Spaces:
Running
on
Zero
Running
on
Zero
envs
Browse files
app.py
CHANGED
@@ -238,8 +238,8 @@ class ImageConductor:
|
|
238 |
def __init__(self, device, unet_path, image_controlnet_path, flow_controlnet_path, height, width, model_length, lora_rank=64):
|
239 |
self.device = device
|
240 |
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
|
241 |
-
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
|
242 |
-
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
|
243 |
inference_config = OmegaConf.load("configs/inference/inference.yaml")
|
244 |
unet = UNet3DConditionFlowModel.from_pretrained_2d("models/sd1-5/", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
|
245 |
|
|
|
238 |
def __init__(self, device, unet_path, image_controlnet_path, flow_controlnet_path, height, width, model_length, lora_rank=64):
|
239 |
self.device = device
|
240 |
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
|
241 |
+
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder").to(device)
|
242 |
+
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae").to(device)
|
243 |
inference_config = OmegaConf.load("configs/inference/inference.yaml")
|
244 |
unet = UNet3DConditionFlowModel.from_pretrained_2d("models/sd1-5/", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
|
245 |
|