input_ids"] | |
# Trim or iterate until num_text_tokens matches total_virtual_tokens | |
num_text_tokens = len(init_token_ids) | |
if num_text_tokens > total_virtual_tokens: | |
init_token_ids = init_token_ids[:total_virtual_tokens] | |
elif num_text_tokens < total_virtual_tokens: | |
num_reps = math.ceil(total_virtual_tokens / num_text_tokens) | |
init_token_ids = init_token_ids * num_reps | |
init_token_ids = init_token_ids[:total_virtual_tokens] | |
init_token_ids = torch.LongTensor(init_token_ids).to(word_embeddings.weight.device) | |
with gather_params_ctx(word_embeddings.parameters()): | |
word_embedding_weights = word_embeddings(init_token_ids).detach().clone() | |
word_embedding_weights = word_embedding_weights.to(torch.float32) | |
self.embedding.weight = torch.nn.Parameter(word_embedding_weights) | |
def forward(self, indices): | |
# Just get embeddings | |
prompt_embeddings = self.embedding(indices) | |
return prompt_embeddings | |