Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import warnings | |
from typing import Any, List, Optional, Set, Tuple | |
import torch | |
import torch.nn as nn | |
from peft.tuners.lycoris_utils import LycorisLayer, check_adapters_to_merge | |
class OFTLayer(nn.Module, LycorisLayer): | |
# All names of layers that may contain adapter weights | |
adapter_layer_names = ("oft_r",) | |
# other_param_names is defined on parent class | |
def __init__(self, base_layer: nn.Module): | |
super().__init__() | |
LycorisLayer.__init__(self, base_layer) | |
# OFT info | |
self.oft_r = nn.ParameterDict({}) | |
self.coft = {} | |
self.eps = {} | |
self.block_share = {} | |
def _available_adapters(self) -> Set[str]: | |
return {*self.oft_r} | |
def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...], block_share: bool): | |
if block_share: | |
self.oft_r[adapter_name] = nn.Parameter(torch.empty(1, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) | |
else: | |
self.oft_r[adapter_name] = nn.Parameter(torch.empty(r, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) | |
def reset_adapter_parameters(self, adapter_name: str): | |
nn.init.zeros_(self.oft_r[adapter_name]) | |
def reset_adapter_parameters_random(self, adapter_name: str): | |
nn.init.kaiming_uniform_(self.oft_r[adapter_name], a=math.sqrt(5)) | |
def update_layer( | |
self, | |
adapter_name: str, | |
r: int, | |
module_dropout: float, | |
init_weights: bool, | |
coft: bool = False, | |
eps: float = 6e-5, | |
block_share: bool = False, | |
**kwargs, | |
) -> None: | |
"""Internal function to create oft adapter | |
Args: | |
adapter_name (`str`): Name for the adapter to add. | |
r (`int`): Rank for the added adapter. | |
module_dropout (`float`): The dropout probability for disabling adapter during training. | |
init_weights (`bool`): Whether to initialize weights. | |
coft (`bool`): Whether to use the constrained variant of OFT or not. | |
eps (`float`): | |
The control strength of COFT. The freedom of rotation. Only has an effect if `coft` is set to True. | |
block_share (`bool`): Whether to share the OFT parameters between blocks or not. | |
""" | |
if r <= 0: | |
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") | |
self.r[adapter_name] = r | |
self.module_dropout[adapter_name] = module_dropout | |
self.coft[adapter_name] = coft | |
self.block_share[adapter_name] = block_share | |
# Determine shape of OFT weights | |
base_layer = self.get_base_layer() | |
if isinstance(base_layer, nn.Linear): | |
shape = tuple(base_layer.weight.shape) | |
elif isinstance(base_layer, nn.Conv2d): | |
shape = ( | |
base_layer.out_channels, | |
base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], | |
) | |
else: | |
raise TypeError(f"OFT is not implemented for base layers of type {type(base_layer).__name__}") | |
self.eps[adapter_name] = eps * math.ceil(shape[0] / r) * math.ceil(shape[0] / r) | |
# Create weights with provided shape | |
self.create_adapter_parameters(adapter_name, r, shape, block_share) | |
# Initialize weights | |
if init_weights: | |
self.reset_adapter_parameters(adapter_name) | |
else: | |
self.reset_adapter_parameters_random(adapter_name) | |
# Move new weights to device | |
weight = getattr(self.get_base_layer(), "weight", None) | |
if weight is not None: | |
# the layer is already completely initialized, this is an update | |
if weight.dtype.is_floating_point or weight.dtype.is_complex: | |
self.to(weight.device, dtype=weight.dtype) | |
else: | |
self.to(weight.device) | |
self.set_adapter(self.active_adapters) | |
def unscale_layer(self, scale=None) -> None: | |
# scale is not used | |
pass | |
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: | |
""" | |
Merge the active adapter weights into the base weights | |
Args: | |
safe_merge (`bool`, *optional*): | |
If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs | |
before merging the weights. This is useful if you want to check if the merge operation will produce | |
NaNs. Defaults to `False`. | |
adapter_names (`List[str]`, *optional*): | |
The list of adapter names that should be merged. If `None`, all active adapters will be merged. | |
Defaults to `None`. | |
""" | |
adapter_names = check_adapters_to_merge(self, adapter_names) | |
if not adapter_names: | |
# no adapter to merge | |
return | |
for active_adapter in adapter_names: | |
if active_adapter in self._available_adapters: | |
base_layer = self.get_base_layer() | |
orig_weights = base_layer.weight.data | |
if isinstance(base_layer, nn.Linear): | |
orig_weights = torch.transpose(orig_weights, 0, 1) | |
elif isinstance(base_layer, nn.Conv2d): | |
orig_weights = orig_weights.view( | |
[ | |
base_layer.out_channels, | |
base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], | |
] | |
) | |
orig_weights = torch.transpose(orig_weights, 0, 1) | |
delta_weight = self.get_delta_weight(active_adapter) | |
if orig_weights.shape[1] != delta_weight.shape[1]: | |
# when in channels is not divisible by r | |
delta_weight = delta_weight[: orig_weights.shape[1], : orig_weights.shape[1]] | |
new_weights = torch.mm(orig_weights, delta_weight) | |
if isinstance(base_layer, nn.Linear): | |
new_weights = torch.transpose(new_weights, 0, 1) | |
elif isinstance(base_layer, nn.Conv2d): | |
new_weights = torch.transpose(new_weights, 0, 1) | |
new_weights = new_weights.view( | |
[ | |
base_layer.out_channels, | |
base_layer.in_channels, | |
base_layer.kernel_size[0], | |
base_layer.kernel_size[1], | |
] | |
) | |
if safe_merge and not torch.isfinite(new_weights).all(): | |
raise ValueError( | |
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" | |
) | |
base_layer.weight.data = new_weights | |
self.merged_adapters.append(active_adapter) | |
def unmerge(self) -> None: | |
""" | |
This method unmerges all merged adapter layers from the base weights. | |
""" | |
if not self.merged: | |
warnings.warn("Already unmerged. Nothing to do.") | |
return | |
while len(self.merged_adapters) > 0: | |
active_adapter = self.merged_adapters.pop() | |
if active_adapter in self._available_adapters: | |
base_layer = self.get_base_layer() | |
new_weights = base_layer.weight.data | |
if isinstance(base_layer, nn.Linear): | |
new_weights = torch.transpose(new_weights, 0, 1) | |
elif isinstance(base_layer, nn.Conv2d): | |
new_weights = new_weights.view( | |
[ | |
base_layer.out_channels, | |
base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], | |
] | |
) | |
new_weights = torch.transpose(new_weights, 0, 1) | |
delta_weight = self.get_delta_weight(active_adapter) | |
if new_weights.shape[1] != delta_weight.shape[1]: | |
# when in channels is not divisible by r | |
delta_weight = delta_weight[: new_weights.shape[1], : new_weights.shape[1]] | |
delta_inv = torch.inverse(delta_weight) | |
orig_weights = torch.mm(new_weights, delta_inv) | |
if isinstance(base_layer, nn.Linear): | |
orig_weights = torch.transpose(orig_weights, 0, 1) | |
elif isinstance(base_layer, nn.Conv2d): | |
orig_weights = torch.transpose(orig_weights, 0, 1) | |
orig_weights = orig_weights.reshape( | |
[ | |
base_layer.out_channels, | |
base_layer.in_channels, | |
base_layer.kernel_size[0], | |
base_layer.kernel_size[1], | |
] | |
) | |
base_layer.weight.data = orig_weights | |
def get_delta_weight(self, adapter_name: str) -> torch.Tensor: | |
rank = self.r[adapter_name] | |
coft = self.coft[adapter_name] | |
eps = self.eps[adapter_name] | |
opt_r = self.oft_r[adapter_name] | |
if coft: | |
with torch.no_grad(): | |
opt_r.copy_(self._project_batch(opt_r, eps=eps)) | |
orth_rotate = self._cayley_batch(opt_r) | |
weight = self._block_diagonal(orth_rotate, rank) | |
return weight | |
# Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L144 | |
def _cayley_batch(self, data: torch.Tensor) -> torch.Tensor: | |
b, r, c = data.shape | |
# Ensure the input matrix is skew-symmetric | |
skew = 0.5 * (data - data.transpose(1, 2)) | |
I = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c) # noqa: E741 | |
# Perform the Cayley parametrization | |
Q = torch.bmm(I - skew, torch.inverse(I + skew)) | |
return Q | |
# Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L155 | |
def _block_diagonal(self, oft_r: torch.Tensor, rank: int) -> torch.Tensor: | |
if oft_r.shape[0] == 1: | |
# block share | |
blocks = [oft_r[0, ...] for i in range(rank)] | |
else: | |
blocks = [oft_r[i, ...] for i in range(rank)] | |
# Use torch.block_diag to create the block diagonal matrix | |
A = torch.block_diag(*blocks) | |
return A | |
# Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L52 | |
def _project_batch(self, oft_r, eps=1e-5): | |
# scaling factor for each of the smaller block matrix | |
eps = eps * 1 / torch.sqrt(torch.tensor(oft_r.shape[0])) | |
I = ( # noqa: E741 | |
torch.zeros((oft_r.size(1), oft_r.size(1)), device=oft_r.device, dtype=oft_r.dtype) | |
.unsqueeze(0) | |
.expand_as(oft_r) | |
) | |
diff = oft_r - I | |
norm_diff = torch.norm(oft_r - I, dim=(1, 2), keepdim=True) | |
mask = (norm_diff <= eps).bool() | |
out = torch.where(mask, oft_r, I + eps * (diff / norm_diff)) | |
return out | |
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
previous_dtype = x.dtype | |
if self.disable_adapters: | |
if self.merged: | |
self.unmerge() | |
result = self.base_layer(x, *args, **kwargs) | |
elif self.merged: | |
result = self.base_layer(x, *args, **kwargs) | |
else: | |
result = self.base_layer(x, *args, **kwargs) | |
if len(result.shape) == 4: | |
result = result.permute(0, 2, 3, 1) | |
base_layer = self.get_base_layer() | |
base_bias = base_layer.bias | |
if base_bias is not None: | |
# Bias should be added after OFT forward | |
result = result - base_bias.data | |
# Execute all the adapters | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self._available_adapters: | |
continue | |
module_dropout = self.module_dropout[active_adapter] | |
# Modify current execution weights | |
if (not self.training) or (self.training and torch.rand(1) > module_dropout): | |
result = self._get_delta_activations(active_adapter, result, *args, **kwargs) | |
if base_bias is not None: | |
result = result + base_bias.data | |
if len(result.shape) == 4: | |
result = result.permute(0, 3, 1, 2) | |
result = result.to(previous_dtype) | |
return result | |
class Linear(OFTLayer): | |
"""OFT implemented in Linear layer""" | |
def __init__( | |
self, | |
base_layer: nn.Module, | |
adapter_name: str = "default", | |
r: int = 0, | |
module_dropout: float = 0.0, | |
init_weights: bool = True, | |
**kwargs, | |
): | |
super().__init__(base_layer) | |
# Create adapter and set it active | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) | |
def _get_delta_activations( | |
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any | |
) -> torch.Tensor: | |
delta_weight = self.get_delta_weight(adapter_name) | |
base_layer = self.get_base_layer() | |
base_weight = base_layer.weight.data | |
delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]] | |
# don't add bias here, because the bias will be added after OFT forward | |
return torch.matmul(input, delta_weight) | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "oft." + rep | |
class Conv2d(OFTLayer): | |
"""OFT implemented in Conv2d layer""" | |
def __init__( | |
self, | |
base_layer: nn.Module, | |
adapter_name: str = "default", | |
r: int = 0, | |
module_dropout: float = 0.0, | |
init_weights: bool = True, | |
**kwargs, | |
): | |
super().__init__(base_layer) | |
# Create adapter and set it active | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) | |
def _get_delta_activations( | |
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any | |
) -> torch.Tensor: | |
delta_weight = self.get_delta_weight(adapter_name) | |
base_layer = self.get_base_layer() | |
base_weight = base_layer.weight.data | |
delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]] | |
# don't add bias here, because the bias will be added after OFT forward | |
return torch.matmul(input, delta_weight) | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "oft." + rep | |