Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import torch | |
from llava_llama3.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from llava_llama3.conversation import conv_templates, SeparatorStyle | |
from llava_llama3.model.builder import load_pretrained_model | |
from llava_llama3.utils import disable_torch_init | |
from llava_llama3.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path | |
from PIL import Image | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
from transformers import TextStreamer | |
import base64 | |
def load_image(image_file): | |
if isinstance(image_file, str) and (image_file.startswith('http://') or image_file.startswith('https://')): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
elif isinstance(image_file, bytes): | |
image = Image.open(BytesIO(image_file)).convert('RGB') | |
else: | |
image = Image.open(image_file).convert('RGB') | |
return image | |
def chat_llava(args, image_file, text, tokenizer, model, image_processor, context_len, streamer=None): | |
# Model | |
disable_torch_init() | |
conv = conv_templates[args.conv_mode].copy() | |
roles = conv.roles | |
inp = text | |
if image_file is not None: | |
print(image_file, type(image_file)) | |
image = load_image(image_file) | |
print(image, type(image)) | |
image_size = image.size | |
image_tensor = process_images([image], image_processor, model.config) | |
if type(image_tensor) is list: | |
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] | |
else: | |
image_tensor = image_tensor.to(model.device, dtype=torch.float16) | |
if model.config.mm_use_im_start_end: | |
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp | |
else: | |
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp | |
conv.append_message(conv.roles[0], inp) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor, | |
image_sizes=[image_size], | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
max_new_tokens=args.max_new_tokens, | |
streamer=streamer, | |
use_cache=True) | |
else: | |
conv.append_message(conv.roles[0], inp) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(model.device) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
max_new_tokens=args.max_new_tokens, | |
use_cache=True) | |
outputs = tokenizer.decode(output_ids[0]).strip() | |
conv.messages[-1][-1] = outputs | |
# Return the model's output as a string | |
# return outputs | |
return outputs.replace('<|end_of_text|>', '\n').lstrip() | |