Jimin Huang commited on
Commit
15f380b
β€’
1 Parent(s): f2550e7

feat: modify about.py

Browse files
Files changed (1) hide show
  1. src/about.py +86 -52
src/about.py CHANGED
@@ -1,6 +1,7 @@
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
 
4
  @dataclass
5
  class Task:
6
  benchmark: str
@@ -11,7 +12,7 @@ class Task:
11
  # Select your tasks here
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
  task0 = Task("FPB", "F1", "FPB")
16
  task2 = Task("FiQA-SA", "F1", "FiQA-SA")
17
  task3 = Task("TSA", "RMSE", "TSA")
@@ -47,68 +48,101 @@ class Tasks(Enum):
47
  task48 = Task("portoseguro", "F1", "portoseguro")
48
  task50 = Task("travelinsurance", "F1", "travelinsurance")
49
 
50
- NUM_FEWSHOT = 0 # Change with your few shot
51
- # ---------------------------------------------------
52
 
 
 
53
 
54
 
55
  # Your leaderboard name
56
- TITLE = """<h1 align="center" id="space-title">🐲 The FinBen FLARE Leaderboard</h1>"""
57
 
58
  # What does your leaderboard evaluate?
59
  INTRODUCTION_TEXT = """
 
 
 
 
 
60
  """
61
 
62
  # Which evaluations are you running? how can people reproduce what you have?
63
- LLM_BENCHMARKS_TEXT = f"""
64
  ## Introduction
65
- πŸ“Š The FinBen FLARE Leaderboard is designed to rigorously track, rank, and evaluate state-of-the-art models in financial Natural Language Understanding and Prediction.
66
-
67
- πŸ“ˆ Unique to FLARE, our leaderboard not only covers standard NLP tasks but also incorporates financial prediction tasks such as stock movement and credit scoring, offering a more comprehensive evaluation for real-world financial applications.
68
-
69
- ## Metrics
70
- πŸ“š Our evaluation metrics include, but are not limited to, Accuracy, F1 Score, ROUGE score, BERTScore, and Matthews correlation coefficient (MCC), providing a multidimensional assessment of model performance.
71
-
72
- Metrics for specific tasks are as follows:
73
-
74
- FPB-F1
75
- FiQA-SA-F1
76
- TSA-RMSE
77
- Headlines-AvgF1
78
- FOMC-F1
79
- FinArg-ACC-MicroF1
80
- FinArg-ARC-MicroF1
81
- Multifin-MicroF1
82
- MA-MicroF1
83
- MLESG-MicroF1
84
- NER-EntityF1
85
- FINER-ORD-EntityF1
86
- FinRED-F1
87
- SC-F1
88
- CD-F1
89
- FinQA-EmAcc
90
- TATQA-EmAcc
91
- ConvFinQA-EmAcc
92
- FNXL-EntityF1
93
- FSRL-EntityF1
94
- EDTSUM-Rouge-1
95
- ECTSUM-Rouge-1
96
- BigData22-Acc
97
- ACL18-Acc
98
- CIKM18-Acc
99
- German-F1
100
- Australian-F1
101
- LendingClub-F1
102
- ccf-F1
103
- ccfraud-F1
104
- polish-F1
105
- taiwan-F1
106
- portoseguro-F1
107
- travelinsurance-F1
108
-
109
- ## REPRODUCIBILITY
110
- πŸ”— For more details, refer to our GitHub page [here](https://github.com/The-FinAI/PIXIU).
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  """
113
 
114
  EVALUATION_QUEUE_TEXT = """
@@ -144,7 +178,7 @@ If everything is done, check you can launch the EleutherAIHarness on your model
144
  CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
145
  CITATION_BUTTON_TEXT = r"""
146
  @misc{xie2024finben,
147
- title={The FinBen: An Holistic Financial Benchmark for Large Language Models},
148
  author={Qianqian Xie and Weiguang Han and Zhengyu Chen and Ruoyu Xiang and Xiao Zhang and Yueru He and Mengxi Xiao and Dong Li and Yongfu Dai and Duanyu Feng and Yijing Xu and Haoqiang Kang and Ziyan Kuang and Chenhan Yuan and Kailai Yang and Zheheng Luo and Tianlin Zhang and Zhiwei Liu and Guojun Xiong and Zhiyang Deng and Yuechen Jiang and Zhiyuan Yao and Haohang Li and Yangyang Yu and Gang Hu and Jiajia Huang and Xiao-Yang Liu and Alejandro Lopez-Lira and Benyou Wang and Yanzhao Lai and Hao Wang and Min Peng and Sophia Ananiadou and Jimin Huang},
149
  year={2024},
150
  eprint={2402.12659},
 
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
4
+
5
  @dataclass
6
  class Task:
7
  benchmark: str
 
12
  # Select your tasks here
13
  # ---------------------------------------------------
14
  class Tasks(Enum):
15
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
16
  task0 = Task("FPB", "F1", "FPB")
17
  task2 = Task("FiQA-SA", "F1", "FiQA-SA")
18
  task3 = Task("TSA", "RMSE", "TSA")
 
48
  task48 = Task("portoseguro", "F1", "portoseguro")
49
  task50 = Task("travelinsurance", "F1", "travelinsurance")
50
 
 
 
51
 
52
+ NUM_FEWSHOT = 0 # Change with your few shot
53
+ # ---------------------------------------------------
54
 
55
 
56
  # Your leaderboard name
57
+ TITLE = """<h1 align="center" id="space-title">🐲 Open Finance LLM Leaderboard</h1>"""
58
 
59
  # What does your leaderboard evaluate?
60
  INTRODUCTION_TEXT = """
61
+ 🌟 The FinBen FLARE Leaderboard: Evaluate and compare the performance of financial Large Language Models (LLMs).
62
+ When you submit a model on the "Submit here!" page, it is automatically evaluated on a set of financial benchmarks.
63
+ The GPU used for evaluation is operated with the support of __[Wuhan University](http://en.whu.edu.cn/)__ and __[University of Florida](https://www.ufl.edu/)__.
64
+ The datasets used for evaluation consist of diverse financial datasets like the `FinBen` benchmark to assess tasks such as sentiment analysis, named entity recognition, question answering, and more.
65
+ More details about the benchmarks and the evaluation process are provided on the β€œAbout” page.
66
  """
67
 
68
  # Which evaluations are you running? how can people reproduce what you have?
69
+ LLM_BENCHMARKS_TEXT = """
70
  ## Introduction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
+ The **Open Financial LLMs Leaderboard (OFLL)** is meticulously designed to rigorously track, rank, and evaluate state-of-the-art models in financial Natural Language Understanding and Prediction. Our leaderboard not only covers standard NLP tasks but also incorporates financial prediction tasks such as stock movement and credit scoring, offering a comprehensive evaluation for real-world financial applications.
73
+
74
+ ## Icons & Model Types
75
+
76
+ - 🟒 : pretrained or continuously pretrained
77
+ - πŸ”Ά : fine-tuned on domain-specific datasets
78
+ - πŸ’¬ : chat models (RLHF, DPO, ORPO, ...)
79
+ - 🀝 : base merges and moerges
80
+
81
+ If the icon is "?", it indicates that there is insufficient information about the model. Please provide information about the model through an issue! 🀩
82
+
83
+ **Note 1**: We reserve the right to correct any incorrect tags/icons after manual verification to ensure the accuracy and reliability of the leaderboard.
84
+
85
+ **Note 2** ⚠️: Some models might be widely discussed as subjects of caution by the community, implying that users should exercise restraint when using them. Models that have used the evaluation set for training to achieve a high leaderboard ranking, among others, may be selected as subjects of caution and might result in their deletion from the leaderboard.
86
+
87
+ ## How It Works
88
+
89
+ πŸ“ˆ We evaluate models using Pixiu, a powerful and straightforward framework to test and assess language models on a large number of different evaluation tasks from FinBen, using datasets validated by financial experts.
90
+
91
+ ### Evaluation Metrics
92
+
93
+ Our evaluation metrics include, but are not limited to, Accuracy, F1 Score, ROUGE score, BERTScore, and Matthews correlation coefficient (MCC), providing a multidimensional assessment of model performance. Metrics for specific tasks are as follows:
94
+
95
+ - **FPB**: F1
96
+ - **FiQA-SA**: F1
97
+ - **TSA**: RMSE
98
+ - **Headlines**: AvgF1
99
+ - **FOMC**: F1
100
+ - **FinArg-ACC**: MicroF1
101
+ - **FinArg-ARC**: MicroF1
102
+ - **Multifin**: MicroF1
103
+ - **MA**: MicroF1
104
+ - **MLESG**: MicroF1
105
+ - **NER**: EntityF1
106
+ - **FINER-ORD**: EntityF1
107
+ - **FinRED**: F1
108
+ - **SC**: F1
109
+ - **CD**: F1
110
+ - **FinQA**: EmAcc
111
+ - **TATQA**: EmAcc
112
+ - **ConvFinQA**: EmAcc
113
+ - **FNXL**: EntityF1
114
+ - **FSRL**: EntityF1
115
+ - **EDTSUM**: Rouge-1
116
+ - **ECTSUM**: Rouge-1
117
+ - **BigData22**: Acc
118
+ - **ACL18**: Acc
119
+ - **CIKM18**: Acc
120
+ - **German**: F1
121
+ - **Australian**: F1
122
+ - **LendingClub**: F1
123
+ - **ccf**: F1
124
+ - **ccfraud**: F1
125
+ - **polish**: F1
126
+ - **taiwan**: F1
127
+ - **portoseguro**: F1
128
+ - **travelinsurance**: F1
129
+
130
+ To ensure a fair and unbiased assessment of the models' true capabilities, all evaluations are conducted in zero-shot settings (0-shots). This approach eliminates any potential advantage from task-specific fine-tuning, providing a clear indication of how well the models can generalize to new tasks.
131
+
132
+ Given the nature of the tasks, which include multiple-choice and yes/no questions, we extract options from the generated text to evaluate performance.
133
+
134
+ Please, consider reaching out to us through the discussions tab if you are working on benchmarks for financial LLMs and willing to see them on this leaderboard as well. Your benchmark might change the whole game for financial models!
135
+
136
+ GPUs are provided by Wuhan University and the University of Florida for the evaluations.
137
+
138
+ ## Details and Logs
139
+
140
+ - Detailed numerical results in the [results FinBen dataset](https://huggingface.co/datasets/FinBen/results)
141
+ - Community queries and running status in the [requests FinBen dataset](https://huggingface.co/datasets/FinBen/requests)
142
+
143
+ ## More Resources
144
+
145
+ If you still have questions, you can check our github repository [here](https://github.com/TheFinAI/PIXIU).
146
  """
147
 
148
  EVALUATION_QUEUE_TEXT = """
 
178
  CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
179
  CITATION_BUTTON_TEXT = r"""
180
  @misc{xie2024finben,
181
+ title={The FinBen: An Holistic Financial Benchmark for Large Language Models},
182
  author={Qianqian Xie and Weiguang Han and Zhengyu Chen and Ruoyu Xiang and Xiao Zhang and Yueru He and Mengxi Xiao and Dong Li and Yongfu Dai and Duanyu Feng and Yijing Xu and Haoqiang Kang and Ziyan Kuang and Chenhan Yuan and Kailai Yang and Zheheng Luo and Tianlin Zhang and Zhiwei Liu and Guojun Xiong and Zhiyang Deng and Yuechen Jiang and Zhiyuan Yao and Haohang Li and Yangyang Yu and Gang Hu and Jiajia Huang and Xiao-Yang Liu and Alejandro Lopez-Lira and Benyou Wang and Yanzhao Lai and Hao Wang and Min Peng and Sophia Ananiadou and Jimin Huang},
183
  year={2024},
184
  eprint={2402.12659},