Spaces:
Running
on
Zero
Running
on
Zero
amstrongzyf
commited on
Commit
•
986b2b2
1
Parent(s):
38c55e2
Update app.py
Browse files
app.py
CHANGED
@@ -1,112 +1,145 @@
|
|
1 |
import time
|
2 |
from threading import Thread
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
-
from
|
7 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer, TextStreamer
|
8 |
-
|
9 |
-
import spaces
|
10 |
-
import argparse
|
11 |
|
12 |
from llava_llama3.model.builder import load_pretrained_model
|
13 |
-
from llava_llama3.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
14 |
-
from llava_llama3.conversation import conv_templates, SeparatorStyle
|
15 |
-
from llava_llama3.utils import disable_torch_init
|
16 |
-
from llava_llama3.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
|
17 |
from llava_llama3.serve.cli import chat_llava
|
18 |
|
19 |
-
import requests
|
20 |
-
from io import BytesIO
|
21 |
-
import base64
|
22 |
import os
|
23 |
-
import
|
24 |
-
import pandas as pd
|
25 |
-
from tqdm import tqdm
|
26 |
-
import json
|
27 |
|
|
|
28 |
root_path = os.path.dirname(os.path.abspath(__file__))
|
29 |
print(f'\033[92m{root_path}\033[0m')
|
30 |
os.environ['GRADIO_TEMP_DIR'] = root_path
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
-
# Load model
|
43 |
tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
|
44 |
-
|
45 |
None,
|
46 |
'llava_llama3',
|
47 |
-
|
48 |
-
|
49 |
-
device=
|
|
|
50 |
|
51 |
-
|
52 |
-
def bot_streaming(message, history):
|
53 |
-
print(message)
|
54 |
image_file = None
|
55 |
if message["files"]:
|
56 |
-
if
|
57 |
image_file = message["files"][-1]["path"]
|
58 |
else:
|
59 |
image_file = message["files"][-1]
|
60 |
else:
|
61 |
for hist in history:
|
62 |
-
if
|
63 |
image_file = hist[0][0]
|
64 |
|
65 |
if image_file is None:
|
66 |
gr.Error("You need to upload an image for LLaVA to work.")
|
67 |
return
|
68 |
|
|
|
|
|
|
|
|
|
69 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
70 |
def generate():
|
71 |
print('\033[92mRunning chat\033[0m')
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
83 |
thread = Thread(target=generate)
|
84 |
thread.start()
|
85 |
-
# thread.join()
|
86 |
|
87 |
buffer = ""
|
88 |
-
# output = generate()
|
89 |
for new_text in streamer:
|
90 |
buffer += new_text
|
91 |
-
generated_text_without_prompt = buffer
|
92 |
time.sleep(0.06)
|
93 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
gr.ChatInterface(
|
99 |
fn=bot_streaming,
|
100 |
-
|
|
|
|
|
101 |
examples=[
|
102 |
-
{"text": "What
|
103 |
],
|
|
|
104 |
description="",
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
)
|
110 |
|
111 |
-
|
112 |
-
demo.launch(
|
|
|
1 |
import time
|
2 |
from threading import Thread
|
3 |
+
import copy
|
4 |
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
8 |
|
9 |
from llava_llama3.model.builder import load_pretrained_model
|
|
|
|
|
|
|
|
|
10 |
from llava_llama3.serve.cli import chat_llava
|
11 |
|
|
|
|
|
|
|
12 |
import os
|
13 |
+
import argparse
|
|
|
|
|
|
|
14 |
|
15 |
+
# Set environment variables
|
16 |
root_path = os.path.dirname(os.path.abspath(__file__))
|
17 |
print(f'\033[92m{root_path}\033[0m')
|
18 |
os.environ['GRADIO_TEMP_DIR'] = root_path
|
19 |
|
20 |
+
# Create a default arguments object
|
21 |
+
default_args = argparse.Namespace(
|
22 |
+
model_path="TheFinAI/FinLLaVA",
|
23 |
+
device="cuda",
|
24 |
+
conv_mode="llama_3",
|
25 |
+
temperature=0.7,
|
26 |
+
max_new_tokens=512,
|
27 |
+
load_8bit=False,
|
28 |
+
load_4bit=False
|
29 |
+
)
|
30 |
|
31 |
+
# Load the model
|
32 |
tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
|
33 |
+
default_args.model_path,
|
34 |
None,
|
35 |
'llava_llama3',
|
36 |
+
default_args.load_8bit,
|
37 |
+
default_args.load_4bit,
|
38 |
+
device=default_args.device
|
39 |
+
)
|
40 |
|
41 |
+
def bot_streaming(message, history, temperature, max_new_tokens):
|
|
|
|
|
42 |
image_file = None
|
43 |
if message["files"]:
|
44 |
+
if isinstance(message["files"][-1], dict):
|
45 |
image_file = message["files"][-1]["path"]
|
46 |
else:
|
47 |
image_file = message["files"][-1]
|
48 |
else:
|
49 |
for hist in history:
|
50 |
+
if isinstance(hist[0], tuple):
|
51 |
image_file = hist[0][0]
|
52 |
|
53 |
if image_file is None:
|
54 |
gr.Error("You need to upload an image for LLaVA to work.")
|
55 |
return
|
56 |
|
57 |
+
args = copy.deepcopy(default_args)
|
58 |
+
args.temperature = temperature
|
59 |
+
args.max_new_tokens = max_new_tokens
|
60 |
+
|
61 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
62 |
+
|
63 |
def generate():
|
64 |
print('\033[92mRunning chat\033[0m')
|
65 |
+
return chat_llava(
|
66 |
+
args=args,
|
67 |
+
image_file=image_file,
|
68 |
+
text=message['text'],
|
69 |
+
tokenizer=tokenizer,
|
70 |
+
model=llava_model,
|
71 |
+
image_processor=image_processor,
|
72 |
+
context_len=context_len,
|
73 |
+
streamer=streamer
|
74 |
+
)
|
75 |
|
76 |
thread = Thread(target=generate)
|
77 |
thread.start()
|
|
|
78 |
|
79 |
buffer = ""
|
|
|
80 |
for new_text in streamer:
|
81 |
buffer += new_text
|
|
|
82 |
time.sleep(0.06)
|
83 |
+
yield buffer
|
84 |
+
|
85 |
+
# Define CSS styles
|
86 |
+
css = """
|
87 |
+
body {
|
88 |
+
font-family: Arial, sans-serif;
|
89 |
+
}
|
90 |
+
.gradio-container {
|
91 |
+
max-width: 800px;
|
92 |
+
margin: auto;
|
93 |
+
}
|
94 |
+
.chatbot {
|
95 |
+
height: 400px;
|
96 |
+
overflow-y: auto;
|
97 |
+
}
|
98 |
+
"""
|
99 |
|
100 |
+
# Create interface using gr.Blocks
|
101 |
+
with gr.Blocks(css=css) as demo:
|
102 |
+
gr.Markdown("# FinLLaVA Demo")
|
103 |
+
|
104 |
+
chatbot = gr.Chatbot(scale=1)
|
105 |
+
chat_input = gr.MultimodalTextbox(
|
106 |
+
interactive=True,
|
107 |
+
file_types=["image"],
|
108 |
+
placeholder="Enter message or upload file...",
|
109 |
+
show_label=False
|
110 |
+
)
|
111 |
+
|
112 |
+
with gr.Accordion("Advanced Settings", open=False):
|
113 |
+
temperature = gr.Slider(
|
114 |
+
label="Temperature",
|
115 |
+
minimum=0.1,
|
116 |
+
maximum=2.0,
|
117 |
+
step=0.1,
|
118 |
+
value=default_args.temperature
|
119 |
+
)
|
120 |
+
max_new_tokens = gr.Slider(
|
121 |
+
label="Max New Tokens",
|
122 |
+
minimum=1,
|
123 |
+
maximum=1024,
|
124 |
+
step=1,
|
125 |
+
value=default_args.max_new_tokens
|
126 |
+
)
|
127 |
+
|
128 |
gr.ChatInterface(
|
129 |
fn=bot_streaming,
|
130 |
+
chatbot=chatbot,
|
131 |
+
textbox=chat_input,
|
132 |
+
additional_inputs=[temperature, max_new_tokens],
|
133 |
examples=[
|
134 |
+
{"text": "What's in this image?", "files": ["http://images.cocodataset.org/val2017/000000039769.jpg"]},
|
135 |
],
|
136 |
+
title="",
|
137 |
description="",
|
138 |
+
theme="soft",
|
139 |
+
retry_btn="Retry",
|
140 |
+
undo_btn="Undo",
|
141 |
+
clear_btn="Clear",
|
142 |
)
|
143 |
|
144 |
+
if __name__ == "__main__":
|
145 |
+
demo.queue(api_open=False).launch(share=False, debug=True)
|