Spaces:
Running
on
Zero
Running
on
Zero
amstrongzyf
commited on
Commit
•
32db94f
1
Parent(s):
d5bf1ae
Update app.py
Browse files
app.py
CHANGED
@@ -4,108 +4,101 @@ from threading import Thread
|
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
|
8 |
|
9 |
import spaces
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
parser.add_argument("--device", type=str, default="cuda")
|
35 |
-
parser.add_argument("--conv-mode", type=str, default="llama_3")
|
36 |
-
parser.add_argument("--temperature", type=float, default=0.7)
|
37 |
-
parser.add_argument("--max-new-tokens", type=int, default=512)
|
38 |
-
parser.add_argument("--load-8bit", action="store_true")
|
39 |
-
parser.add_argument("--load-4bit", action="store_true")
|
40 |
-
args = parser.parse_args()
|
41 |
-
|
42 |
-
# Load model
|
43 |
-
tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
|
44 |
-
args.model_path,
|
45 |
-
None,
|
46 |
-
'llava_llama3',
|
47 |
-
args.load_8bit,
|
48 |
-
args.load_4bit,
|
49 |
-
device=args.device)
|
50 |
|
51 |
@spaces.GPU
|
52 |
def bot_streaming(message, history):
|
53 |
print(message)
|
54 |
-
image_file = None
|
55 |
if message["files"]:
|
|
|
56 |
if type(message["files"][-1]) == dict:
|
57 |
-
|
58 |
else:
|
59 |
-
|
60 |
else:
|
|
|
|
|
61 |
for hist in history:
|
62 |
if type(hist[0]) == tuple:
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
gr.Error("You need to upload an image for LLaVA to work.")
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
model=llava_model,
|
78 |
-
image_processor=image_processor,
|
79 |
-
context_len=context_len,
|
80 |
-
streamer=streamer)
|
81 |
-
return output
|
82 |
-
|
83 |
-
thread = Thread(target=generate)
|
84 |
thread.start()
|
85 |
-
|
|
|
|
|
86 |
|
87 |
buffer = ""
|
88 |
-
|
89 |
for new_text in streamer:
|
|
|
|
|
|
|
90 |
buffer += new_text
|
|
|
|
|
91 |
generated_text_without_prompt = buffer
|
|
|
92 |
time.sleep(0.06)
|
|
|
93 |
yield generated_text_without_prompt
|
94 |
|
95 |
-
|
|
|
96 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
97 |
-
with gr.Blocks(fill_height=True) as demo:
|
98 |
gr.ChatInterface(
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
chatbot=chatbot,
|
109 |
)
|
110 |
|
111 |
demo.queue(api_open=False)
|
|
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
8 |
+
from transformers import TextIteratorStreamer
|
9 |
|
10 |
import spaces
|
11 |
+
|
12 |
+
|
13 |
+
PLACEHOLDER = """
|
14 |
+
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
15 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
|
16 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1>
|
17 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner</p>
|
18 |
+
</div>
|
19 |
+
"""
|
20 |
+
|
21 |
+
|
22 |
+
model_id = "TheFinAI/FinLLaVA"
|
23 |
+
|
24 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
25 |
+
|
26 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
27 |
+
model_id,
|
28 |
+
torch_dtype=torch.float16,
|
29 |
+
low_cpu_mem_usage=True,
|
30 |
+
)
|
31 |
+
|
32 |
+
model.to("cuda:0")
|
33 |
+
model.generation_config.eos_token_id = 128009
|
34 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
@spaces.GPU
|
37 |
def bot_streaming(message, history):
|
38 |
print(message)
|
|
|
39 |
if message["files"]:
|
40 |
+
# message["files"][-1] is a Dict or just a string
|
41 |
if type(message["files"][-1]) == dict:
|
42 |
+
image = message["files"][-1]["path"]
|
43 |
else:
|
44 |
+
image = message["files"][-1]
|
45 |
else:
|
46 |
+
# if there's no image uploaded for this turn, look for images in the past turns
|
47 |
+
# kept inside tuples, take the last one
|
48 |
for hist in history:
|
49 |
if type(hist[0]) == tuple:
|
50 |
+
image = hist[0][0]
|
51 |
+
try:
|
52 |
+
if image is None:
|
53 |
+
# Handle the case where image is None
|
54 |
+
gr.Error("You need to upload an image for LLaVA to work.")
|
55 |
+
except NameError:
|
56 |
+
# Handle the case where 'image' is not defined at all
|
57 |
gr.Error("You need to upload an image for LLaVA to work.")
|
58 |
+
|
59 |
+
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
60 |
+
# print(f"prompt: {prompt}")
|
61 |
+
image = Image.open(image)
|
62 |
+
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
63 |
+
|
64 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
|
65 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
|
66 |
+
|
67 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
thread.start()
|
69 |
+
|
70 |
+
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
71 |
+
# print(f"text_prompt: {text_prompt}")
|
72 |
|
73 |
buffer = ""
|
74 |
+
time.sleep(0.5)
|
75 |
for new_text in streamer:
|
76 |
+
# find <|eot_id|> and remove it from the new_text
|
77 |
+
if "<|eot_id|>" in new_text:
|
78 |
+
new_text = new_text.split("<|eot_id|>")[0]
|
79 |
buffer += new_text
|
80 |
+
|
81 |
+
# generated_text_without_prompt = buffer[len(text_prompt):]
|
82 |
generated_text_without_prompt = buffer
|
83 |
+
# print(generated_text_without_prompt)
|
84 |
time.sleep(0.06)
|
85 |
+
# print(f"new_text: {generated_text_without_prompt}")
|
86 |
yield generated_text_without_prompt
|
87 |
|
88 |
+
|
89 |
+
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
|
90 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
91 |
+
with gr.Blocks(fill_height=True, ) as demo:
|
92 |
gr.ChatInterface(
|
93 |
+
fn=bot_streaming,
|
94 |
+
title="LLaVA Llama-3-8B",
|
95 |
+
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
|
96 |
+
],
|
97 |
+
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
|
98 |
+
stop_btn="Stop Generation",
|
99 |
+
multimodal=True,
|
100 |
+
textbox=chat_input,
|
101 |
+
chatbot=chatbot,
|
|
|
102 |
)
|
103 |
|
104 |
demo.queue(api_open=False)
|