import argparse from llava_llama3.model.builder import load_pretrained_model from llava_llama3.mm_utils import get_model_name_from_path def merge_lora(args): model_name = get_model_name_from_path(args.model_path) tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, device_map='cpu') model.save_pretrained(args.save_model_path) tokenizer.save_pretrained(args.save_model_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, required=True) parser.add_argument("--model-base", type=str, required=True) parser.add_argument("--save-model-path", type=str, required=True) args = parser.parse_args() merge_lora(args)